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Abstract: Drapal and Kepka (1989) proved that if I is a latin
trade in the back circulant latin square of order n, then || >
O(log p), where p is the smallest prime that divides n. We give
an alternative proof of this result.
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1. BACKGROUND INFORMATION

The concept of intersections between latin squares and the concept of
latin trades are closely related. Given two distinct latin squares L, and
L- of the same order, the set of elements of L, which differ from L, is a
latin trade. Conversely, any latin trade may be constructed in this way.

Drapal and Kepka [6] proved that if L is a latin square of order n > 3
then the intersection between L and B, (# L), the back circulant latin
square, is at least 4 if n is even, or at least elog p + 3, where p is the least
prime that divides n, if n is odd. Equivalently, the size of the smallest
latin trade in B, is at least O(logp). This note presents an alternative
proof of this result. The approach taken is accessible to readers with a
combinatorics background.

It is conjectured that we can construct a latin trade of order bounded
by O(logn) in B, for any n. Drapal ([4]) has shown that for any n > 3
there exists a latin trade of size at most O(logn?) in the back circulant
latin square of order n. In doing so he proves that certain triangulations
of the integral planc correspond to latin trades in B,,.

Latin trades are essential for constructions of critical sets in latin
squares (see, for example, [2] and [3]).
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2. DEFINITIONS

The linear algebraic notation used in this paper is consistent with [1].
Let N ={0,1,2,...,n—1}. A partial latin square P of order n is a set of
ordered triples of elements of N such that

if (i, 5,k), (@', j,k) € P, then i =7,

. if (i,7, k), (4,7', k) € P, then j = j' and

3. if (i,7,k),(i,7,k') € P then k = k'.

If (i,j,k) € P we say that the entry k occurs in row i and column j (or
cell (i,j)) of P. Thus we may think of P as an n x n array of integers
chosen from N in such a way that each element of N occurs at most once
in each row and at most once in each column of the array.

If every cell of the array contains an entry then the partial latin square
is termed a latin square. That is, a latin square L of order n is an n x n
array with entries chosen from the set N = {0,1,...,n— 1} in such a way
that each element of N occurs precisely once in each row and precisely once
in each column of the array. Let B, denote the back circulant latin square
of order n. That is, if the rows and columns are labelled zero to n— 1, then
for all positive integers n, B, = {(i,j,i + j(mod n)) | 0 < 7,5 < n —1}.

Two partial latin squares are said to be isotopic if there exist three
permutations a, 3, v of the set N such that (i,j,k) € P if and only if
(a(i), B(5),v(k)) € Q.

For a given partial latin square P the set of cells Sp = {(i,7) |
(i,j,k) € P, for some k € N} is said to determine the shape of P and
|Sp| is said to be the size of the partial latin square. That is, the size
of P is the number of non-empty cells. For each ¢, 0 < < n -1, let
R denote the set of entries occurring in row i of P. Formally, R} =
{k | there (’letS] (i,j,k) € P}. Similarly, for each j, 0 < j < n —1,
we define C) = {k | there existsi (i,5,k) € P}. We will also need
EE = {(4,5) | i,7,k) € P} and £(P) = {k | there exists 7, j, (i,7, k) € P}.

Definition 1. A partial latin square I(# @) of order n is said to be a
latin trade if there exists a partial latin square I’ (called a disjoint mate
of I) of order n, such that

1. §; =S8p,

2. for each k € £(I), EFNEF, = 0. (Orif (i,5,k) € I and (i,5,k") € I',

then k # k'.)
3. foreachi,0<i<n-—1,R} —'R,, and
4. foreach j,0<j<n-1,¢ =0

Example 2. Figure 1 shows a latin trade I in By, together with the latin
square formed by replacing I with its disjoint mate I'. The entries of I
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and I’ are shown in italics. Nine is the smallest possible size for a latin
trade in By [7].

0(1(2|3]|4|5]|6 411123056
1(2|13|4|5(6]0 112|13|4|5(6]0
2131415(6]0]1 21316|5]14[0]1
3|4|5|6]0]1]2 3|14|5|0|6|1]2
4151610123 0|5|4|6|11[2]3
5|16(0(|1(2(|3|4 5(6[(0[1]2]|3|4
6({0[1]2|3[|4]|5 6|10(1]2]|3[4|5
Figure 1

3. A LOWER BOUND

The size of the smallest latin trade found in any latin square is four.
Such latin trades are called intercalates, and exist in B,, whenever n is
even.

In this section we establish a lower bound for the size of a latin trade in
B,,, for any odd n > 3. To do so we take an arbitrary latin trade I in B,
and exploit the group properties of (Z, +) to establish a set of equations
involving the entries of 7. We then make use of some linear algebra, and
later on even some calculus! But first of all we need a couple of small
lemmas.

Lemma 3. If I is a latin tade and if IEH > 1, for some k € N, then
1EF1 > 2.

Proof. Suppose there exists a latin trade I and entry k with |£f| = 1.
Let I’ be a disjoint mate of I. Then by conditions 2 and 3 of Definition
1, R} = R}, and there vxists'lj’ # ", such that (i,j',k) € I'. But from
condition 4 of Definition 1, C; = C7,, and there exists i’ # i such that
entry (i',j',k) € I, and |Ef| > 2. O

Lemma 4. If [ is a latin trade then |E(1)] > 2.

Proof. Suppose that [ is a latin trade and |E(1)] = 1. Let £(1) = {k}.
and (i,j) € &f. Let I' be a disjoint mate of /. Conditions 1 and 2 of
Definition 1 tells us that there exists k' # k, with (¢,j, k") € I'. But from
conditions 2 and 3 of Definition 1, (7,5, k") € I, for some j' # j. This
contradicts our original assumption. O

The following procedure indicates how a matrix equation may be de-
rived from a given latin trade in B,,. This is the first step in obtaining the
lower bound given in Theorem 9. An example of this procedure is given
in Example 11.

13



Consider a latin trade I in a back circulant latin square of order n,
together with a disjoint mate I'. Let £(I) = {z1,x2,...,2m41} C N. We
know from Lemma 4 that m > 1. Because of the cyclic structure of B,,,
the set

{(i — Tms1,4,k — Ty (mod n)) | (i,5,k) € I}
is also a latin trade in B,, and is isotopic to I. Thus we can assume
without loss of generality that z,,,; = 0.

Now, let b = |£]"| (the number of occurrences of z, as an entry in I).

From Lemma 3, b > 2. Let S = &' and S’ = £7'. Then

S = {(ilvjl)y(i'Z',j?):-- -7(ib7jb)}7
for some integers iy,1s,.. .1y, j1,j2,- .- jb- Also,
8" = {(i1,Jaq)) (2: Ja(2))s - - - » (Bes Jae)) }5

where « is some devolution of the set {1,2,...,b}.

Observe that:
b
D Gy +dy) =D _(iy + Jarw))-
y=1 y=1
But each (i, +j,) = ) (mod n), and each (i, + ja(y)) = zx (mod n), for
some k, where 2 < k < m + 1. This gives us an equation

o

(1) bzy = b+ i@, F0imtitmg  (mod n),
where Z:’:g] bii=b>2, and z,,,+1 = 0. (Let Q C I be the partial latin

square with the same shape as S’. Then b); = |€£‘,‘ |.) From the definition
of congruence modulo n, we may rewrite equation (1) as:

a11T; +a122 + ... 01Ty = C1N,

where a;; = b, a;; = —b;; < 0 and ¢, is some integer. Observe that
Z:'llall =b- z:ngblz —blm+1 >0

We repeat this process for the entries z;, 1 < i < m, to obtain equations
of the form:

a;1T) +ai2T2 +...8imTm = CiN.

In each case a;; = || > 2 (by Lemma 3), a;; < 0 if ¢ # j, and
Z;":l aij > 0. Let A € M;,xm(Z) be the matrix given by A = [a;;]
(where 1 < 4,5 < m), X the column vector (z1,%2,...,Z,)" and B the
vector (c1,¢a,...cm)t. We say that A is a matrix derived from the latin
trade I. Then AX = nB, or equivalently
X = dj(A)B,
det( A)a j(4)

where adj(A) is the adjoint of A, a matrix with integer entries. Next we
explore some properties of det(A).
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Lemma 5. If I is a latin trade in the back circulant latin square of order
n, then ged(n,det(A)) > 1, where A is any matrix derived from I.

Proof. Let I be a latin trade in B, and let A be a matrix derived from
I. Then, as above, we have a matrix equation X = n x adj(A)B/det(A),
where adj(A) is the adjoint of A, a matrix with integer entries. The
elements of X are the non-zero entries that occur in cells of I, so they
must lie between 1 and n — 1. However, if gcd(n,det(A)) = 1, each entry
of X is divisible by n, contradicting the previous statement. O

Definition 6. Let A = [a;;] be a matrix in M, (R). We say that A is
a trade matriz if it satisfies the following properties, for all 1 < 1i,j < m:

1. a;; >0,
2. a;; <0 (2 #J),
5 ZT:l Ay 20

Any matrix A derived from a latin trade I is a trade matrix. The
following lemma gives an upper bound on the determinant of a trade
matrix, in terms of its diagonal elements.

Lemma 7. If A = [a;j] € M,,xm(R) is a trade matrix, then det(A4) <
| J M

Proof. The proof is by induction on m, and essentially involves row re-
duction of A.

If m =1, det(A) = ay1, so the lemma is true in this case. Otherwise
assume that m > 2, and that for any trade matrix with m — 1 rows and
columns, its determinant is no greater than the product of its diagonal
elements. Let B = [b;;] be the (m — 1) x (m — 1) matrix obtained from A
as follows. For all i,5,1<i,7 <m—1:

bij = Qi41,541 — (li+1.1111,j+1/(111-

Observe that det(A4) = a;;det(B). We will show that B is a trade matrix.
Firstly, if ¢ # j then a;; > |a;;|. (This is a consequence of conditions

1, 2 and 3 in Definition 6.) It follows that a;;a1; < ajap, for all 7,

2 < i < m. If equality holds for any i, then det(A) = 0, and certainly

det(A) < [[i%, aii in this case. Otherwise for all i, 1 < i < m — 1,

Qi41101,i+1 < Qit+1,i+1011, and

Ai+1,101,i+1
ap

bii = Git1,41 — 2.
Therefore condition 1 of Definition 6 holds for B.

Now we check condition 2. If i # j and 1 <i,j <m — 1,
Ai+1,101 541

< @it1,5+1 <0,
)

bij = Qit1,5+1 —



since a; 1,1 and ay_j4+; are both non-positive. Thus b;; < 0 and condition
2 holds.

Next,
m—1 m
E bij = E (ai+l4j_ai,+l,1(llj/(111)
Jj=1 j=2
m m
_ Za Ait1,1 Z“
= i+l — — 1j-
— ain =
Jj=2 Jj=2

But z;":l ai+1,; >0 and Z;":l a;; >0, so

m—1

Ai41,1
E byi; 2 —@ip1a — (—ay) = 0.
j=1

apy

Thus condition 3 holds, and we have that B is a trade matrix.
But from our inductive hypothesis,

m—1 m

det(B) < ] bu < [] s
i=1 =2
and so det(A4) < [, ai. O

Lemma 8. For all integers m > 1 and p > 2, mp'/™ > elog p.

Proof. Consider the derivative of mp!/™ with respect to m:
d . d
/m _ 1/m log p/m
—(m = + mi—=—i(e
dm (mp7™) o dm ( )

pl/m _ logpelog p/m
m
e 1/m )
= p/"™(1—logp/m).
Setting the first derivative to zero gives us m = logp. The second deriv-
ative is: p'/"log p/m?. This is always positive, so m = logp gives us a
minimum value for the expression mp'/™. Thus,

mp'/™ > logp x pt/logp
= logp x (e'98P)1/108P — ¢log p.
a

Theorem 9. If [ is a latin trade in B, then |I| > [elogp + 2], where p
is the smallest prime that divides n.

Proof. Let I be a latin trade in B,,, let A a matrix derived from I and let
ged(n,det(A)) = g. From Lemma 5, g > 1 and thus g > p, where p is the
least prime that divides n. Suppose that the number of distinct entries in
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I is m + 1, and that the diagonal entries of A are a1, as,...,amm. Then,
together with Lemma 7, we have that

p < g < det(4) <[] a

=1
Under this constraint,

m

|| > 2+Za“ > 2 + mpt/™.

i=1
(Since 3", a;; is minimized when a;; = a2 = azz = -+ = @ymm, which
implies that each a;; > pl/ m_ Also, there are at least two cells of I

containing the (m+ 1)th entry.) But Lemma 8 shows that mp'/™ > elogp
and we have |I| > elogp + 2. I

Corollary 10. If L is a latin square of order n and L # B,, then |L N
B,| > [elogp + 2], where p is the smallest prime that divides n.

Proof. This corollary follows from the relationship between latin trades
and intersections between latin squares. O

Example 11. Consider the latin trade I and its disjoint mate I’ given in
Figure 2.

Ji_J2 J3 Ja Js v J2 J3 Ja Js
i |z3 | z2 | T4 | T4 i [T [ T4 |71 | T3
iy | T2 | T4 T3 iy | T3 | T2 Ty
’i3 &I T4 ’1:3 Iy T
14 T3 | T3 iy Ty | z3
¢ § I
Figure 2

Suppose that I is contained in the latin square B,,. We shall derive a
matrix A from the latin trade I, as in the procedure that follows Lemma
4. We may let x4 = 0 without loss of generality.

The sets of cells containing the entry z; in I and I' are given by:

S o= {(il?j‘l)i(i:}!jB)S(i47j5)} and SI =, {(113J3)9(737}'))\(141.,1)}
respectively. Observe that
(i1 + Ja) + (i3 + J3) + (ia + Js) = (41 + J3) + (i3 + Js) + (4 + Ja)-

By considering each of these sums within the latin trade I in B,, we get
3r; = x3+2x4(mod n), or equivalently 3z, —xz3 = byn for some integer b, .
Following the same procedure for entries x5 and 3 we obtain equations

17



21y — ..l.'g = byn and 3x3 — 2z, — xy = byn, for some integers b, and b;.
Then AX = nB, where X = (1,22, 13)", B = (b1, bs,b3)! and
3 0 -1
A=10 2 -1
-2 -1 3

The determinant of A is 11. (Note that this is no greater than the product
of the diagonal entries of A, as per Lemma 7.) In fact, a solution to
AX = 11Bis given by X = (1,7,3)" and B = (0,1,0)!, and I can be
embedded in By,. A corresponding latin trade in By, is given in Figure
3, together with its disjoint mate.

011 3 7
1
3 1
7 0 3
The latin trade I embedded in Bj;.
13 7 0
0 1
1
3 7 0
The disjoint mate of the above latin trade.
Figure 3
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