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Blackburn asked for the largest possible deusity of fillf:d cells in 
a partial latiu square wi th Llw property t ha t, whenever t,w > distinct 
cells Pn.1, and Pci1 are occupied by t.he same symbol the 'opposite 
corners' P,,,, and Pbc are blank. \Ve show that, as the order n of the 
partial lat,iu square increases, a density of at least exp (-c( logn) L/'.! ) 
is possible using a diagonally cyr.lic constmction, where c is a. positive 
constant. The q uestion of whether a constant density is achievable 
remains, b ut we show that a density exceeding¼ ( v'fI -1)(1 + 4/ n) 
is not possible. 

vVe say that a partia l la.t in square P has the Blackburn property if 
whenever two distinct cells P,.b and Peil ,u-e occupied by the same sy mLol 
the 'opposite corners' P,.,1 a.nd P1" , are blauk. The problem of filli11g a.'i many 
cells without, violating this property was posed by Simon Dla.cklmrn [2]. His 
motivation was au applicat ion iu perfect ha.sh families and the problem was 
originally p osed in those terms. Examples of order G and 8 of partial la.tin 
squares with the Dlackburn property a re shown in (1). The example of 
order 8 is a. re-arra.ugement, of a.u example given by Blackbum [2]. 

1 5 7 4 
1 5 4 1 8 6 4 

1 5 3 1 3 6 7 
1 6 3 1 3 8 5 

(1) 
3 4 2 G 7 4 2 
(j 4 2 8 G 4 2 

G 5 2 3 5 7 2 
3 8 (j 2 
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By the density of a pa r tia l latin square of order n we mean the number 
of filled cells divided by n 2

. The density of both examples in (1) is½- In 
this note we investigate a.5ymptotics for o(n), the maximum density of any 
partial latin square of order n with t he Dlackburn property. The principa l 
question , which sha ll remain open , is whether o(n) = o(l) or whether a 
constant density is achievable. 

Let ku denote the number of occurrences of a symbol a. B y relabelling 
if neces. rtry, we may ass1tme that 

(2) 

'vVe say that a ce ll (i, j) is wasted by a symbol if that symbol occ urs 
in row ·i and also in column j (but not in t he cell (i, j ) itself) and hence 
the cell (i,j) must be vacant Lo obey the Dla.ckburn property. Dy w(a) we 
denote t he number of cells wasted by a symbol a and by w(anT) we denote 
the number of cells wasted by a and a lso wasted by T. It sho uld be clear 
Umt w(a) = k 0 (ku - 1) for every a. \Ve a lso have: 

Lemma 1 w(a n T) :S L½koJ r ½ko l :S ¼k~ fur any symbols a anrl T. 

Proof: \Ve pa.rtitiuu t,lte ucc urr<•11 ces of a into (a) those which lie i11 the 
same row as an occurrence of T , (b) those which lie iu t.hc same co lt1m11 ;1s 
an occ1trrcm:e of T , a 11d (c) those which have neither property (a) nor (b). 

\,Ve remark that by Lite Dlackliurn property, (a) ;rnd (b) a re clisjoi11t 
sets. If a , b, c denote the respective numbers of occurrences of u of types 
(a), (b) aml (c) then w(a n T) = rib. Thus, subject Lo the res trict.ion that 
a+ b + c = ku we see that w(u n T) is maximised by taking c = 0 r1nd 

{ a, b} = { L ½ ko J , r ½ ku l} . 0 

Dlackb11rn [2] observed that from Corolla ry 2 in his joiut pa per [3] with 
\Viki it follows th;i t o(n) :S ¼n + o(l). With the above lemma w<! can 
improve the co 11st.a11 t ½ Lu app-roxima.t.cly 0 .1G3 as follows: 

Theorem 1 o(n) < i(Ju - 1)( 1 + t) for all n . 

Proof: Porn :S 3 the rcs11!1. follows trivially from J(n) :S 1, so we ass1 111 H! 
iu t he remaiuclc!r oft.he proof that, n 2'. 1. 

Using Lemma 1 we knoll" LhaL the 1111mber H of cells ll"hich m e wa.'il cd 
by at least, one of the symbols satisfies 

W > w(l) + w(2 ) + w (3) + w (4) 

- w( l n 2) - w( l n 3) - w (2 n 3) - w( l n 4) - w (2 n -1) - w (3 n -1) 

> k 1 ( k 1 - 1) + k2 ( k2 - 1) + k3 ( k3 - 1) + k1 ( k1 - 1) 
1 ., 1 ~ 1 ., 1 ~ 1 ., 1 ., 

- 1 k:i - 1 k:i - 1 k:i - 4k; - 4k,j - 4k,j 

k~,' + ~k~ + ~k21 + ~k;-1' - k 1 - k:! - k~ - k1 . (3) 
4 - 2 · -1 
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Suppose t hat/, = k 1 +k2 +kJ+k4 is fixed. The mi11imum of (3) s ubj ect to (2) 
is then achieved by taking k 1 = k2 = k 3 = k4 = ¼t. However, we know tlmt 
k ; '.S k 4 5 ¼t, for all i. 2 4 so that L k; '.S /. + ¼t.(n - 4) = n /./1. Henr.e , s ince 
b(n) = Z:k;/n2 '.S l/(4n) thetheon:m mttst betrneif/./(4n) :S (Vll -1)/5. 
So we suppose that /. > 4n( .JTT - 1)/5, in which case (3) shows tha.t 

" I 0 ~ 1 ., 4 
W > ':!. (..:.)- - l > ':!. (- (/ii - l)n)- - - n( /ii - 1). 

-2 4 25 5 

Therefore l(n) ~ 1 - W/n'.! < f(Jii - 1)(1 + 4/n) as required. <-J 

As sta ted, Theorem 1 shows that density of ¾ is not achievable for 
n > 50. In fa.ct, from (3) we find t hat densi ty of¾ -is not achievable wlwn 
n > lG, because in t hat cas<~ ;f (1,/4)2 - /, > {n2 wlicnever t/1 2 ¾n. 

We saw in (1) that de11Si t.Y of¾ is attain:1,ole, t hough it secmi pla 11sible 
that the order 8 example givc11 t. h~re is t lw largest poss ible. Of comse, the 
partial la.tin sq11 ares 

1 

4 
1 
2 

(1) 

show that dcus il,y exceeding ¾ is achievable for smaller n. Ily ad hoc ttse 
of the techniques of Theorem i and the stronger form of Lemm a. 1 it, is uot 
diffic11lt to show that. the examples in (1) and (1) hav<' the highest possible 
density for the ir respective ordr:rs. 

\Ve next. develop a co11strnctive lower houucl for l(n). 

Let n he .-111 odd i11t<:gcr. \Ve say LhaL a s11hsct, S of Z,, sat isfies the law 
of the e:rclwled rn:iddle (LEJ\ I) if ll'!w1wver 1: a.11d y are distinc t, clement.s of 
S, the cifime11t 1 (J: + y) of Z,. is 1101, a u clcmc11t, of S. Let c (n) de11ot.c the 
cardiua li ty of the largr:st s ttlis<it of Z II which satisfies LEl\1. \Ve have: 

Theorem 2 6(n ) 2 c( n )/ n j1J1' 1:-oer;I) odd in l.<~gcr· n . 

Proof: Suppose that S is a subset of Z,, satisfying LEM. \Ve form a 
partial la.t in square P a.s follows, where a ll calculations an! modulo n . If 
i and j a.re such that .i - ·i. E S tlwn we put, P;,1 = ½ ('i + .i), otherwise we 
leave P;_i bla nk. It is c:lea.r that the P so fo rmed is a partial latin square. 
There is no duplicat.i ou withi11 a row beca.11se ½U + ,ii) = ½U + h) m od ·11, 

if all(l only if j 1 = ,h mod 11, si1H:<: 11, is odd . For a similar n-:a.<;on tlH:w is uo 
cl11plica.tio11 within col1111111 s. 

The structure of I' is best, 1111dcrs tood hy co11sirkri11g its cliago11als. \Ve 
define a. dia.go11a.l to be t he s<!t of c11t.rics of I' ocr. ttpying cells ( i, ,i) wlwrc 
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j - i = d mod n for some fixed cl . The di;igona ls of P arc either entirdy 
blank o r have every entry filled. On the filled diago1rnls the entries of Z,, 
occur in cyclic ord er s ince P i+ i ,i+ I = P;,1 + l mod n . We say that, P is 
diagonally cyclic. 

vVe now argnc t hat P has t he Dlackburn proper ty. Let i 1 ,j1 ,i,2 ,h be 
s uch that cells ( i 1 , j 1 ) and ( i 2 , h) a re occ II pi0.d hy the same symbol ill P 
but i 1 =/- ·i, 2 and j 1 -:f. h - Dy definiti on of P this mea ns tha t * ('i 1 + ji) = 
¾(i2 + J2) mod n and hence .i 1 - ·i2 = h - i 1 = ¾U, - i 1 + h ~ i 2 ) mod n . 
Since o ur two cells are fill ed we know that. .i , ..::. i 1 E S and h - i2 E S. 
Crucia lly, P is diagona lly cyclic so no symbol occ11rs twice Oll the sa.m ' 
diagonal , which means that t hese arc distinct clcment.s of S. The definition 
of S th n say t hat ½ (j 1 - i 1 + h - i 2 ) ~ S so that cells ( i 1 , .72) and ( i 2 , j 1) 
must b e blank. Thus the Dlackh11rn property is achieved . 

If we choos S t,o be as lluge as possible then t here a.re e(n) filled ce lls 
in each row of P, so t he density is €(n )/n. 0 

A recent s m vcy of applications for diagonally cyclic la.ti n sqnares may he 
fo und ill [7] . The problem of which diagonally cycl ic par t ia l lat ill sq11arcs 
c.;;1.11 be c:omplctccl to diagomdly cyclic lat. ill squares ha s been st udied by 
C rii ttmiillcr [5, G]. Ill om cast:, of co urse, P c,111 t.r ivia lly be r.o mple t.cd t.o 
the clia gomdly cyclic sqm1re defined by L ;1 = 1 (i + _j) for ,di i,j E Z,,. 

Altho11gli it scclll s a ,·ery 11aL11rn l question, the a.11l,l10r is unaware of 
auy wo rk towa.nls filldiu g large subsets of Z,. which obey LE I. Howc \"(:r , 
a. rc la.t,cd problem in Z has hc0.u we ll studied . \Ve say that a set. S of 
non-negative iutcgcrs has the three term arithmel,ic progression (3-TAP) 
p roperty if it contains 11 0 three te rms which arc in arithmetic progress ion. 
For a g iven posit.ive integer n let m (n ) denote the cardina lity of the largest. 
s ubset of {1 ,2, ... ,n} with t,he 3-TAP property. Dehrcnd [l ] showed I. ha t, 
m(n) > nexp (-c(logn) 112 ) fo r some constant. c > 0. 

Ob.-erve that m (n) ~ e (n) s ince any set S sat isfy ing LEl'vI a11toma.t.icall y 
has t he 3-TAP pro perty. To sec I.his 11 01.c' t.lrn t if S cout.aincd a 3 l.cn n 
a ri t hmetic progress ion a, <l+ cl and r,. + 2d I hen 1rn tt.i ng :1: = o, a nd y = r,. 2rl 
violates LElVI since { (2: +:,;) = o, + rl. 

A lso m(n) S e (2n + 1) as ll'C now mg 11 c. Suppose S is a s1ilisct of 
{l, 2, ... , n} with t he 3-TAP property. We embed S in Z 2 n I a nd look 
at p:ciirs :1:, y E S where :1: < y. Ir :,; - ::i: is even , say :,; - ::i: = 2k thc11 
½ (x + y) = x + k i S since otherwise the t riple (x, 2: + k , :i.: + 2k = y) 
wo uld violate I. he 3-TAP condition . So suppose that y - :i: is odd, s;iy 
y - x = 2k + l. Then in Z 211 +1 we have ½(:i: + y ) = :1: + k: + n + 1. D11t 
1 S :i.: < :i.: + k + l S y :Sn so that n + l :S :i: + k + n + l S 2n. This Hw;ius 
t hat ½(:i: + :,;) i S , so S satisfies LEJ\,I in Z 21111 . 

Put.l.ing t.ugct.h<:r the las t lwo n ~s 11l ts we s<:c that e (11 ) a!J(l 111 (11) ;1 grc:C' 
to wit.hill a consl.;1111. fact.o r. Hence~ \ \"l' c·,111 co11plc' Dchre11d's resu lt. ll'il h 
Thcurc1n 2 Lu fii rnish th<' fullu ,\·i ng lower lj()11nd. 
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Theorem 3 There ·is a cons I.an/, r > 0 snch I.ha/, 6 ( n) > exp ( -c(log n) 1 / '.! ) 
for all n. 

Note that o ur constrnct ion as descril>cd above only worked for odd n. 
However , for eve11 n we cau take the coustruction for n - 1 aud extend it 
with an empty row and column . This only changes the density by a fa.ct.or 
of (1 - l/n)2 = 1 + o(l). 

lu closiug, we remark that Bomga.in [4] proved that 

m(n) = O(n(log logn/ logn) ' / 2
) 

so that the highest density achieva hie by om method is O ( (log log n/ log n) 11'2 ). 

Thus the (jt1est ion of whether a constant density is achicvahle remains open . 

References 

[l] F . A. Dehrcnd , 011 sets uf integers which contai11 uo three terms in a rith­
metical progression , Prnc. Nat .. JI.earl , Sci. U.S.A. 32 , (Hl46), 331- 332. 

[2] S. R . 131a.ckh11r11 , Perfect. ha.sh l'alllilics: probabilistic m et.hods and explicit 
cons trnct io ns, .l. Com.I> . Tlu:0171 SrTics A, 02 (2000) , 5,1- 60. 

[3] S. R. 13la.ckh11ru a.11(1 P . IL \Vil<! , Optimal linear perfect )m<;h familic ~s , J. 
Com.b. Tlwo171 Series A , 83 ( l!.l!.18) , 233- 250. 

[4] J. Bo11rgai11 , On triples in a.rit.hmct,ic progression, Geom. Fune/. . Anal. 0 
( Hl!.19) , 968- 98-1. 

[5] fvI. Griit.t,miillcr , Completing p,utial la.t in S(j 11 ares with two prescribed di­
agona.1s, Preprints a.us elem Fachbereich Mathematik, Univcrsit~i.t, Rost.ock. 

[6] !VI. Griittmiillcr , Completi ng partial lat.in S(j tt ilH'S with presc ril>c~cl clia gu-
11,ds, Prcpriuts ,1.us elem fadtlwrcicl1 j\.fo U1c111;1 t.ik , U 11i vcrsi t,~i.t. Ros tuck. 

[7] I. l\ I. \Va 11 lcss , Diago11a.lly cyclic lat.i11 sq11 a rcs , s11lllnii,1,cd for p11hlical.i011. 

80 


