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ABSTRACT

Let G be a connected graph of order n. A Hamiltonian walk
of G is a closed spanning walk of minimum length in G. For a
cyclic ordering s : vy,v2, -, Upn,Vn+1 = v of V(G), let d(s) =
Yo, d(vi,vit1), where d(vi,vi+1) is the distance between v;
and v;4+; for 1 <7 < n. Then the Hamiltonian number h(G) of
G is defined as h(G) = min {d(s)}, where the minimum is taken
over all cyclic orderings s of V(G). It is shown that h(G) is the
length of a Hamiltonian walk in G. Thus A(G) = n if and only if
G is a Hamiltonian graph. It is also shown that h(G) = 2n—2if
and only if G is a tree. Moreover, for every pair n, k of integers
with 3 < n <k < 2n — 2, there exists a connected graph G of
order n having h(G) = k. The upper Hamiltonian number is
defined as h*(G) = max{d(s)}, where the maximum is taken
over all cyclic orderings s of V(G). We show, for a connected
graph G of order n > 3, that h(G) = h*(G) if and only if
G =K, orG=K,,_1. We also study the upper Hamiltonian
number of a tree and present bounds for the upper Hamiltonian
number of a connected graph in terms of its order.
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1 Introduction

In [6] Goodman and Hedetniemi introduced the concept of a Hamiltonian
walk in a connected graph G, defined as a closed spanning walk of minimum
length in G. They denoted the length of a Hamiltonian walk in G by h(G).
Therefore, for a connected graph G of order n > 3, it follows that h(G) = n
if and only if G is Hamiltonian. Among the results obtained by Goodman
and Hedetniemi are the following.

Theorem A IfT is a tree of order n, then h(T) = 2n — 2.

It is immediate that h(G) < h(H) for each connected spanning subgraph
H of a (connected) graph G. As a consequence of Theorem A, we can state
the following.

Theorem B For every connected graph G of order n,
n < h(G) <2n-2.

Theorem C If G is a k-connected graph of order n having diameter d,
then

h(G) < 2n — [gJ (2d —2) — 2.

Theorem D Let G be a connected graph having blocks B, Bs,. .., By.
Then the union of the edges in a Hamiltonian walk for each of the blocks B;
forms a Hamiltonian walk for G and, conversely, the edges in a Hamiltonian
walk of G that belong to B; form a Hamiltonian walk in B;.

Theorem D implies that the topic of Hamiltonian walks can be restricted
to 2-connected graphs. Hamiltonian walks were studied further in [1, 2, 3,
5,8, 9]. A well-known sufficient condition for a graph G to be Hamiltonian
is due to Ore [7].

Theorem E A graph G of order n > 3 is Hamiltonian if degu+degv > n
for every pair u,v of nonadjacent vertices of G.

This theorem can be restated in terms of the parameter h(G).

Theorem F Let G be a graph of order n > 3. Then h(G) = n if degu +
degv > n for every pair u,v of nonadjacent vertices of G.

Bermond (3] obtained the following generalization of Theorem F.

Theorem G Let G be a connected graph G of order n > 3 and let k be
an integer with 0 < k < n — 2. Ifdegu + degv > n — k every pair u,v of
nonadjacent vertices of G, then h(G) < n + k.



In this paper, we refer to the book [4] for graph theory notation and
terminology not described here.

2 The Hamiltonian Number of a Graph

Of course, a Hamiltonian graph G contains a spanning cycle C : vy, vy, - -,
Un, Un+1 = V1, where then v;v;1; € E(G) for 1 < i < n. Thus Hamiltonian
graphs of order n > 3 are those graphs for which there is a cyclic ordering
V1, V2, **, Un, Ung1 =01 of V(G) such that 3" | d(vi,viy1) = n, where
d(vi,vi4+1) is the distance between v; and v;4; for 1 < i < n. For a con-
nected graph G of order n > 3 and a cyclic ordering s : vy,vs, "+, Un, Unt1 =
v; of V(G), we define the number d(s) by

d(s) = Y d(vi, vig1).
=1
Therefore, d(s) > n for each cyclic ordering s of V(G). The Hamiltonian
number h*(G) of G is defined by
h*(G) = min {d(s)},

where the minimum is taken over all cyclic orderings s of V(G). Consider
the graph G = K 3 of Figure 1. For the cyclic orderings

81 : V1,V2,V3,v4,Vs,v1 and 83 : v1,V3,V2, Vg, Vs, U1

of V(G), we see that d(s;) = 8 and d(s2) = 6. Since G is a non-Hamiltonian
graph of order 5 and d(s2) = 6, it follows that h*(G) = 6.

Figure 1: A graph G with h*(G) =6

We now see that there is an alternative way to define the length A(G)
of a Hamiltonian walk in G. Denote the length of a walk W by L(W).

Proposition 2.1 For every connected graph G,
h*(G) = h(G).
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Proof. First, we show that h(G) < h*(G). Let s : v1,v2, "+, VU, Upy1 =
v1 be a cyclic ordering of V(G) for which d(s) = h*(G). For each integer i
with 1 <7 < n, let P; be av; —v;+1 geodesicin G. Thus L(P;) = d(vi,viy1).
The union of the paths P; forms a closed spanning walk W in G. Therefore,

hG) < LW) =) L(P) =) d(vi,vit1) = d(s) = h*(G).
i=1 =1

Next, we show that h*(G) < h(G). Let W be a Hamiltonian walk in G.
Therefore, L(W) = h(G). Suppose that W : z,,zs,...,TN,T;, where then
N > n. Define v; = x; and v = z3. For 3 < i < n, define v; to be z;,,
where j; is the smallest positive integer such that z;, ¢ {vi,v2,...,vi_1}.
Then s : vy,v2,...,Un,Vny1 = v1 is a cyclic ordering of V(G). For each i
with 1 <7 < n, let W; be the v; — v;+; subwalk of W and so d(v;,v;4+1) <
L(W;). Since

h*(G) < Y d(vi,vipr) < Y L(Wi) = L(W) = h(G),
i=1

i=1
we have the desired result. =

As a consequence of Proposition 2.1, we henceforth denote the Hamil-
tonian number of a graph G by h(G), which is then the length of a Hamil-
tonian walk in G.

By Theorem A, if T is a tree of order n, then h(T) = 2n — 2. We now
show that the converse of this statement holds as well. To do this, we first
state a lemma.

Lemma 2.2 IfG is a connected graph such that §(G) > 2 and A(G) > 3,
then G contains two distinct cycles C and C' such that V(C) # V(C").

Theorem 2.3 Let G be a connected graph of order n. Then h(G) =
2n — 2 if and only if G is a tree.

Proof. By Theorem A, it suffices to show that if G is a connected graph
of order n > 3 that is not a tree, then h(G) < 2n — 2. We proceed by
induction on n. Since h(K3) = 3, the result holds for n = 3. Suppose that
h(F) < 2(n —1) — 2 = 2n — 4 for all connected graphs F of order n —1 > 3
that are not trees. Let G be a connected graph of order n > 4 that is not
a tree. Since h(Cp) = n < 2n — 2, we may assume that G # Cj.

We claim that G contains a vertex u such that G — u is a connected
subgraph of G that is not a tree. If G contains cut-vertices, then there is
a vertex u that is a non-cut-vertex of an end-block that has the desired
property. So we may assume that G is 2-connected and so 6(G) > 2. By



Lemma 2.2, G contains two distinct cycles C and C' with V(C) # V(C").
Thus if u is a vertex that belongs to one of C and C’ but not the other, then
G — u is a connected subgraph of G that is not a tree. By the induction
hypothesis, h(G —u) < 2(n — 1) —2 =2n —4. Let

S0 1 V1,V2,...,Un-1,01

be a cyclic ordering of V(G — u) with d(so) = h(G — u) < 2n — 4. Suppose
that u is adjacent to the vertex v;, where 1 < ¢ < n — 1. Define the cyclic
ordering s of V(G) from sy by

86 U, V2,..., Vi, Uy Vit 1y - 5 Un—1, V1
Since d(v;,u) = 1, it follows by the triangle inequality that
d(u,vit1) < 1+ d(vi,vit1).

Therefore,
d(sp) = d(s0) —d(vi,vit1) +d(vi,u) + d(u, vit1)
< d(s0) — d(vi,vit1) + 1+ [1 + d(vi, vit1)]
= d(sg)+2<(2n—-4)+2=2n-2.
Therefore, h(G) < d(sp) < 2n — 2, as desired. [

By Theorem B, if G is a connected graph G of order n, then n < h(G) <
2n—2. Next we show that every pair k,n of integers with3 <n < k < 2n-2
is realizable as the Hamiltonian number and the order of some connected
graph. In order to do this, we first present a known result, which is a
consequence of Theorem D (see [6]).

Corollary H Let G be a connected graph having blocks By, Bs, ..., Bj.
Then

k
h(G) = Z h(B;).

In particular, every bridge of G appears twice in every Hamiltonian walk of

G.

Proposition 2.4  For every pair n, k of integers with3 < n < k < 2n-2,
there exists a connected graph G of order n having h(G) = k.

Proof. For k = n, let G be a Hamiltonian graph of order n; while for
k=2n—2,let G be atree of order n. Forn < k< 2n—2,let k =n+1¢,
where 1 < ¢ < n — 3. Now let G be the graph obtained from a cycle
Chn_¢:uy,ug,...,up_¢,u; and a path Py : vy, va,..., v by joining u; to v;.
Since C,,_¢ is a block of G and any edge not on C,, , is a bridge of G, it
then follows by Corollary H that
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MG)=h(Cr-e) +2U=n—-0)+20=n+L=k,

as desired. -

3 The Upper Hamiltonian Number of a Graph

We saw for the graph G of Figure 1 that there are cyclic orderings s; and
s2 of V(G) such that d(s;) = 8 and d(s2) = 6. Indeed, it is not difficult to
see that for every cyclic ordering s of V(G), either d(s) = 6 or d(s) = 8.
For a connected graph G, we define the upper Hamiltonian number
h*(G) by
h*(G) = max {d(s)},

where the maximum is taken over all cyclic orderings s of V(G). From our
remarks above, it follows that h*(Ks3) = 8. As an illustration, we now
establish the upper Hamiltonian numbers of the hypercubes.

Proposition 3.1  For each integer n > 2,
ht(Qn) =277 (2n - 1).

Proof. First, we show that A*(Q,) < 2""!(2n—1). Let s be an arbitrary
cyclic ordering of V(Q,) with d(s) = h*(Q,). Since diam Q,, = n and
for each vertex v in @,, there is exactly one vertex in @, whose distance
from v is m, it follows that there are at most 2"~! terms in d(s) equal to n.
Consequently, each of the remaining 2"~ ! terms in d(s) is at most n — 1.
Thus

d(s) 2" 'n+2"1(n-1)=2""1(2n - 1),

and so At (Q,) < 2" 1(2n-1).

Next we show that h*(Q,) > 2""!(2n — 1). Since the result is true for
@2, we may assume that n > 3. Let G = @,. Then G consists of two
disjoint copies G; and G of Q,,—1, where corresponding vertices of G; and
G, are adjacent. For each vertex v of G, there is a unique vertex v of G such
that d(v,7) = n = diam @,. Necessarily, exactly one of v and 7 belongs
to G, for each vertex v of G. It is well-known that @, is Hamiltonian for
n> 2. Let C :vy,v,...,V9n-1,Van-14; = v; be a Hamiltonian cycle in G .
Now define a cyclic ordering s of V(G) by

8:V1,01,V2,U2,...,VUgn—1,Ugn—1,01.

Since d(v;,v;) = n and d(v;,vi41) = 1 for 1 < i < 2771 it follows by the
triangle inequality that

n = d(vi, ;) < d(vi,vit1) + d(vig1,0:) = 1+ d(vig1,5).
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Thus d(vi4+1,7;) > n — 1, which implies that d(v;+;,7;) = n — 1. Hence
ht(Qn) >d(s)=2""n+ 2" (n-1) =2""1(2n - 1),
as desired. -

Obviously, h(G) < h*(G) for every connected graph G. For each integer
n > 3, there are only two graphs G of order n for which h(G) = h*(G).

Theorem 3.2 Let G be a connected graph of order n > 3. Then
h(G) = h*(G) if and only if G = K, or G = Ky 5.

Proof. If G = K, then certainly d(s) = n for every cyclic ordering s of
V(G); while if G = K; ,,_1, then d(s) = 2n — 2 for every cyclic ordering s
of V(G). Thus h(G) = h*(G)if G =K, or G=K; 1.

For the converse, suppose that G is a connected graph of order n > 3
such that G # K,, Ky ,—1. We show that h(G) # h*(G). Let diam G = d.
Since G # K,, it follows that d > 2. We consider two cases, according to
whether d > 3 or d = 2.

Casel. d > 3. Let v; and v44; be vertices of G such that d(vy,v4+1) = d
and let P : vy,v2,...,v4+1 be a v; —v44) geodesic in G. Let W = V(G) —
V(P). f W # 0, then let W = {w;,ws,...,w¢}, where { = n —d — 1.
Define a cyclic ordering s of V(G) by

§:v1,V,V3,...,Vd+1,V1 OF (1)

§1V1,V2,V3,...,Vd41, W1, W2, ...,W¢, V1, (2)

according to whether W = @ or W # . Let s’ be the cyclic ordering of
V(G) obtained from s by interchanging the locations of v, and v3 in s; that
is,

!

§ 1U1,V3,V2,V4y...,Ud+1,01 (3)

.
or s :v;,V3,V2,V4,...,V3+1,W;,W2,...,W¢, V1, (4)

according to whether W = () or W # 0. In either case, d(s') = d(s)+ 2 and
so h(G) # h*(G).

Case 2. d = 2. Since G is not a star, it follows that G is not a tree. Thus
the girth g(G) = k > 3. Assume first that k = 3. Since G is connected and
G # K, there exists a set U of four vertices of G such that (U) = K4—e or
(U) is a triangle with a pendant edge. Therefore, we may assume, without
loss of generality, that G contains one of the graphs F; and F; in Figure 2 as
an induced subgraph. In either case, define the cyclic orderings s and s’ as
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U1 V4
F1 : F2 . V1 U3
U3 V4 v

Figure 2: Induced subgraphs F; and F, of G

described in (1) (or (2)) and (3) (or (4)), respectively. Then d(s") = d(s)+1
and so h(G) # h*(G).

If kK > 4, then let C : vy,v,,...,vk,v; be an induced cycle of G and
let V(G) —V(C) = {w1,wa,...,we} if £ =n —k > 0. Define the cyclic
orderings s and s’ of V(G) as in (1) (or (2)) and (3) (or (4)), respectively.
Since d(s') = d(s) + 2, it follows that h(G) # AT (G). m

4 Bounds for the Upper Hamiltonian Num-
ber of a Graph

First, we observe that if s : v1,vs,...,0,,0p+1 = v is any cyclic ordering
of the vertex set of a connected graph, then for each vertex v; (1 <i <
n), both d(vi—1,v;) < e(v;) and d(v;,vi4+1) < e(v;), where the subscripts
are expressed as integers modulo n and e(v;) is the eccentricity of v; (the
distance from v; to a vertex farthest from v;). Thus, If G is a connected
graph of order n > 3 and V(G) = {vy, v, ..., vn}, then

n
hH(G) <) e(wy).
=1
Since the eccentricity of a vertex in G is at most the diameter diam G of G
(the largest distance between two vertices of G), we have the following.

Proposition 4.1 IfG is a connected graph of order n > 3 and diameter
d, then
h*(G) < nd.

The upper bound in Proposition 4.1 is sharp. For example, consider the
odd cycle Caog41 : v1,02,...,V2k4+1,v1, where k > 1. Since diam Ca41 = k,
it follows by Proposition 4.1 that h*(Cor+1) < k(2k + 1). On the other
hand, let

8 1V, Uk41,V2k+1,V3k+1,- - - V(2k)k+15> V(2k+1)k+1 = V1,



where each subscript is expressed modulo 2k + 1 as one of the integers
1,2,...,2k + 1. Since k and 2k + 1 are relatively prime, s is a cyclic
ordering of V(Cak4+1). Since

d(s) = id(vi,vm) =k(2k +1),

=1
we have the following result.

Proposition 4.2  For every integer k > 1, let n = 2k+1. Then h*(C,) =
nd, where d = diam Cog41 .

Therefore, the upper bound in Proposition 4.1 is attained for odd cycles.
The situation for even cycles is far less clear. For every integer k > 2, we
know that h*(Cax) > 2k* — 2k + 2. Indeed, we state the following.

Conjecture 4.3  For every integer k > 2, h*(Cax) = 2k? — 2k + 2.

Next, we study the upper Hamiltonian number of a tree. For each
edge e of a tree T, we define the component number cn(e) of e as the
minimum order of a component of T' — e. For example, the edge e3 of
the tree T of Figure 3(a) has component number 3 since the order of the
smaller component of 7' — e3 is 3. Each edge of thls tree is labeled with its
component number in Figure 3(b).

Us

(a)

Figure 3: Component numbers of edges

We now present an upper bound for the upper Hamiltonian number of
a tree.

Lemma 4.4  Let T be a tree of order n with E(T) = {e1,e2,...,en—1}.
Then

n—1
hH(T) <2 cen(es).
=1



Proof. Let e € E(T), where T} and T, are the two components of T — e
and T; has order n; (i = 1,2). Assume, without loss of generality, that
ny < ne. Thus cn(e) = n;. Let s be a cyclic ordering of V(T), say
8 :V1,V2,...,Un,Unt1 = V1. For each ¢ (1 < i < n), the edge e occurs at
most once in the v; — v;41 path P; of T'. If e lies on P;, then exactly one of
v; and v;4+; belongs to T;. Since a vertex of 77 can occur as the initial or
terminal vertex of a path P; (1 <i < n) at most 2cn(e) times, the desired
result follows. ]

For the tree T' of Figure 3,

8
doen(e) =1+1+3+1+4+1+2+1=14.

=1
Thus by Lemma 4.4, h*(T') < 28. However, for
8 v, %,V2,Us, Vs, V7, Us, Vg, V4, V1,

we have d(s) = 28. Therefore, d(s) = 28 < h*(T') and so h* (T') = 28.
We now present a formula for h*(P,).

Proposition 4.5  For each n > 2,

WPy = |n?72].

Proof. Let P, : vy,vs,...,v, and let
81 U1,Un, V2, Un—1,V3, -+, U ngly, V1
Then
d(s) = (n—1)+(n—2)+...+1+[";1]

= (@) Pl il
Hence h*(P,) > ["T’J

To show that ht(P,) < I.E;J , we consider two cases, according to

whether n is odd or n is even. Let ¢; = v;v;41, 1 <i<n-—1.

Case 1. n is odd, say n = 2k + 1, where k > 1. Then

o i if 1<i<h
el =0 i EhEl<icoh



By Lemma 4.4,

C n-1 k 2k
ht(P,) <2 2cn(e,~)=2[2cn(ei)+ > cn(ei)]
=1 =1

i=k+1
k
k+1 ntl n? -1
= 4) i=4 =4( 2 )= )
hed(* = )=

Case 2. n is even, say n = 2k, where k > 1. Then

ente) = {1 if 1<i<k
W& = 1 a-i # E+1<i<2%~1.

By Lemma 4.4,

WH(P) <2 ) en(e) =2

Thus, in each case, h* (P,) < l";J , producing the desired result. &

If T is a tree of order n and 7" is a tree obtained by adding a pendant
edge to T, then enr(e) < enyi(e) < enr(e) + 1 for every edge e of T. We
now show that the upper bound is attained for at most half of the edges
of T. With the aid of this fact, we will be able to establish a sharp upper
bound for the upper Hamiltonian number of a graph in terms of its order.

Lemma 4.6 Let T be a tree of order n, and let T' be a tree obtained by
adding a pendant edge to T. Then there are at most (n — 1)/2 edges e in
T such that cnp:(e) = cnr(e) + 1.

Proof. Foreache € E(T), let T}, and T5. be the two components of T'—e
and let n;. and no. be the orders of Ty, and T3, respectively. Assume,
without loss of generality, that ny, < ng.. Thus en(e) = ni.. Let eg = zy
be an edge of T such that ng., — nyje, < n2e — nye for all edges e in T.
Suppose that T’ is obtained from T by adding the pendant edge uv at
the vertex u of T. We show that the number of edges e in T' such that
cnr(e) = cenr(e) + 1 is at most (n — 1)/2. Let Ty and T, be the two
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components of T' — eg such that cn(eg) is the order of T} We may assume
that z € V(T1) and y € V(T3). For each e € E(T), let T{, and T}, be the
two components of T’ — e and let nj, and nj, be the orders of T, and Tj,,
respectively. We may assume that nj, < nj,. We consider two cases.

Case 1. u € V(T3). Let P be the y — u path in T, (it is possible that
y = u) as shown in Figure 4. Let e € E(T) — E(P). We consider two
possibilities.

a P
T T . "

T;

Figure 4: The tree T' in Case 1

Subcase 1.1. e € E(Ty)U{eo}. Then T{, = T}., while T}, is obtained by
adding v and the edge uv to T3.. Therefore, cny (e) = nj, = n1. = cnr(e)
for all e € E(T1) U {eo}.

Subcase 1.2. e € E(T;) — E(P). We show that cny (e) = cnr(e) in this
subcase as well. Assume, to the contrary, that there exists f € E(T5)—E(P)
such that cny/(f) = cnr(f) + 1. Then Tj, is obtained by adding the
pendant edge uv to Tz, while T} ;= T>¢. Since z and v are connected in
T' — f (by the path whose edge set is E(P) U {eo,uv}) and v € E(T},),
it follows that T\ is a proper subgraph of T7,. Since 77}, is obtained from
Ti5 by adding the pendant edge uv and uv ¢ E(T}), it follows that T} is a
proper subgraph of Ty and so Ty is a proper subgraph of T,. This implies
that ni, < niy < ngp < Nge, and S0 Ny — Ny < Noey — Niey, Which is
impossible.

Therefore, if e € E(T) and cng(e) = cnr(e) + 1, then e € E(P). It
remains to show that |E(P)| < (n — 1)/2. Assume, to the contrary, that
|E(P)| > n/2. Let

Il 5 g == —
P Y =00,V VB(P) T WY

be the path obtained by extending P to v. Let fo = yv; (see Figure 5).
Then T) and the path P’ — y belong to different components in 7" — y.
Since the order of P' — y is |E(P)| +1 > n/2 + 1, it follows that P’ —y
is a subgraph of T,; . Thus T; is a proper subgraph Ti;, = T14,- Since
Ty, is a subgraph T3, it follows that nie, < nis, < n2j, < N2e, and so
Nag, — Nif, < N2eq — Mgy, Which is impossible.



/\ "
v P’
¢ it T, 0 J\ﬁ/czt
z y\ Jfo
T

Figure 5: The path P’ and the edge fo in T in Case 1

Case 2. u € V(T}). Let Q be the u — z path in T} (it is possible that
u = z) as shown in Figure 6. Let e € E(T) — (E(Q) U {eo}). We now

consider two subcases.
€0
T
Yy

Figure 6: The tree T in Case 2

Subcase 2.1. e € E(Ty) — E(Q). Then T|, = Ty, while T, is obtained
by adding v and the edge uv to T.. Thus cnyv(e) = cnr(e) for all e €
E(Th) - E(Q)-

Subcase 2.2. e € E(T>). We show that cny (e) = cnr(e) in this subcase
as well. Assume, to the contrary, that there exists f € E(T») such that
eng/(f) = enr(f) + 1. Then Tj, is obtained by adding v and the edge
uv to to Tiy, while T,; = Tys. Since v and y is connected in T' — f (by
the path whose edge set is E(Q) U {uv,e0}) and v € V(T7,), it follows
that 7' is a proper subgraph of Tj,. Since T}, is obtained by adding v
and the edge uv to to Ty and uv ¢ E(T}), it follows that T is a proper
subgraph of T and so Ty is a proper subgraph of T,. This implies that
Niey < Nif < Nag < Ngey and so Nag—nys < Naey —MNie,, Which is impossible.

Therefore, if e € E(T) and cny(e) = cnr(e) + 1, then e € E(Q) U {eo}-
We now consider the vertex eg. If nie, < nge,, then Ty, is obtained
from T; by adding the pendant edge uv and T,, = T, implying that
cnr (eg) = cnr(eo) + 1. If nye, = nae,, then T,, is obtained from T;
by adding the pendant edge uv and T{,, = T5, implying that cnr (eo) =
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N2e, = N1e, = cnr(€o). Thus, there are two possibilities.

Case i. Nye, < Noe,- Therefore, if e € E(T') and cny(e) = cnr(e) + 1,
then e € E(Q)U{eo}. It remains to show that |[E(Q)U{eo}| < (n—1)/2 or
|E(Q)| < (n —3)/2. If |[E(Q)| > (n — 2)/2, then the order of @ is at least
(n —2)/2+ 1 =n/2. On the other hand, nie, < nge, and so nye, < n/2.
However, @) is a subgraph of T}, which is impossible.

Case ii. nye, = N2e,. Therefore, if e € E(T) and cnyi(e) = enp(e) + 1,
then e € E(Q). It remains to show that |[E(Q)| < (n —1)/2. If |[E(Q)| >
n/2, then the order of @ is at least n/2 + 1. However, @ is a subgraph of
T; and the order of T} is at most n/2, which is impossible. [ ]

An observation concerning trees that are not paths will also be useful.

Lemma 4.7 IfT is a tree of order n > 5 that is not a path, then there
erists an end-vertex v in T such that T — v is not a path.

For trees that are not paths, we can now establish an upper bound for
the sum of the component numbers of its edges.

Theorem 4.8 IfT is a tree of order n > 4 that is not a path, then

n? —4
2 s
E cn(e) < 5
e€E(T)

Proof. We proceed by induction on n. If n = 4, then T = K, 3 is the
only tree that is not a path. Since h*(K;3) =6 = % — 2, the result holds
for n = 4. Suppose that the result holds for all trees of order n — 1 > 4
that are not paths. Let T be a tree of order n > 5 that is not a path. By
Lemma 4.7 there exists an end-vertex v in T such that T'— v is not a path.
Assume, without loss of generality, that E(T) = {e1,e2,...,en—2,€n_1}
and E(T —v) = E(T) —{en—1}. Then cnr(ep—1) = 1 and by the induction
hypothesis,

n—2
n—-12-4
2;ch_”(€,») < (—2)— (5)
It then follows by Lemma 4.6 that
n—1 n—2
2 Z cor(e;) = 2 Z cnr(e;) + 2cnr(en—1)
i=1 i=1
n—2

n—2
2 Z cny_y(e;) + 5 + 2cnr(en—1)

i=1

IA
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If n is even, then by (5)

n—1
(n—-1)2-4
5 R s A —2) 42
2i=1ch(el) < 5 +(n ) +
(n—1)2-5 n? -4
< =
= D) +n 2

If n is odd, then by (5)

n—1 n—2 n-3
2 AT 2 —v(e; 2
; cnp(e;) < ; cny—y(e;) + 5 +
n-1)2-4 n?-5
< — - S :
< 5 +(n—-3)+2< 3
Thus, in each case, 237", cnz(e;) < 1‘%, as desired. =

As with the Hamiltonian number, if G if a connected graph of order
n > 4 and H is a connected spanning subgraph of G, then h* (G) < h*(H).
Thus, the following result follows by Theorem 4.8.

Corollary 4.9 Let G be a connected graph of order n > 4 that is not a
path. Then
ht(G) < [n2/2J - 2.

It then follows by Corollary 4.9 and Theorem 4.5 that there is no con-
nected graph G of order n > 4 having h*(G) = |n?/2] — 1. The following
is a consequence of Theorems 2.3, 3.2, and 4.8.

Corollary 4.10 Let T be a tree of order n > 3. Then
2n—2 < h™(T) < [n?/2].
Moreover,
(@) RY*(T)=2n-2ifand only if T = K, p_1,
(b) h*(T) = |n?/2] if and only if T = P,.
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