A New Look at Hamiltonian Walks

Gary Chartrand, Todd Thomas, Ping Zhang
Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008, USA
Varaporn Saenpholphat
Department of Mathematics
Srinakharinwirot University
Sukhumvit Soi 23
Bangkok, 10110, Thailand

Abstract

Let G be a connected graph of order n. A Hamiltonian walk of G is a closed spanning walk of minimum length in G. For a cyclic ordering $s: v_{1}, v_{2}, \cdots, v_{n}, v_{n+1}=v_{1}$ of $V(G)$, let $d(s)=$ $\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right)$, where $d\left(v_{i}, v_{i+1}\right)$ is the distance between v_{i} and v_{i+1} for $1 \leq i \leq n$. Then the Hamiltonian number $h(G)$ of G is defined as $h(G)=\min \{d(s)\}$, where the minimum is taken over all cyclic orderings s of $V(G)$. It is shown that $h(G)$ is the length of a Hamiltonian walk in G. Thus $h(G)=n$ if and only if G is a Hamiltonian graph. It is also shown that $h(G)=2 n-2$ if and only if G is a tree. Moreover, for every pair n, k of integers with $3 \leq n \leq k \leq 2 n-2$, there exists a connected graph G of order n having $h(G)=k$. The upper Hamiltonian number is defined as $h^{+}(G)=\max \{d(s)\}$, where the maximum is taken over all cyclic orderings s of $V(G)$. We show, for a connected graph G of order $n \geq 3$, that $h(G)=h^{+}(G)$ if and only if $G=K_{n}$ or $G=K_{1, n-1}$. We also study the upper Hamiltonian number of a tree and present bounds for the upper Hamiltonian number of a connected graph in terms of its order.

Key Words: Hamiltonian walk, Hamiltonian number.
AMS Subject Classification: 05C12, 05C45

1 Introduction

In [6] Goodman and Hedetniemi introduced the concept of a Hamiltonian walk in a connected graph G, defined as a closed spanning walk of minimum length in G. They denoted the length of a Hamiltonian walk in G by $h(G)$. Therefore, for a connected graph G of order $n \geq 3$, it follows that $h(G)=n$ if and only if G is Hamiltonian. Among the results obtained by Goodman and Hedetniemi are the following.

Theorem A If T is a tree of order n, then $h(T)=2 n-2$.
It is immediate that $h(G) \leq h(H)$ for each connected spanning subgraph H of a (connected) graph G. As a consequence of Theorem A, we can state the following.

Theorem B For every connected graph G of order n,

$$
n \leq h(G) \leq 2 n-2
$$

Theorem \mathbf{C} If G is a k-connected graph of order n having diameter d, then

$$
h(G) \leq 2 n-\left\lfloor\frac{k}{2}\right\rfloor(2 d-2)-2 .
$$

Theorem \mathbf{D} Let G be a connected graph having blocks $B_{1}, B_{2}, \ldots, B_{k}$. Then the union of the edges in a Hamiltonian walk for each of the blocks B_{i} forms a Hamiltonian walk for G and, conversely, the edges in a Hamiltonian walk of G that belong to B_{i} form a Hamiltonian walk in B_{i}.

Theorem D implies that the topic of Hamiltonian walks can be restricted to 2 -connected graphs. Hamiltonian walks were studied further in $[1,2,3$, $5,8,9]$. A well-known sufficient condition for a graph G to be Hamiltonian is due to Ore [7].

Theorem $\mathbf{E} A$ graph G of order $n \geq 3$ is Hamiltonian if $\operatorname{deg} u+\operatorname{deg} v \geq n$ for every pair u, v of nonadjacent vertices of G.

This theorem can be restated in terms of the parameter $h(G)$.
Theorem \mathbf{F} Let G be a graph of order $n \geq 3$. Then $h(G)=n$ if $\operatorname{deg} u+$ $\operatorname{deg} v \geq n$ for every pair u, v of nonadjacent vertices of G.

Bermond [3] obtained the following generalization of Theorem F.
Theorem \mathbf{G} Let G be a connected graph G of order $n \geq 3$ and let k be an integer with $0 \leq k \leq n-2$. If $\operatorname{deg} u+\operatorname{deg} v \geq n-k$ every pair u, v of nonadjacent vertices of G, then $h(G) \leq n+k$.

In this paper, we refer to the book [4] for graph theory notation and terminology not described here.

2 The Hamiltonian Number of a Graph

Of course, a Hamiltonian graph G contains a spanning cycle $C: v_{1}, v_{2}, \cdots$, $v_{n}, v_{n+1}=v_{1}$, where then $v_{i} v_{i+1} \in E(G)$ for $1 \leq i \leq n$. Thus Hamiltonian graphs of order $n \geq 3$ are those graphs for which there is a cyclic ordering $v_{1}, v_{2}, \cdots, v_{n}, v_{n+1}=v_{1}$ of $V(G)$ such that $\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right)=n$, where $d\left(v_{i}, v_{i+1}\right)$ is the distance between v_{i} and v_{i+1} for $1 \leq i \leq n$. For a connected graph G of order $n \geq 3$ and a cyclic ordering $s: v_{1}, v_{2}, \cdots, v_{n}, v_{n+1}=$ v_{1} of $V(G)$, we define the number $d(s)$ by

$$
d(s)=\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right) .
$$

Therefore, $d(s) \geq n$ for each cyclic ordering s of $V(G)$. The Hamiltonian number $h^{*}(G)$ of G is defined by

$$
h^{*}(G)=\min \{d(s)\},
$$

where the minimum is taken over all cyclic orderings s of $V(G)$. Consider the graph $G=K_{2,3}$ of Figure 1. For the cyclic orderings

$$
s_{1}: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1} \text { and } s_{2}: v_{1}, v_{3}, v_{2}, v_{4}, v_{5}, v_{1}
$$

of $V(G)$, we see that $d\left(s_{1}\right)=8$ and $d\left(s_{2}\right)=6$. Since G is a non-Hamiltonian graph of order 5 and $d\left(s_{2}\right)=6$, it follows that $h^{*}(G)=6$.

Figure 1: A graph G with $h^{*}(G)=6$
We now see that there is an alternative way to define the length $h(G)$ of a Hamiltonian walk in G. Denote the length of a walk W by $L(W)$.

Proposition 2.1 For every connected graph G,

$$
h^{*}(G)=h(G) .
$$

Proof. First, we show that $h(G) \leq h^{*}(G)$. Let $s: v_{1}, v_{2}, \cdots, v_{n}, v_{n+1}=$ v_{1} be a cyclic ordering of $V(G)$ for which $d(s)=h^{*}(G)$. For each integer i with $1 \leq i \leq n$, let P_{i} be a $v_{i}-v_{i+1}$ geodesic in G. Thus $L\left(P_{i}\right)=d\left(v_{i}, v_{i+1}\right)$. The union of the paths P_{i} forms a closed spanning walk W in G. Therefore,

$$
h(G) \leq L(W)=\sum_{i=1}^{n} L\left(P_{i}\right)=\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right)=d(s)=h^{*}(G) .
$$

Next, we show that $h^{*}(G) \leq h(G)$. Let W be a Hamiltonian walk in G. Therefore, $L(W)=h(G)$. Suppose that $W: x_{1}, x_{2}, \ldots, x_{N}, x_{1}$, where then $N \geq n$. Define $v_{1}=x_{1}$ and $v_{2}=x_{2}$. For $3 \leq i \leq n$, define v_{i} to be $x_{j_{i}}$, where j_{i} is the smallest positive integer such that $x_{j_{i}} \notin\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$. Then $s: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ is a cyclic ordering of $V(G)$. For each i with $1 \leq i \leq n$, let W_{i} be the $v_{i}-v_{i+1}$ subwalk of W and so $d\left(v_{i}, v_{i+1}\right) \leq$ $L\left(W_{i}\right)$. Since

$$
h^{*}(G) \leq \sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right) \leq \sum_{i=1}^{n} L\left(W_{i}\right)=L(W)=h(G),
$$

we have the desired result.
As a consequence of Proposition 2.1, we henceforth denote the Hamiltonian number of a graph G by $h(G)$, which is then the length of a Hamiltonian walk in G.

By Theorem A, if T is a tree of order n, then $h(T)=2 n-2$. We now show that the converse of this statement holds as well. To do this, we first state a lemma.

Lemma 2.2 If G is a connected graph such that $\delta(G) \geq 2$ and $\Delta(G) \geq 3$, then G contains two distinct cycles C and C^{\prime} such that $V(C) \neq V\left(C^{\prime}\right)$.

Theorem 2.3 Let G be a connected graph of order n. Then $h(G)=$ $2 n-2$ if and only if G is a tree.

Proof. By Theorem A, it suffices to show that if G is a connected graph of order $n \geq 3$ that is not a tree, then $h(G)<2 n-2$. We proceed by induction on n. Since $h\left(K_{3}\right)=3$, the result holds for $n=3$. Suppose that $h(F)<2(n-1)-2=2 n-4$ for all connected graphs F of order $n-1 \geq 3$ that are not trees. Let G be a connected graph of order $n \geq 4$ that is not a tree. Since $h\left(C_{n}\right)=n<2 n-2$, we may assume that $G \neq C_{n}$.

We claim that G contains a vertex u such that $G-u$ is a connected subgraph of G that is not a tree. If G contains cut-vertices, then there is a vertex u that is a non-cut-vertex of an end-block that has the desired property. So we may assume that G is 2 -connected and so $\delta(G) \geq 2$. By

Lemma 2.2, G contains two distinct cycles C and C^{\prime} with $V(C) \neq V\left(C^{\prime}\right)$. Thus if u is a vertex that belongs to one of C and C^{\prime} but not the other, then $G-u$ is a connected subgraph of G that is not a tree. By the induction hypothesis, $h(G-u)<2(n-1)-2=2 n-4$. Let

$$
s_{0}: v_{1}, v_{2}, \ldots, v_{n-1}, v_{1}
$$

be a cyclic ordering of $V(G-u)$ with $d\left(s_{0}\right)=h(G-u)<2 n-4$. Suppose that u is adjacent to the vertex v_{i}, where $1 \leq i \leq n-1$. Define the cyclic ordering s_{0}^{\prime} of $V(G)$ from s_{0} by

$$
s_{0}^{\prime}: v_{1}, v_{2}, \ldots, v_{i}, u, v_{i+1}, \ldots, v_{n-1}, v_{1}
$$

Since $d\left(v_{i}, u\right)=1$, it follows by the triangle inequality that

$$
d\left(u, v_{i+1}\right) \leq 1+d\left(v_{i}, v_{i+1}\right) .
$$

Therefore,

$$
\begin{aligned}
d\left(s_{0}^{\prime}\right) & =d\left(s_{0}\right)-d\left(v_{i}, v_{i+1}\right)+d\left(v_{i}, u\right)+d\left(u, v_{i+1}\right) \\
& \leq d\left(s_{0}\right)-d\left(v_{i}, v_{i+1}\right)+1+\left[1+d\left(v_{i}, v_{i+1}\right)\right] \\
& =d\left(s_{0}\right)+2<(2 n-4)+2=2 n-2 .
\end{aligned}
$$

Therefore, $h(G) \leq d\left(s_{0}^{\prime}\right)<2 n-2$, as desired.
By Theorem B, if G is a connected graph G of order n, then $n \leq h(G) \leq$ $2 n-2$. Next we show that every pair k, n of integers with $3 \leq n \leq k \leq 2 n-2$ is realizable as the Hamiltonian number and the order of some connected graph. In order to do this, we first present a known result, which is a consequence of Theorem D (see [6]).

Corollary H Let G be a connected graph having blocks $B_{1}, B_{2}, \ldots, B_{k}$. Then

$$
h(G)=\sum_{i=1}^{k} h\left(B_{i}\right) .
$$

In particular, every bridge of G appears twice in every Hamiltonian walk of G.

Proposition 2.4 For every pair n, k of integers with $3 \leq n \leq k \leq 2 n-2$, there exists a connected graph G of order n having $h(G)=k$.

Proof. For $k=n$, let G be a Hamiltonian graph of order n; while for $k=2 n-2$, let G be a tree of order n. For $n<k<2 n-2$, let $k=n+\ell$, where $1 \leq \ell \leq n-3$. Now let G be the graph obtained from a cycle $C_{n-\ell}: u_{1}, u_{2}, \ldots, u_{n-\ell}, u_{1}$ and a path $P_{\ell}: v_{1}, v_{2}, \ldots, v_{\ell}$ by joining u_{1} to v_{1}. Since $C_{n-\ell}$ is a block of G and any edge not on $C_{n-\ell}$ is a bridge of G, it then follows by Corollary H that

$$
h(G)=h\left(C_{n-\ell}\right)+2 \ell=(n-\ell)+2 \ell=n+\ell=k,
$$

as desired.

3 The Upper Hamiltonian Number of a Graph

We saw for the graph G of Figure 1 that there are cyclic orderings s_{1} and s_{2} of $V(G)$ such that $d\left(s_{1}\right)=8$ and $d\left(s_{2}\right)=6$. Indeed, it is not difficult to see that for every cyclic ordering s of $V(G)$, either $d(s)=6$ or $d(s)=8$.

For a connected graph G, we define the upper Hamiltonian number $h^{+}(G)$ by

$$
h^{+}(G)=\max \{d(s)\},
$$

where the maximum is taken over all cyclic orderings s of $V(G)$. From our remarks above, it follows that $h^{+}\left(K_{2,3}\right)=8$. As an illustration, we now establish the upper Hamiltonian numbers of the hypercubes.

Proposition 3.1 For each integer $n \geq 2$,

$$
h^{+}\left(Q_{n}\right)=2^{n-1}(2 n-1) .
$$

Proof. First, we show that $h^{+}\left(Q_{n}\right) \leq 2^{n-1}(2 n-1)$. Let s be an arbitrary cyclic ordering of $V\left(Q_{n}\right)$ with $d(s)=h^{+}\left(Q_{n}\right)$. Since diam $Q_{n}=n$ and for each vertex v in Q_{n}, there is exactly one vertex in Q_{n} whose distance from v is n, it follows that there are at most 2^{n-1} terms in $d(s)$ equal to n. Consequently, each of the remaining 2^{n-1} terms in $d(s)$ is at most $n-1$. Thus

$$
d(s) \leq 2^{n-1} n+2^{n-1}(n-1)=2^{n-1}(2 n-1),
$$

and so $h^{+}\left(Q_{n}\right) \leq 2^{n-1}(2 n-1)$.
Next we show that $h^{+}\left(Q_{n}\right) \geq 2^{n-1}(2 n-1)$. Since the result is true for Q_{2}, we may assume that $n \geq 3$. Let $G=Q_{n}$. Then G consists of two disjoint copies G_{1} and G_{2} of Q_{n-1}, where corresponding vertices of G_{1} and G_{2} are adjacent. For each vertex v of G, there is a unique vertex \bar{v} of G such that $d(v, \bar{v})=n=\operatorname{diam} Q_{n}$. Necessarily, exactly one of v and \bar{v} belongs to G_{1} for each vertex v of G. It is well-known that Q_{n} is Hamiltonian for $n \geq 2$. Let $C: v_{1}, v_{2}, \ldots, v_{2^{n-1}}, v_{2^{n-1}+1}=v_{1}$ be a Hamiltonian cycle in G_{1}. Now define a cyclic ordering s of $V(G)$ by

$$
s: v_{1}, \bar{v}_{1}, v_{2}, \bar{v}_{2}, \ldots, v_{2^{n-1}}, \bar{v}_{2^{n-1}}, v_{1} .
$$

Since $d\left(v_{i}, \bar{v}_{i}\right)=n$ and $d\left(v_{i}, v_{i+1}\right)=1$ for $1 \leq i \leq 2^{n-1}$, it follows by the triangle inequality that

$$
n=d\left(v_{i}, \bar{v}_{i}\right) \leq d\left(v_{i}, v_{i+1}\right)+d\left(v_{i+1}, \bar{v}_{i}\right)=1+d\left(v_{i+1}, \bar{v}_{i}\right) .
$$

Thus $d\left(v_{i+1}, \bar{v}_{i}\right) \geq n-1$, which implies that $d\left(v_{i+1}, \bar{v}_{i}\right)=n-1$. Hence

$$
h^{+}\left(Q_{n}\right) \geq d(s)=2^{n-1} n+2^{n-1}(n-1)=2^{n-1}(2 n-1),
$$

as desired.
Obviously, $h(G) \leq h^{+}(G)$ for every connected graph G. For each integer $n \geq 3$, there are only two graphs G of order n for which $h(G)=h^{+}(G)$.

Theorem 3.2 Let G be a connected graph of order $n \geq 3$. Then

$$
h(G)=h^{+}(G) \text { if and only if } G=K_{n} \text { or } G=K_{1, n-1} .
$$

Proof. If $G=K_{n}$, then certainly $d(s)=n$ for every cyclic ordering s of $V(G)$; while if $G=K_{1, n-1}$, then $d(s)=2 n-2$ for every cyclic ordering s of $V(G)$. Thus $h(G)=h^{+}(G)$ if $G=K_{n}$ or $G=K_{1, n-1}$.

For the converse, suppose that G is a connected graph of order $n \geq 3$ such that $G \neq K_{n}, K_{1, n-1}$. We show that $h(G) \neq h^{+}(G)$. Let diam $G=d$. Since $G \neq K_{n}$, it follows that $d \geq 2$. We consider two cases, according to whether $d \geq 3$ or $d=2$.

Case 1. $d \geq 3$. Let v_{1} and v_{d+1} be vertices of G such that $d\left(v_{1}, v_{d+1}\right)=d$ and let $P: v_{1}, v_{2}, \ldots, v_{d+1}$ be a $v_{1}-v_{d+1}$ geodesic in G. Let $W=V(G)-$ $V(P)$. If $W \neq \emptyset$, then let $W=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$, where $\ell=n-d-1$. Define a cyclic ordering s of $V(G)$ by

$$
\begin{gather*}
s: v_{1}, v_{2}, v_{3}, \ldots, v_{d+1}, v_{1} \text { or } \tag{1}\\
s: v_{1}, v_{2}, v_{3}, \ldots, v_{d+1}, w_{1}, w_{2}, \ldots, w_{\ell}, v_{1} \tag{2}
\end{gather*}
$$

according to whether $W=\emptyset$ or $W \neq \emptyset$. Let s^{\prime} be the cyclic ordering of $V(G)$ obtained from s by interchanging the locations of v_{2} and v_{3} in s; that is,

$$
\begin{gather*}
s^{\prime}: v_{1}, v_{3}, v_{2}, v_{4}, \ldots, v_{d+1}, v_{1} \tag{3}\\
\text { or } s^{\prime}: v_{1}, v_{3}, v_{2}, v_{4}, \ldots, v_{d+1}, w_{1}, w_{2}, \ldots, w_{\ell}, v_{1} \tag{4}
\end{gather*}
$$

according to whether $W=\emptyset$ or $W \neq \emptyset$. In either case, $d\left(s^{\prime}\right)=d(s)+2$ and so $h(G) \neq h^{+}(G)$.

Case 2. $d=2$. Since G is not a star, it follows that G is not a tree. Thus the girth $g(G)=k \geq 3$. Assume first that $k=3$. Since G is connected and $G \neq K_{n}$, there exists a set U of four vertices of G such that $\langle U\rangle=K_{4}-e$ or $\langle U\rangle$ is a triangle with a pendant edge. Therefore, we may assume, without loss of generality, that G contains one of the graphs F_{1} and F_{2} in Figure 2 as an induced subgraph. In either case, define the cyclic orderings s and s^{\prime} as

Figure 2: Induced subgraphs F_{1} and F_{2} of G
described in (1) (or (2)) and (3) (or (4)), respectively. Then $d\left(s^{\prime}\right)=d(s)+1$ and so $h(G) \neq h^{+}(G)$.

If $k \geq 4$, then let $C: v_{1}, v_{2}, \ldots, v_{k}, v_{1}$ be an induced cycle of G and let $V(G)-V(C)=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$ if $\ell=n-k>0$. Define the cyclic orderings s and s^{\prime} of $V(G)$ as in (1) (or (2)) and (3) (or (4)), respectively. Since $d\left(s^{\prime}\right)=d(s)+2$, it follows that $h(G) \neq h^{+}(G)$.

4 Bounds for the Upper Hamiltonian Number of a Graph

First, we observe that if $s: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ is any cyclic ordering of the vertex set of a connected graph, then for each vertex $v_{i}(1 \leq i \leq$ n), both $d\left(v_{i-1}, v_{i}\right) \leq e\left(v_{i}\right)$ and $d\left(v_{i}, v_{i+1}\right) \leq e\left(v_{i}\right)$, where the subscripts are expressed as integers modulo n and $e\left(v_{i}\right)$ is the eccentricity of v_{i} (the distance from v_{i} to a vertex farthest from v_{i}). Thus, If G is a connected graph of order $n \geq 3$ and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then

$$
h^{+}(G) \leq \sum_{i=1}^{n} e\left(v_{i}\right) .
$$

Since the eccentricity of a vertex in G is at most the diameter diam G of G (the largest distance between two vertices of G), we have the following.

Proposition 4.1 If G is a connected graph of order $n \geq 3$ and diameter d, then

$$
h^{+}(G) \leq n d .
$$

The upper bound in Proposition 4.1 is sharp. For example, consider the odd cycle $C_{2 k+1}: v_{1}, v_{2}, \ldots, v_{2 k+1}, v_{1}$, where $k \geq 1$. Since diam $C_{2 k+1}=k$, it follows by Proposition 4.1 that $h^{+}\left(C_{2 k+1}\right) \leq k(2 k+1)$. On the other hand, let

$$
s: v_{1}, v_{k+1}, v_{2 k+1}, v_{3 k+1}, \ldots, v_{(2 k) k+1}, v_{(2 k+1) k+1}=v_{1},
$$

where each subscript is expressed modulo $2 k+1$ as one of the integers $1,2, \ldots, 2 k+1$. Since k and $2 k+1$ are relatively prime, s is a cyclic ordering of $V\left(C_{2 k+1}\right)$. Since

$$
d(s)=\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right)=k(2 k+1)
$$

we have the following result.
Proposition 4.2 For every integer $k \geq 1$, let $n=2 k+1$. Then $h^{+}\left(C_{n}\right)=$ $n d$, where $d=\operatorname{diam} C_{2 k+1}$.

Therefore, the upper bound in Proposition 4.1 is attained for odd cycles. The situation for even cycles is far less clear. For every integer $k \geq 2$, we know that $h^{+}\left(C_{2 k}\right) \geq 2 k^{2}-2 k+2$. Indeed, we state the following.

Conjecture 4.3 For every integer $k \geq 2, h^{+}\left(C_{2 k}\right)=2 k^{2}-2 k+2$.
Next, we study the upper Hamiltonian number of a tree. For each edge e of a tree T, we define the component number $\operatorname{cn}(e)$ of e as the minimum order of a component of $T-e$. For example, the edge e_{3} of the tree T of Figure 3 (a) has component number 3 since the order of the smaller component of $T-e_{3}$ is 3 . Each edge of this tree is labeled with its component number in Figure 3(b).
T :

(a)

(b)

Figure 3: Component numbers of edges
We now present an upper bound for the upper Hamiltonian number of a tree.

Lemma 4.4 Let T be a tree of order n with $E(T)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$. Then

$$
h^{+}(T) \leq 2 \sum_{i=1}^{n-1} \operatorname{cn}\left(e_{i}\right)
$$

Proof. Let $e \in E(T)$, where T_{1} and T_{2} are the two components of $T-e$ and T_{i} has order $n_{i}(i=1,2)$. Assume, without loss of generality, that $n_{1} \leq n_{2}$. Thus $\mathrm{cn}(e)=n_{1}$. Let s be a cyclic ordering of $V(T)$, say $s: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$. For each $i(1 \leq i \leq n)$, the edge e occurs at most once in the $v_{i}-v_{i+1}$ path P_{i} of T. If e lies on P_{i}, then exactly one of v_{i} and v_{i+1} belongs to T_{1}. Since a vertex of T_{1} can occur as the initial or terminal vertex of a path $P_{i}(1 \leq i \leq n)$ at most $2 \mathrm{cn}(e)$ times, the desired result follows.

For the tree T of Figure 3,

$$
\sum_{i=1}^{8} \operatorname{cn}\left(e_{i}\right)=1+1+3+1+4+1+2+1=14
$$

Thus by Lemma 4.4, $h^{+}(T) \leq 28$. However, for

$$
s: v_{1}, v_{9}, v_{2}, v_{8}, v_{3}, v_{7}, v_{5}, v_{6}, v_{4}, v_{1},
$$

we have $d(s)=28$. Therefore, $d(s)=28 \leq h^{+}(T)$ and so $h^{+}(T)=28$.
We now present a formula for $h^{+}\left(P_{n}\right)$.
Proposition 4.5 For each $n \geq 2$,

$$
h^{+}\left(P_{n}\right)=\left\lfloor n^{2} / 2\right\rfloor .
$$

Proof. Let $P_{n}: v_{1}, v_{2}, \ldots, v_{n}$ and let

$$
s: v_{1}, v_{n}, v_{2}, v_{n-1}, v_{3}, \ldots, v_{\left\lceil\frac{n+1}{2}\right\rceil}, v_{1} .
$$

Then

$$
\begin{aligned}
d(s) & =(n-1)+(n-2)+\ldots+1+\left\lceil\frac{n-1}{2}\right\rceil \\
& =\binom{n}{2}+\left\lceil\frac{n-1}{2}\right\rceil=\left\lceil\frac{n^{2}-1}{2}\right\rceil=\left\lfloor\frac{n^{2}}{2}\right\rceil .
\end{aligned}
$$

Hence $h^{+}\left(P_{n}\right) \geq\left\lfloor\frac{n^{2}}{2}\right\rfloor$.
To show that $h^{+}\left(P_{n}\right) \leq\left\lfloor\frac{n^{2}}{2}\right\rfloor$, we consider two cases, according to whether n is odd or n is even. Let $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1$.

Case 1. n is odd, say $n=2 k+1$, where $k \geq 1$. Then

$$
\operatorname{cn}\left(e_{i}\right)= \begin{cases}i & \text { if } 1 \leq i \leq k \\ n-i & \text { if } k+1 \leq i \leq 2 k\end{cases}
$$

By Lemma 4.4,

$$
\begin{aligned}
h^{+}\left(P_{n}\right) & \leq 2 \sum_{i=1}^{n-1} \operatorname{cn}\left(e_{i}\right)=2\left[\sum_{i=1}^{k} \operatorname{cn}\left(e_{i}\right)+\sum_{i=k+1}^{2 k} \operatorname{cn}\left(e_{i}\right)\right] \\
& =4 \sum_{i=1}^{k} i=4\binom{k+1}{2}=4\binom{\frac{n+1}{2}}{2}=\frac{n^{2}-1}{2}
\end{aligned}
$$

Case 2. n is even, say $n=2 k$, where $k \geq 1$. Then

$$
\operatorname{cn}\left(e_{i}\right)= \begin{cases}i & \text { if } 1 \leq i \leq k \\ n-i & \text { if } k+1 \leq i \leq 2 k-1\end{cases}
$$

By Lemma 4.4,

$$
\begin{aligned}
h^{+}\left(P_{n}\right) & \leq 2 \sum_{i=1}^{n-1} \operatorname{cn}\left(e_{i}\right)=2\left[\sum_{i=1}^{k} i+\sum_{i=k+1}^{2 k-1}(n-i)\right] \\
& =2\left[\sum_{i=1}^{k} i+\sum_{i=1}^{k-1} i\right]=2\left[2 \sum_{i=1}^{k-1} i+k\right] \\
& =2\left[2\binom{k}{2}+k\right]=4\binom{\frac{n}{2}}{2}+n=\frac{n^{2}}{2} .
\end{aligned}
$$

Thus, in each case, $h^{+}\left(P_{n}\right) \leq\left\lfloor\frac{n^{2}}{2}\right\rfloor$, producing the desired result.
If T is a tree of order n and T^{\prime} is a tree obtained by adding a pendant edge to T, then $c n_{T}(e) \leq c n_{T^{\prime}}(e) \leq c n_{T}(e)+1$ for every edge e of T. We now show that the upper bound is attained for at most half of the edges of T. With the aid of this fact, we will be able to establish a sharp upper bound for the upper Hamiltonian number of a graph in terms of its order.

Lemma 4.6 Let T be a tree of order n, and let T^{\prime} be a tree obtained by adding a pendant edge to T. Then there are at most $(n-1) / 2$ edges e in T such that $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)+1$.

Proof. For each $e \in E(T)$, let $T_{1 e}$ and $T_{2 e}$ be the two components of $T-e$ and let $n_{1 e}$ and $n_{2 e}$ be the orders of $T_{1 e}$ and $T_{2 e}$, respectively. Assume, without loss of generality, that $n_{1 e} \leq n_{2 e}$. Thus $c n(e)=n_{1 e}$. Let $e_{0}=x y$ be an edge of T such that $n_{2 e_{0}}-n_{1 e_{0}} \leq n_{2 e}-n_{1 e}$ for all edges e in T. Suppose that T^{\prime} is obtained from T by adding the pendant edge $u v$ at the vertex u of T. We show that the number of edges e in T such that $\operatorname{cn}_{T^{\prime}}(e)=\operatorname{cn}_{T}(e)+1$ is at most $(n-1) / 2$. Let T_{1} and T_{2} be the two
components of $T-e_{0}$ such that $\mathrm{cn}\left(e_{0}\right)$ is the order of T_{1} We may assume that $x \in V\left(T_{1}\right)$ and $y \in V\left(T_{2}\right)$. For each $e \in E(T)$, let $T_{1 e}^{\prime}$ and $T_{2 e}^{\prime}$ be the two components of $T^{\prime}-e$ and let $n_{1 e}^{\prime}$ and $n_{2 e}^{\prime}$ be the orders of $T_{1 e}^{\prime}$ and $T_{2 e}^{\prime}$, respectively. We may assume that $n_{1 e}^{\prime} \leq n_{2 e}^{\prime}$. We consider two cases.

Case 1. $u \in V\left(T_{2}\right)$. Let P be the $y-u$ path in T_{2} (it is possible that $y=u$) as shown in Figure 4. Let $e \in E(T)-E(P)$. We consider two possibilities.
$T^{\prime}:$

Figure 4: The tree T^{\prime} in Case 1

Subcase 1.1. $e \in E\left(T_{1}\right) \cup\left\{e_{0}\right\}$. Then $T_{1 e}^{\prime}=T_{1 e}$, while $T_{2 e}^{\prime}$ is obtained by adding v and the edge $u v$ to $T_{2 e}$. Therefore, $\mathrm{cn}_{T^{\prime}}(e)=n_{1 e}^{\prime}=n_{1 e}=\mathrm{cn}_{T}(e)$ for all $e \in E\left(T_{1}\right) \cup\left\{e_{0}\right\}$.

Subcase 1.2. $e \in E\left(T_{2}\right)-E(P)$. We show that $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)$ in this subcase as well. Assume, to the contrary, that there exists $f \in E\left(T_{2}\right)-E(P)$ such that $\mathrm{cn}_{T^{\prime}}(f)=\mathrm{cn}_{T}(f)+1$. Then $T_{1 f}^{\prime}$ is obtained by adding the pendant edge $u v$ to $T_{1 f}$, while $T_{2 f}^{\prime}=T_{2 f}$. Since x and v are connected in $T^{\prime}-f$ (by the path whose edge set is $E(P) \cup\left\{e_{0}, u v\right\}$) and $v \in E\left(T_{1 f}^{\prime}\right)$, it follows that T_{1} is a proper subgraph of $T_{1 f}^{\prime}$. Since $T_{1 f}^{\prime}$ is obtained from $T_{1 f}$ by adding the pendant edge $u v$ and $u v \notin E\left(T_{1}\right)$, it follows that T_{1} is a proper subgraph of $T_{1 f}$ and so $T_{2 f}$ is a proper subgraph of T_{2}. This implies that $n_{1 e_{0}}<n_{1 f} \leq n_{2 f} \leq n_{2 e_{0}}$ and so $n_{2 f}-n_{1 f}<n_{2 e_{0}}-n_{1 e_{0}}$, which is impossible.

Therefore, if $e \in E(T)$ and $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)+1$, then $e \in E(P)$. It remains to show that $|E(P)| \leq(n-1) / 2$. Assume, to the contrary, that $|E(P)| \geq n / 2$. Let

$$
P^{\prime}: y=v_{0}, v_{1}, \ldots, v_{|E(P)|}=u, v
$$

be the path obtained by extending P to v. Let $f_{0}=y v_{1}$ (see Figure 5). Then T_{1} and the path $P^{\prime}-y$ belong to different components in $T^{\prime}-y$. Since the order of $P^{\prime}-y$ is $|E(P)|+1 \geq n / 2+1$, it follows that $P^{\prime}-y$ is a subgraph of $T_{2 f_{0}}^{\prime}$. Thus T_{1} is a proper subgraph $T_{1 f_{0}}^{\prime}=T_{1 f_{0}}$. Since $T_{2 f_{0}}$ is a subgraph T_{2}, it follows that $n_{1 e_{0}}<n_{1 f_{0}} \leq n_{2 f_{0}} \leq n_{2 e_{0}}$ and so $n_{2 f_{0}}-n_{1 f_{0}}<n_{2 e_{0}}-n_{1 e_{0}}$, which is impossible.

Figure 5: The path P^{\prime} and the edge f_{0} in T^{\prime} in Case 1

Case 2. $u \in V\left(T_{1}\right)$. Let Q be the $u-x$ path in T_{1} (it is possible that $u=x)$ as shown in Figure 6. Let $e \in E(T)-\left(E(Q) \cup\left\{e_{0}\right\}\right)$. We now consider two subcases.

Figure 6: The tree T^{\prime} in Case 2

Subcase 2.1. $e \in E\left(T_{1}\right)-E(Q)$. Then $T_{1 e}^{\prime}=T_{1 e}$, while $T_{2 e}^{\prime}$ is obtained by adding v and the edge $u v$ to $T_{2 e}$. Thus $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)$ for all $e \in$ $E\left(T_{1}\right)-E(Q)$.

Subcase 2.2. $e \in E\left(T_{2}\right)$. We show that $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)$ in this subcase as well. Assume, to the contrary, that there exists $f \in E\left(T_{2}\right)$ such that $\mathrm{cn}_{T^{\prime}}(f)=\mathrm{cn}_{T}(f)+1$. Then $T_{1 f}^{\prime}$ is obtained by adding v and the edge $u v$ to to $T_{1 f}$, while $T_{2 f}^{\prime}=T_{2 f}$. Since v and y is connected in $T^{\prime}-f$ (by the path whose edge set is $\left.E(Q) \cup\left\{u v, e_{0}\right\}\right)$ and $v \in V\left(T_{1 f}^{\prime}\right)$, it follows that T_{1} is a proper subgraph of $T_{1 f}^{\prime}$. Since $T_{1 f}^{\prime}$ is obtained by adding v and the edge $u v$ to to $T_{1 f}$ and $u v \notin E\left(T_{1}\right)$, it follows that T_{1} is a proper subgraph of $T_{1 f}$ and so $T_{2 f}$ is a proper subgraph of T_{2}. This implies that $n_{1 e_{0}}<n_{1 f} \leq n_{2 f}<n_{2 e_{0}}$ and so $n_{2 f}-n_{1 f}<n_{2 e_{0}}-n_{1 e_{0}}$, which is impossible.

Therefore, if $e \in E(T)$ and $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)+1$, then $e \in E(Q) \cup\left\{e_{0}\right\}$. We now consider the vertex e_{0}. If $n_{1 e_{0}}<n_{2 e_{0}}$, then $T_{1 e_{0}}^{\prime}$ is obtained from T_{1} by adding the pendant edge $u v$ and $T_{2 e_{0}}^{\prime}=T_{2}$, implying that $\operatorname{cn}_{T^{\prime}}\left(e_{0}\right)=\mathrm{cn}_{T}\left(e_{0}\right)+1$. If $n_{1 e_{0}}=n_{2 e_{0}}$, then $T_{2 e_{0}}^{\prime}$ is obtained from T_{1} by adding the pendant edge $u v$ and $T_{1 e_{0}}^{\prime}=T_{2}$, implying that $\mathrm{cn}_{T^{\prime}}\left(e_{0}\right)=$
$n_{2 e_{0}}=n_{1 e_{0}}=\mathbf{c n}_{T}\left(e_{0}\right)$. Thus, there are two possibilities.
Case i. $n_{1 e_{0}}<n_{2 e_{0}}$. Therefore, if $e \in E(T)$ and $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)+1$, then $e \in E(Q) \cup\left\{e_{0}\right\}$. It remains to show that $\left|E(Q) \cup\left\{e_{0}\right\}\right| \leq(n-1) / 2$ or $|E(Q)| \leq(n-3) / 2$. If $|E(Q)| \geq(n-2) / 2$, then the order of Q is at least $(n-2) / 2+1=n / 2$. On the other hand, $n_{1 e_{0}}<n_{2 e_{0}}$ and so $n_{1 e_{0}}<n / 2$. However, Q is a subgraph of T_{1}, which is impossible.

Case ii. $n_{1 e_{0}}=n_{2 e_{0}}$. Therefore, if $e \in E(T)$ and $\mathrm{cn}_{T^{\prime}}(e)=\mathrm{cn}_{T}(e)+1$, then $e \in E(Q)$. It remains to show that $|E(Q)| \leq(n-1) / 2$. If $|E(Q)| \geq$ $n / 2$, then the order of Q is at least $n / 2+1$. However, Q is a subgraph of T_{1} and the order of T_{1} is at most $n / 2$, which is impossible.

An observation concerning trees that are not paths will also be useful.
Lemma 4.7 If T is a tree of order $n \geq 5$ that is not a path, then there exists an end-vertex v in T such that $T-v$ is not a path.

For trees that are not paths, we can now establish an upper bound for the sum of the component numbers of its edges.

Theorem 4.8 If T is a tree of order $n \geq 4$ that is not a path, then

$$
2 \sum_{e \in E(T)} \operatorname{cn}(e) \leq \frac{n^{2}-4}{2}
$$

Proof. We proceed by induction on n. If $n=4$, then $T=K_{1,3}$ is the only tree that is not a path. Since $h^{+}\left(K_{1,3}\right)=6=\frac{4^{2}}{2}-2$, the result holds for $n=4$. Suppose that the result holds for all trees of order $n-1 \geq 4$ that are not paths. Let T be a tree of order $n \geq 5$ that is not a path. By Lemma 4.7 there exists an end-vertex v in T such that $T-v$ is not a path. Assume, without loss of generality, that $E(T)=\left\{e_{1}, e_{2}, \ldots, e_{n-2}, e_{n-1}\right\}$ and $E(T-v)=E(T)-\left\{e_{n-1}\right\}$. Then $\mathrm{cn}_{T}\left(e_{n-1}\right)=1$ and by the induction hypothesis,

$$
\begin{equation*}
2 \sum_{i=1}^{n-2} \mathrm{cn}_{T-v}\left(e_{i}\right) \leq \frac{(n-1)^{2}-4}{2} \tag{5}
\end{equation*}
$$

It then follows by Lemma 4.6 that

$$
\begin{aligned}
2 \sum_{i=1}^{n-1} \mathrm{cn}_{T}\left(e_{i}\right) & =2 \sum_{i=1}^{n-2} \mathrm{cn}_{T}\left(e_{i}\right)+2 \mathrm{cn}_{T}\left(e_{n-1}\right) \\
& \leq 2\left[\sum_{i=1}^{n-2} \mathrm{cn}_{T-v}\left(e_{i}\right)+\frac{n-2}{2}\right]+2 \mathrm{cn}_{T}\left(e_{n-1}\right)
\end{aligned}
$$

If n is even, then by (5)

$$
\begin{aligned}
2 \sum_{i=1}^{n-1} \mathrm{cn}_{T}\left(e_{i}\right) & \leq \frac{(n-1)^{2}-4}{2}+(n-2)+2 \\
& \leq \frac{(n-1)^{2}-5}{2}+n=\frac{n^{2}-4}{2}
\end{aligned}
$$

If n is odd, then by (5)

$$
\begin{aligned}
2 \sum_{i=1}^{n-1} \mathrm{cn}_{T}\left(e_{i}\right) & \leq 2\left[\sum_{i=1}^{n-2} \mathrm{cn}_{T-v}\left(e_{i}\right)+\frac{n-3}{2}\right]+2 \\
& \leq \frac{(n-1)^{2}-4}{2}+(n-3)+2 \leq \frac{n^{2}-5}{2} .
\end{aligned}
$$

Thus, in each case, $2 \sum_{i=1}^{n-1} \mathrm{cn}_{T}\left(e_{i}\right) \leq \frac{n^{2}-4}{2}$, as desired.
As with the Hamiltonian number, if G if a connected graph of order $n \geq 4$ and H is a connected spanning subgraph of G, then $h^{+}(G) \leq h^{+}(H)$. Thus, the following result follows by Theorem 4.8.

Corollary 4.9 Let G be a connected graph of order $n \geq 4$ that is not a path. Then

$$
h^{+}(G) \leq\left\lfloor n^{2} / 2\right\rfloor-2 .
$$

It then follows by Corollary 4.9 and Theorem 4.5 that there is no connected graph G of order $n \geq 4$ having $h^{+}(G)=\left\lfloor n^{2} / 2\right\rfloor-1$. The following is a consequence of Theorems 2.3, 3.2, and 4.8.

Corollary 4.10 Let T be a tree of order $n \geq 3$. Then

$$
2 n-2 \leq h^{+}(T) \leq\left\lfloor n^{2} / 2\right\rfloor .
$$

Moreover,
(a) $h^{+}(T)=2 n-2$ if and only if $T=K_{1, n-1}$,
(b) $h^{+}(T)=\left\lfloor n^{2} / 2\right\rfloor$ if and only if $T=P_{n}$.

References

[1] T. Asano, T. Nishizeki, and T. Watanabe, An upper bound on the length of a Hamiltonian walk of a maximal planar graph. J. Graph Theory 4 (1980) 315-336.
[2] T. Asano, T. Nishizeki, and T. Watanabe, An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5 (1983) 211-222.
[3] J. C. Bermond, On Hamiltonian walks. Congr. Numer. 15 (1976) 4151.
[4] G. Chartrand and L. Lesniak, Graphs \& Digraphs, third edition. CRC Press, Boca Raton (1996).
[5] S. E. Goodman and S. T. Hedetniemi. On Hamiltonian walks in graphs. Congr. Numer. (1973) 335-342.
[6] S. E. Goodman and S. T. Hedetniemi. On Hamiltonian walks in graphs. SIAM J. Comput. 3 (1974) 214-221.
[7] O. Ore, Note on Hamilton circuits. Amer. Math. Monthly 67 (1960) 55.
[8] P. Vacek, On open Hamiltonian walks in graphs. Arch Math. (Brno) 27 A (1991) 105-111.
[9] P. Vacek, Bounds of lengths of open Hamiltonian walks. Arch Math. (Brno) 28 (1992) 11-16.

