A New Blocking Semioval

Christina Jacobs
Department of Mathematics
Washington State University
Pullman, WA 99164-3113

June 11, 2004

1 Introduction

Let $\Pi=(P, L)$ be a projective plane of order n. A blocking set in Π is a set B of points such that for every line 1 of Π there is at least one point of 1 in B, but 1 is not entirely contained in B. Blocking sets have been extensively studied, see for example, Berardi and Eugeni [2].

A semioval in Π is a set S of points such that for every point $P \in S$ there is a unique tangent to S containing P. Here, as usual, a tangent to S is a line of Π meeting S in exactly one point. The concept of semioval is a generalization of the concept of oval. An oval in Π is a set of $n+1$ points such that no three are collinear. Since two points in Π lie on a unique line, and since there are $n+1$ lines through a point of Π, it is clear that an oval is a semioval. Ovals have also been extensively studied, but semiovals have so far received little attention. (See Hughes and Piper [5], Chapter XII.)

One type of semioval that has recently received some attention is the blocking semioval. A blocking semioval in Π is a blocking set that is also a semioval. That is, a blocking semioval is a set S of points in Π satisfying: (1) every line 1 of Π contains a point of S and a point not in S; (2) for every point P of S there is a unique tangent to S containing P. One interesting aspect of a blocking semioval is that it is both a minimal blocking set and a maximal semioval [4].

Batten [1] initiated the study of blocking semiovals when she showed they had an important role to play in cryptography. Dover [4] discovered bounds on the size of a blocking semioval S and on the size of $S \cap l$, where 1 is a line of II. Furthermore, Dover [4], Dover and Ranson [6] verified the existence of some infinite families of blocking semiovals.

A vertexless triangle in the projective plane Π is constructed as follows. Let $1_{1}, 1_{2}, 1_{3}$ be three nonconcurrent lines in Π, that is, they do not
meet in a common point. If P_{1}, P_{2}, P_{3} are the three points of intersection determined by $1_{1}, 1_{2}, 1_{3}$, then the set $\left(l_{1} \cup l_{2} \cup l_{3}\right)-\left\{P_{1}, P_{2}, P_{3}\right\}$ consisting of the points in the three lines different from $P 1, P 2$, and $P 3$ forms a vertexless triangle. See Figure 1.

Figure 1. Vertexless Triangle
For $n>2$, a vertexless triangle T is a blocking semioval. (If $Q \in T$ is in the line 1_{i} then the line determined by Q and $l_{j} \cap l_{k}$ is the tangent to T through Q.) All other known blocking semiovals have been found only in desarguesian projective planes.

In this article we give an example of a blocking semioval occuring in a nondesarguesian plane. Our example occurs in the translation plane coordinatized by the nearfield of order n. It probably can be extended to all nearfield planes of order p^{2}, p a prime. The example is not a vertexless triangle, the only other known blocking semioval occuring in a nondesarguesian plane; so it is new. Suetake [7] studied some blocking semiovals in $P G(2, n)$ with nontrivial homologies and constructed three families of blocking semiovals.

In Section 2 we recall the definition of the nearfield of order 9. In Section 3 we give some background information on blocking semiovals. In Section 4 we describe the new blocking semioval and show that it is not a vertexless triangle.

2 Coordinatizing a projective plane using a nearfield

Let F be the field of nine elements obtained by adjoining to $G F(3)$ the element α satisfying $\alpha^{2}+1=0$ or $\alpha^{2}=2$. The nearfield K of order nine can then be defined as follows. The elements of K are the elements of F and the addition of K is that of F. The multiplication, denoted by \cdot, in
the nearfield K is given by

$$
a \cdot b= \begin{cases}a b & \text { if } b^{2} \in G F(3) \\ a^{3} b & \text { if } b^{2} \notin G F(3)\end{cases}
$$

Here the multiplication on the right is that of F [3].
A projective plane \mathbf{N} coordinatized by K can be defined as follows. First, the affine plane A coordinatized by K consists of the points (a, b), where $a, b \in K$. The lines of \mathbf{A} are given by equations of the form

$$
\begin{equation*}
y=x \cdot m+k, \quad m, k \in K \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x=a, \quad a \in K \tag{2}
\end{equation*}
$$

For example, an equation of type (1) represents the set of points (a, b) with $b=a \cdot m+k$. An equation of type (2) represents the set of points (a, b), where a is fixed and b ranges over all of K. A line of type (1) is said to have slope m. A line of type (2) is said to be vertical.

To obtain the projective plane \mathbf{N} we add to the affine plane \mathbf{A} points (m), one for each $m \in K$. Furthermore, we require that for each m all lines of slope m in A go through (m). [That is, we add (m) to each of the sets $y=x \cdot m+k$.] Also, we add one more point (∞) to \mathbf{A}, and we add the point to each vertical line. Finally, the points $(m), m \in K$, and (∞) form a new line called the line at infinity.

It is in the projective plane \mathbf{N}, sometimes referred to as the Hall plane, that we find a new blocking semioval, which is described in the next section.

3 A new blocking semioval in the nearfield plane of order 9

In the projective plane \mathbf{N} of Section 2 consider the set S^{\prime} consisting of all points in \mathbf{N} satisfying the equation

$$
\begin{equation*}
y^{2}-x^{2}=1 \tag{3}
\end{equation*}
$$

Out of the $9^{2}+9+1=91$ points of \mathbf{N}, there are 20 points satisfying the equation (3):

$(1, \alpha)$	$(2, \alpha)$	$(\alpha, 0)$
$(1, \alpha+1)$	$(2, \alpha+1)$	$(\alpha+1,0)$
$(1, \alpha+2)$	$(2, \alpha+2)$	$(\alpha+2,0)$
$(1,2 \alpha)$	$(2,2 \alpha)$	$(2 \alpha, 0)$
$(1,2 \alpha+1)$	$(2,2 \alpha+1)$	
$(1,2 \alpha+2)$	$(2,2 \alpha+2)$	$(2 \alpha+1,0)$
	$(0,1)$	
$(0,2)$	$(2 \alpha+2,0)$	

These points are the elements of S^{\prime}.
Of the 20 points of S^{\prime} there are 18 with a unique tangent as given in Table 1:

Point	Tangent Line
$(1, \alpha)$	$y=x \cdot 2 \alpha+2 \alpha$
$(1, \alpha+1)$	$y=x \cdot(2 \alpha+2)+(2 \alpha+2)$
$(1, \alpha+2)$	$y=x \cdot(2 \alpha+1)+(2 \alpha+1)$
$(1,2 \alpha)$	$y=x \cdot \alpha+\alpha$
$(1,2 \alpha+1)$	$y=x \cdot(\alpha+2)+(\alpha+2)$
$(1,2 \alpha+2)$	$y=x \cdot(\alpha+1)+(\alpha+1)$
$(2, \alpha)$	$y=x \cdot \alpha+2 \alpha$
$(2, \alpha+1)$	$y=x \cdot(\alpha+1)+(2 \alpha+2)$
$(2, \alpha+2)$	$y=x \cdot(\alpha+2)+(2 \alpha+1)$
$(2,2 \alpha)$	$y=x \cdot 2 \alpha+\alpha$
$(2,2 \alpha+1)$	$y=x \cdot(2 \alpha+1)+(\alpha+2)$
$(2,2 \alpha+2)$	$y=x \cdot(2 \alpha+2)+(\alpha+1)$
$(\alpha, 0)$	$x=\alpha$
$(\alpha+1,0)$	$x=\alpha+1$
$(\alpha+2,0)$	$x=\alpha+2$
$(2 \alpha, 0)$	$x=2 \alpha$
$(2 \alpha+1,0)$	$x=2 \alpha+1$
$(2 \alpha+2,0)$	$x=2 \alpha+2$

Table 1: Tangents to the Set S^{\prime}
The last two points of S^{\prime} listed in (4) each have three tangents as given in Table 2:

Point	Tangents
$(0,1)$	$y=1, y=x+1, y=x \cdot 2+1$
$(0,2)$	$y=2, y=x+2, y=x \cdot 2+2$

Table 2: Points of S^{\prime} with Three Tangents
Furthermore, there are exactly three lines which do not intersect S^{\prime}; they are

$$
\begin{equation*}
y=x, \quad y=x \cdot 2, \quad \ell_{\infty}, \text { the line at infinity } \tag{5}
\end{equation*}
$$

All other lines of \mathbf{N} intersect S^{\prime}. For example, Table 3 lists the lines through the point $(1, \alpha)$ and their points of intersection with S^{\prime}.

Lines Through $(1, \alpha)$	Points of Intersection with S^{\prime}
$x=1$	$(1, \alpha),(1, \alpha+1),(1, \alpha+2),(1,2 \alpha)$,
$y=\alpha$	$(1,2 \alpha+1),(1,2 \alpha+2)$
$y=x+(\alpha+2)$	$(1, \alpha),(2, \alpha),(2, \alpha+1),(2 \alpha+1,0)$
$y=x \cdot 2+(\alpha+1)$	$(1, \alpha),(2, \alpha+2),(\alpha+1,0)$
$y=x \cdot \alpha$	$(1, \alpha),(2,2 \alpha)$
$y=x \cdot(\alpha+1)+2$	$(1, \alpha),(0,2),(2 \alpha, \alpha+1),(2 \alpha+2,0)$
$y=x \cdot(\alpha+2)+1$	$(1, \alpha),(0,1),(2,2 \alpha+2),(\alpha+2,0)$
$y=x \cdot 2 \alpha+2 \alpha$	$(1, \alpha)[$ Tangent at $(1, \alpha)]$
$y=x \cdot(2 \alpha+1)+(2 \alpha+2)$	$(1, \alpha),(2 \alpha, 0)$
$y=x \cdot(2 \alpha+2)+(2 \alpha+1)$	$(1, \alpha),(\alpha, 0)$

Table 3: Lines Through $(1, \alpha)$ and Their Intersections with S^{\prime}
The above shows that the set S^{\prime} does not form a blocking set - not every line of \mathbf{N} intersects it - nor does it form a semioval - there are points with more than one tangent. However, considering Table 2 and (5), we see that adding the points (1) and (2) to S^{\prime} to form a new set S of 22 points does give a blocking semioval.

By adding points (1) and (2) the points (0,1) and (0,2) now have unique tangents $y=1$ and $y=2$, respectively. Furthermore, the line $y=x$ is now tangent to the point (1), the line $y=x \cdot 2$ is now tangent to the points (2), and ℓ_{∞}, the line at infinity, meets the expanded set S in the two points (1) and (2). A computation by hand shows that every line of \mathbf{N} meets the set S in $1,2,4$, or 6 points only. For example, looking at Table 3 we have one tangent $y=x \cdot 2 \alpha+2 \alpha$, one line $(x=1)$ meeting S in six points, four lines $(y=x+(\alpha+2), y=x \cdot 2+(\alpha+1), y=x \cdot(\alpha+1)+2$, $y=x \cdot(\alpha+2)+1)$ meeting S in four points, and four lines $(y=\alpha, y=x \cdot \alpha$, $y=x \cdot(2 \alpha+1)+(2 \alpha+2), y=x \cdot(2 \alpha+2)+(2 \alpha+1))$ meeting S in two points.

The set S cannot be a vertexless triangle. For by Ranson [6; Lemma 2.1] for a vertexless triangle in a projective plane every line meets it in either 1,3 , or $n-1$ points, where n is the order of the plane. Since S has lines meeting in 2,4 , or 6 points it cannot be a vertexess triangle. Thus we have:
Theorem: The set S consisting of the 20 points given in (4) and the points (1) and (2) is a blocking semioval in the nearfield plane N of order 9.

We also note that for a blocking semioval B in a projective plane N of order n the size $|B|$ is bounded [4] by

$$
2 n+1 \leq|B| \leq n \sqrt{n}+1
$$

our blocking semioval S satisfies these bounds.

4 Future directions

By hand computation we have found a blocking semioval in the nearfield plane of order 9. Except for vertexless triangles, it is the first example of a blocking semioval in a nondesarguesian projective plane.

An interesting question is: Can the construction be extended to larger nearfield planes of order p^{2}, p a prime? That is, can the solutions to the equation

$$
\begin{equation*}
y^{2}-x^{2}=1 \tag{6}
\end{equation*}
$$

in a nearfiled plane of order p^{2} lead to a blocking semioval? It seems very plausible. However, to answer the question a more theoretical attack is needed. For example, in the nearfield plane of order $7^{2}=49$ there are 176 points satisfying (6).

It would also be interesting to consider equation (6) in the context of certain semifield planes.

References

[1] L.M. Batten, Protocol for a private key cryptosystem with signature capability based on blocking sets in t-designs, preprint.
[2] L. Berardi and F. Eugeni, Blocking sets e teoria dei geochi; origini e problematiche, Atti Sem. Mat. Fis. Univ. Modena 36 (1988), no. 1, 165-196.
[3] P. Dembowski Finite geometries, Berlin, Springer-Verlag, 1968.
[4] J.M. Dover, A lower bound on blocking semiovals, European J. Combin. 21 (2000), no. 5, 571-577.
[5] D.R. Hughes and F.C. Piper, Projective planes, New York, SpringerVerlag, 1973.
[6] B. Ranson, A new blocking semioval family, MS Thesis, North Dakota State University, 2001.
[7] C. Suetake, Some blocking semiovals which admit a homology group, European J. Combin. 21 (2000), no. 7, 967-972.

