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Blackburn asked for the largest possible density of filled cells in
a partial latin square with the property that whenever two distinct
cells P,, and P., are occupicd by the same symbol the ‘opposite
corners’ P,, and P,. are blank. We show that, as the order n of the
partial latin square increases, a density of at least exp (—c(log n)Y/ &
is possible using a diagonally cyclic construction, where ¢ is a positive
constant. The question of whether a constant density is achievable
remains, but we show that a density exceeding é(\/i—l —1)(1+4/n)
is not possible.

We say that a partial latin square P has the Blackburn property if
whenever two distinct cells P,, and P.q are occupied by the same symbol
the ‘opposite corners’ P,y and P, are blank. The problem of filling as many
cells without violating this property was posed by Simon Blackburn [2]. His
motivation was an application in perfect hash families and the problemn was
originally posed in those terms. Examples of order 6 and 8 of partial latin
squares with the Blackburu property are shown in (1). The example of
order 8 is a re-arrangement of an example given by Blackburn [2].
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By the density of a partial latin square of order n we mean the numbor
of filled cells divided by n?. The density of both examples in (1) is 5 In
this note we investigate asymptotics for §(n), the maximum density of any
partial latin square of order n with the Blackburn property. The principal
question, which shall remain open, is whether d(n) = o(1) or whether a
constant density is achievable.

Let k, denote the number of occurrences of a symbol o. By relabelling
if necessary, we may assume that

kleszsZEkuZO (2)

We say that a cell (7,7) is wasted by a symbol if that symbol occurs
in row ¢ and also in column j (but not in the cell (i,j) itself) and hence
the cell (7,7) must be vacant to obey the Blackburn property. By w(o) we
denote the number of cells wasted by a symbol o and by w(eN7) we denote
the number of cells wasted by o and alsc wasted by 7. It should be clear
that w(o) = k, (ks — 1) for every o. We also have:

Lemma 1 w(o N7) < |4ko|[3ko] < Lk3 for any symbols o and 7.

Proof:  We partition the oceurrences of o into (a) those which lie in the
same row as an occurrence of 7, (b) those which lie in the same columnn as
an occurrence of 7, and (¢) those which have neither property (a) nor (b).

We remark that by the Blackburn property, (a) and (b) are disjoint
sets. If a,b,c denote the respective numbers of occurrences of o of types
(a), (b) and (¢) then w(o N 7) = ab. Thus, subject to the restriction that
a+b+c =k, we see that w(o N 7) is maximised by taking ¢ = 0 and

{a,b} = {14k, ), [3k,1}. o

Blackburn [2] observed that from Corollary 2 in his joint paper [3] with
Wild it follows that 6(n) < in + o(1). With the above lemma we can
improve the constant & to approximately 0.163 as follows:

Theorem 1 §(n) < l)(\/ﬁ - 1)1 ) for all n.

Proof: Torn < 3 the result [ollows trivially fromn d(n) < 1, so we assiune
in the remainder of the proof that n > 4.

Using Lemma 1 we know that the number W of cells which are wasted
by at least one of the symbols satisfics

W > w(l)+w(2)+ w3) +w(4)
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Suppose that t = ky+k2+ks+ky4 is [ixed. The minimum of (3) subject to (2)
is then achieved by taking ky = ko = k3 = kg = %t. However, we know that
ki < kg < ;:-I, for alli > 4 so that > k; <1+ —[Il-l.(n —4) = nt/4. Hence, since
5(n) = Y- ki/n? < t/(4n) the theorem must be true if £/(4n) < (V11—-1)/5.
So we suppose that ¢t > 4n(y/11 — 1)/5, in which case (3) shows that

W > 3(1) > g(l(\/ﬁ— 1)n)2 - %n(\/ﬁ =43,

2\4 )

Therefore §(n) <1 -W/n* < %(\/1_1 —1)(1 +4/n) as required. 16

As stated, Theorem 1 shows that density of % is not achievable for
n > 50. In fact, from (3) we find that density of -i; is not achievable when
n > 16, because in that case 3(¢/4)® —t > $n? whenever /1> in.

We saw in (1) that density of & is attainable, though it scems plausible
that the order 8 example given there is the largest possible. Of course, the
partial latin squares

T T S

- 21 (1)

2 - 3 Lot
3.4 2 -

show that density exceeding L is achicvable for smaller 2. By ad hoc use
of the techniques of Theorem 1 and the stronger form of Lemnma 1 it is not
difficult to show that the examples in (1) and (1) have the highest possible
density for their respective orders.

We next develop a constructive lower bound for d(n).

Let o be an odd integer. We say that a subset S of Z,, satisfics the law
of the cxcluded middle (LEM) il whenever 2 and y are distinct elemnents of
S, the clement .—L(.‘lf +y) of Z,, is not an element of S. Let €(n) denote the
cardinality ol the largest subsct ol Z,, which satisflies LEM. We have:

Theorem 2 §(n) > e(n)/n for cvery odd integer n.

Proof:  Suppose that S is a subset of Z,, satisflying LEM. We form a
partial latin square P as follows, where all calculations are modulo n. If
¢ and j are such that j —4 € S then we put Py = %(I + 7), otherwise we
leave Pj; blank. It is clear that the P so formed is a partial latin square.
There is no duplication within a row because ,l_,(i + 1) = %('i, + J2) mod n
if and only if j;, = j» mod n since n is odd. For a similar reason there is no
duplication within columns.

The structure of P is best understood by counsidering its diagonals. We
define a diagonal to be the set ol entries ol P oceupying cells (4, j) where
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Jj —1i = dmod n for some lixed d. The diagonals of P are either entirely
blank or have every entry filled. On the filled diagonals the entries of Z,,
occur in cyclic order since Py j41 = Pij + 1 mod n. We say that P is
diagonally cyclic.

We now argue that P has the Blackburn property. Let i1, j1,42,j2 be
such that cells (i1, 7)) and (i2, j2) are occupied by the same symbol in PP
but i; # i2 and j; # j». By definition of P this means that %(il + 1) =
t-l?(iz + j2) mod n and hence j, —i» = ja — iy = $(jy — i) + j2 — i2) mod n.
Since our two cells are filled we know that j; —i; € S and j» —is € S.
Crucially, P is diagonally cyclic so no symbol occurs twice on the same
diagonal, which means that these are distinct elements of S. The definition
of S then says that §(j; — iy + j2 —i2) € S so that cells (i1, j2) and (iz, ji)
must be blank. Thus the Blackburn property is achieved.

If we choose S to be as large as possible then there are £(n) filled cells
in each row of P, so the density is e(n)/n. ®

A recent survey of applications for diagonally cyclic latin squares may be
found in [7]. The problemn of which diagonally cyclic partial latin squares
can be completed to diagonally cyelic latin squares has been studied by
Griittmiiller [5, 6]. In our case, ol course, P can trivially be completed 1o
the diagonally cyclic square defined by L;; = %(I +j)loralli,j € Z,.

Although it scems a very natural question, the author is unaware of
any work towards finding large subsets ol Z,, which obey LEM. However,
a related problem in Z has been well studied. We say that a set S of
non-negative integers has the three term arithmetic progression (3-TAP)
property if it contains no three terms which are in arithmetic progression.
For a given positive integer n let m(n) denote the cardinality of the largest
subset of {1,2,...,n} with the 3-TAP property. Behrend [1] showed that
m(n) > nexp (—c(log n)‘/g) for some constant ¢ > 0.

Observe that m(n) > e(n) since any set S satislying LEM automatically
has the 3-TAP property. To see this note that if S contained a 3 terin
arithmetic progression a, a+d and a+ 2d then putting 2 = a and y = a+2d
violates LEM since (2 +y) = a + d.

Also m(n) < 5('2/1 + 1) as we now argue. Suppose S is a subset of
{1,2,...,n} with the 3-TAP property. We embed S in Za,,, and look
at pairs 2,y € S where 2 < y. Il y — 2 is even, say y — 2 = 2k then
e +y) =2+k &S since otherwise the triple (z,z + k,z + 2k = y)
would violate the 3-TAP condition. So suppose that y — 2 is odd, say
y—2 =2k + 1. Then in Zoa, 4, we have 1(z +y) = 2+ k + n+ 1. But
l1<z<az+k+1<y<nsothatn+1< r+k+n+1 < 2n. This means
that (2 4+y) € S, so S satisfies LEM in Zay, ;.

Pl]lliu;; together the last two results we sce that €(n) and m(n) agree
to within a constant factor. Hence we can couple Behrend’s result with
Theorem 2 to furnish the [ollowing lower bound.
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Theorem 3 There is a constant ¢ > 0 such that §(n) > exp (—c(logn)'/?)
Jor all n.

Note that our construction as described above only worked for odd n.
However, for even n we can take the construction for n — 1 and extend it
with an empty row and column. This only changes the density by a factor
of (1-1/n)* =1+ 0(1).

In closing, we remark that Bonrgain [4] proved that

m(n) = O(n(loglogn/logn)'/?)

so that the highest density achievable by our method is O((loglog n/ log n,)'/"’).
Thus the question of whether a constant density is achievable remains open.
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