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1 Introduction

Let I1 = (P, L) be a projective plane of order n. A blocking set in Il is a
set B of points such that for every line 1 of II there is at least one point
of 1 in B, but 1 is not entirely contained in B. Blocking sets have been
extensively studied, see for example, Berardi and Eugeni [2].

A semioval in II is a set S of points such that for every point P € S
there is a unique tangent to S containing P. Here, as usual, a tangent to
S is a line of IT meeting S in exactly one point. The concept of semioval is
a generalization of the concept of oval. An oval in Il is a set of n+ 1 points
such that no three are collinear. Since two points in II lie on a unique line,
and since there are n+ 1 lines through a point of II, it is clear that an oval
is a semioval. Ovals have also been extensively studied, but semiovals have
so far received little attention. (See Hughes and Piper [5], Chapter XII.)

One type of semioval that has recently received some attention is the
blocking semioval. A blocking semioval in 11 is a blocking set that is also a
semioval. That is, a blocking semioval is a set S of points in II satisfying:
(1) every line 1 of IT contains a point of S and a point not in S; (2) for every
point P of S there is a unique tangent to S containing P. One interesting
aspect of a blocking semioval is that it is both a minimal blocking set and
a maximal semioval [4].

Batten [1] initiated the study of blocking semiovals when she showed
they had an important role to play in cryptography. Dover [4] discovered
bounds on the size of a blocking semioval S and on the size of SN, where
1 is a line of TI. Furthermore, Dover [4], Dover and Ranson [6] verified the
existence of some infinite families of blocking semiovals.

A vertexless triangle in the projective plane 11 is constructed as follows.
Let 1y, 1, 13 be three nonconcurrent lines in II, that is, they do not
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meet in a common point. If Py, Py, P3 are the three points of intersection
determined by 1;, 19, 13, then the set (I; Uly Ul3) — {Py, P, P3} consisting
of the points in the three lines different from P1, P2, and P3 forms a
vertexless triangle. See Figure 1.
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Figure 1. Vertexless Triangle

For n > 2, a vertexless triangle T is a blocking semioval. (If Q € T is
in the line 1; then the line determined by Q and I; Nl is the tangent to T
through @.) All other known blocking semiovals have been found only in
desarguesian projective planes.

In this article we give an example of a blocking semioval occuring in a
nondesarguesian plane. Our example occurs in the translation plane coor-
dinatized by the nearfield of order n. It probably can be extended to all
nearfield planes of order p2, p a prime. The example is not a vertexless
triangle, the only other known blocking semioval occuring in a nondesar-
guesian plane; so it is new. Suetake [7] studied some blocking semiovals
in PG(2,n) with nontrivial homologies and constructed three families of

blocking semiovals.
In Section 2 we recall the definition of the nearfield of order 9. In Section

3 we give some background information on blocking semiovals. In Section 4
we describe the new blocking semioval and show that it is not a vertexless
triangle.

2 Coordinatizing a projective plane using a

nearfield
Let F be the field of nine elements obtained by adjoining to GF(3) the
element a satisfying a® + 1 = 0 or a? = 2. The nearfield K of order nine

can then be defined as follows. The elements of K are the elements of F
and the addition of K is that of F. The multiplication, denoted by -, in

20



the nearfield K is given by

a.p= ] 0 if b2 € GF(3)
— | &®b if b2 ¢ GF(3)

Here the multiplication on the right is that of F [3].

A projective plane N coordinatized by K can be defined as follows.
First, the affine plane A coordinatized by K consists of the points (a,b),
where a,b € K. The lines of A are given by equations of the form

y=z -m+k, m,k € K (1)

and

e ae K (2)
For example, an equation of type (1) represents the set of points (a, b) with
b =a-m+ k. An equation of type (2) represents the set of points (a,b),
where a is fixed and b ranges over all of K. A line of type (1) is said to
have slope m. A line of type (2) is said to be vertical.

To obtain the projective plane N we add to the affine plane A points
(m), one for each m € K. Furthermore, we require that for each m all lines
of slope m in A go through (m). [That is, we add (m) to each of the sets

=z -m+ k.] Also, we add one more point (o) to A, and we add the
point to each vertical line. Finally, the points (m), m € K, and (co) form
a new line called the line at infinity.

It is in the projective plane N, sometimes referred to as the Hall plane,

that we find a new blocking semioval, which is described in the next section.

3 A new blocking semioval in the nearfield
plane of order 9
In the projective plane N of Section 2 consider the set S’ consisting of all
points in N satisfying the equation
-z =1 (3)

Out of the 92 +9 4+ 1 = 91 points of N, there are 20 points satisfying the
equation (3):

(1,a) (2,0) (e, 0)
(1,a+1) (2,a+1) (a+1,0)
1,a+2) (2,a+2) (a+2,0)
(1, 2a) (2,2a) (2, 0) (4)
(1,20 + 1) (2,2 +1) (2o +1,0)
(1,2a + 2) (2,2a+2) (20 + 2,0)

(0,1) (0,2)
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These points are the elements of S’.
Of the 20 points of S’ there are 18 with a unique tangent as given in
Table 1:

Point Tangent Line

(1, @) y=z-2a+2a

(1,a+1) y=z 2a+2)+ (2a+2)
(1,a+2) y=z-2a+1)+ (2a+1)
(1, 2a) Y=z -a+«a

(1,2a+1) y=z (a+2)+ (a+2)
(1,2a +2) y=z- - (a+1)+ (a+1)

(2,a) y=z- -a+2a
(2,a+1) y=z-(a+1)+ (2a+2)
(2,a+2) y=z- - (a+2)+ (2a+1)
(2, 2a) y=z-2a+a

(2,2a+1) y=z - 2a+1)+(a+2)
(2,2a+2) y=z 2a+2)+(a+1)

(a,0) o
(a@+1,0) z=a+1
(e +2,0) r=a+2
(2, 0) 5=
(20 +1,0) z=2a+1

(2a+ 2,0) z=2a+2
Table 1: Tangents to the Set S’

The last two points of S’ listed in (4) each have three tangents as given
in Table 2:

Point Tangents
(071) ?/=1,y=$+1yy=1'2+1

Table 2: Points of S’ with Three Tangents

Furthermore, there are exactly three lines which do not intersect S’;
they are
Y=o, g=z-2 {0, the line at infinity (5)

All other lines of N intersect S’. For example, Table 3 lists the lines through
the point (1, &) and their points of intersection with S’.
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Lines Through (1, ) Points of Intersection with S’

B==1 (1,a),(L,a+1),(1,a+2),(1,2a),
(1,2a +1), (1,2a + 2)

y=a (1,a),(2,0)

y=z+ (a+2) (I,a), (2, + 1), (2ac + 1,0)

y=z-2+ (a+1) (1,a),(20+2 (a+1,0)

Y=z « (1,0), (2,2a)

y=z - (a+1)+2 (1,a),(0,2), (2, + 1), (2a + 2,0)

y=z (a+2)+1 (1,a),(0,1),(2,2a + 2), (e + 2,0)

y=1z 2a+2a (1,a)[ Tangent at (1,a)]

y=z 2a+1)+ 2a+2) (1,a),(2,0)
y=z - 2a+2)+ (2a+1) (1,a),(,0)

Table 3: Lines Through (1, @) and Their Intersections with S’

The above shows that the set S’ does not form a blocking set - not every
line of N intersects it - nor does it form a semioval - there are points with
more than one tangent. However, considering Table 2 and (5), we see that
adding the points (1) and (2) to S’ to form a new set S of 22 points does
give a blocking semioval.

By adding points (1) and (2) the points (0, 1) and (0, 2) now have unique
tangents y = 1 and y = 2, respectively. Furthermore, the line y = z is now
tangent to the point (1), the line ¥y = z - 2 is now tangent to the points (2),
and £, the line at infinity, meets the expanded set S in the two points
(1) and (2). A computation by hand shows that every line of N meets
the set S in 1, 2, 4, or 6 points only. For example, looking at Table 3
we have one tangent y = z - 2a + 2a, one line (z = 1) meeting S in six
points, four lines (y =z + (a+2),y=z-2+(a+1),y=z-(a+1)+ 2,
y =z (a+2)+1) meeting S in four points, and four lines (y = a, y = z - a,
y=z 2a+1)+ 2a+2),y=1z (2a +2)+ (2a+ 1)) meeting S in two
points.

The set S cannot be a vertexless triangle. For by Ranson [6; Lemma
2.1] for a vertexless triangle in a projective plane every line meets it in
cither 1, 3, or n — 1 points, where n is the order of the plane. Since S has
lines meeting in 2, 4, or 6 points it cannot be a vertexess triangle. Thus we
have:

Theorem: The set S consisting of the 20 points given in (4) and the points
(1) and (2) is a blocking semioval in the nearfield plane N of order 9.

We also note that for a blocking semioval B in a projective plane N of
order n the size |B| is bounded [4] by

2n+1 < |B| < nvn+1
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our blocking semioval S satisfies these bounds.

4 Future directions

By hand computation we have found a blocking semioval in the nearfield
plane of order 9. Except for vertexless triangles, it is the first example of a
blocking semioval in a nondesarguesian projective plane.

An interesting question is: Can the construction be extended to larger
nearfield planes of order p?, p a prime? That is, can the solutions to the
equation

2 2
y —z" =1 (6)

in a nearfiled plane of order p? lead to a blocking semioval? It seems very
plausible. However, to answer the question a more theoretical attack is
needed. For example, in the nearfield plane of order 72 = 49 there are 176
points satisfying (6).

It would also be interesting to consider equation (6) in the context of
certain semifield planes.
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