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Abstract
A total dominating sct of a graph G' = (V, ) is a set S of vertices
such that every vertex is adjacent Lo a vertex in S. Define td(G) as
the minimurm nurnber of edges that must be added to G Lo ensure a
partition of V into two total dominating scts of the resulting graph.
We show that il G is a tree, then £(G)/2 < 1d(G) < £(G)/2 + 1,

where £(G) is the number of leaves ol G

1 Introduction

We generally use the definitions and terminology of [2]. Let G = (V, )
be a graph. For v € V, the (open) neighborhood of v, denoted by N(v), is
defined by {ue V|uww e I7}. A sct S CV is a dominating set of G il for
every vertex u € V — S, there exists a vertex v € S such that wv € £, A
dominating sct S is a lolal dorminaling sel il cvery vertex in S is adjacent
to another vertex of S and a restrained domanaling sel if cvery vertex in
V — S is adjacent to another vertex of V — 5. Note that every graph has
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a restrained dominating set and every graph without isolates has a total
dominating set, since S = V is such a sct.

Total domination in graphs was introduced by Cockayne et al. [3] and
restrained domination by Domke et al. [4]. Both total and restrained dom-
ination arc now well studied in graph theory (sce, for example, [6, 7]).

A classical result in domination theory is that if S is a minimal domi-
nating set of a graph G without isolates, then V' — S is also a dominating
set of G. Thus, the vertex set of every graph without any isolates can
be partitioned into two dominating scts. Iowever, it is not the case that
the vertex sct of every graph can be partitioned into two total dominating
sets. IFor example, the vertex set of C cannot be partitioned into two total
dominating sets.

For a given graph G, Ieggernes and Telie [8] established that the decision
problem whether there is a partition of V(') into two total dominating sets
is NP-complete, even il &' is bipartite.

A partition of the vertex set can also be thought of as a coloring. In
particular, a partition into two total dominating sets is a 2-coloring of the
graph such that no vertex has a monochromatic (open) neighborhood. As
an example of such a 2-coloring in K,, with n > 4, take any 2-coloring with
at least two vertices of each color, while in K,, ,, with m,n > 2 take any
2-coloring where neither partite sct is monochromadtic.

Zelinka (9, 10] showed that no minimum degree is suflicient to guarantee
the existence of two total dominating scts. Consider the bipartite graph
Gk formed by taking as onc partite set a sct A of n clements, and as the
other partite sct all the k-clement subscts of A, and joining cach clement
of A to those subsets it is a member of. Then G has minimum degree
k. As obscrved in [9], if n > 2k — 1 then in any 2-coloring of A at least k
vertices must receive the same color, and these k are the neighborhood of
some vertex.

In contrast, Calkin and Dankclmann [1] and Icige et al. [5] have shown
that if the maximum degree is not too large relative to the minimum degree,
then sulliciently large minimum degree guarantees arbitrarily many disjoint
dominating scts, and hence taking union of pairs, arbitrarily many disjoint
total dominating scts.

In this paper we consider the question of how many edges must be added
to GG to ensure the partition of V into two total dominating scts in the



resulting graph. We denote this minimum number by td(G). The answer is
the same for restrained domination: in lact, a partition of V into two total
dominating scts is exactly the same as a partition of V' into two restrained
dominating scts. It is clear that (d(G') can only exist for graphs with at
least four vertices (we do not allow loops). As observed carlier, td(K,,) =0
with n > 4 and td(K,,n) =0 with m,n > 2.

We calculate td(G) when G is a cycle Cy, or a path I, on n > 41 vertices.
We show that if T is a tree with £ leaves, then £/2 < (d(T) < £/2 + 1.

2 Cycles and Paths
In this scction we caleulate td(G) when G is a cycele C), or a path 12, on
n > 1 vertices.

A useful extension in a path is a stepwise coloring which is a 2-coloring
of the vertices such that no vertex of degree 2 has a monochromatic neigh-
borhood. If one specifies the color of two consccutive vertices, then there is
a unique stepwise coloring which extends this. The same is true il one has
a path with an even number of vertices, and one specifics the colors of the

two end-vertices.

Lemma 1 (a) For the cycle C,, with no > A, d(C,) = 0 2f Aln and 1
olherunse.

(b) For the path I, onn >4 vertices, td(1%,) =1 if An and 2 olherurse.

Proovr. (a) Supposc Cy, is the cyele vy, v, ..., v, vy, I Ld(Cy) = 0, then
vertices at distance two apart must have opposite colors in the associated 2-
coloring, and so n is a multiple of 4. Conversely il n is multiple of 4, color all
vertices v; with 7 = 0,1(mod4) red and all the remaining vertices blue to
produce a 2-coloring in which no vertex has a monochromatic neighborhood.
Ience, td(C,) = 0 if and only if 4|n. It remains to show that td(C,,) < 1.

Il 7 is odd, let vy be colored red, then color the vertices in order vy, vs,

o Un_9, Vg, ..., U, 1 With the colors blue and red such that cach vertex
receives the opposite color to the previously colored vertex. Then both v,
and v, 1 arc colored red and v,, is the only vertex with a monochromatic
ncighborhood. Since vy is colored blue, no vertex will have a monochromatic
neighborhood in G + vyv,,. Tlence, Ld(Cy,) < 1.



Suppose n = 2(mod4). Color all vertices v; with 7 = 0,1 (mod4) red
and all the remaining vertices blue. Adding the edge vyv, 9 and recoloring
v, 1 with the color blue produces a 2-coloring in which no vertex has a

monochromatic ncighborhood. Tlence, td(C,,) < 1.

(b) Since a graph with two disjoint total dominating scts has minimum
degree at least 2, td(/%,) = 1 if and only il (d(C,,) = 0. Ience, by part (a),
td(F,) = 1 il and only if 1|n. Since td(’,) < td(Cy) + 1, the desired result
follows from part (a). O

3 Trees

Since a graph with two total dominating scts has minimum degree 2, in
general for T a tree with € leaves, Ld(T) = /2.

Thecorem 1 Let T be a tree of order al least A unth € leaves. Then, td(T) <
/2 + 1.

ProoF. We proceed by induction on the number £ of leaves. The base case
will be trees with at most three leaves. By Lemma 1, td(/%,) < 2 and so
the result holds when ¢ = 2.

Suppose ¢ = 3. Then there is a unique vertex v of degree more than 2
in T. Define a litnb of a tree as a maximal path starting at a leal and not

containing a vertex ol degree 3 or more.

By the Pigeonhole Principle, there is a pair of limbs whose total number
ol vertices is cven.  Call such a pair an even pair. Adding an cdge ¢
which joins the end-vertices of the even pair to T produces an odd cycle,
say Civy,vg, ..., Uk, v;. Thus k is odd. We may assume v = v, Let
Vi, Vk i 1, - -+, Un denote the path from v to the end-vertex of T + ¢. Then,
U1,VU2,. ..,V is a hamiltonian path of T + ¢.

Il k = 1(modA4), then color all vertices v, with 7 = 0,1 (mod4) red
and all the remaining vertices blue, while il & = 3 (mod4), then color all
vertices v, with 7 = 1,2(mod4) red and all the remaining vertices blue.
In both cascs none of vy, ..., v, 1 has a monochromatic n(righlmrhnud. I
k = 1(mod4), then vy is blue and v, is red, while il £ = 3 (mod41), then
vy is red and ve is blue.  Tlence neither does vy have a monochromatic

ncighborhood. Thus in both cases we can achieve a 2-coloring in which no



vertex has a monochromatic neighborhood by joining v, to a vertex of the
desired color. That is, td(T) < td(T + ¢) + 1 < 2. This completes the base

casce.

Let £ > 4 and suppose then that for all trees T with € leaves, where
0 < €, that td(T") < ¢'/2+ 1. Let. T be a tree with £ leaves.
Assumne first that £ > 5. By the Pigeonhole Principle, there are two limbs

with a total of an even number of vertices, that is, an cven pair.

We claim one can choose an cven pair whose removal does not create an
end-vertex. If the removal of an even pair would create an end-vertex, then
the pair meet at a vertex of degree 3. So il the first even pair found is not
usable, the pair meets at a vertex ol degree 3. Out of the remaining limbs of
which there are at least three, there must be another even pair. If they too
arc not usable, then they meet at a vertex ol degree 3. But then consider
three limbs: one from the Rrst pair, one [rom the sccond pair, and a limb
from necither the first nor the sccond pair. There is an even pair among
these three, and the removal of that pair cannot crcate an end-vertex.

Now, delete the chosen two limbs to yield a tree 77 with £ — 2 leaves. By
the inductive hypothesis, one can add (¢ —2)/2 + 1 edges to T" and then
2-color it such that no vertex has a monochromatic neighborhood.

Add the two limbs back to 77 and join their end-vertices. This is equiva-
lent to introducing a path vy, vg, ..., v, of even order and then identifying
cach of vy and vy, with a vertex of 77 (possibly the same one). Then
extend the 2-coloring of T Lo a stepwise coloring of the path. The end-
vertices ol the path do not have monochromatic neighborhoods even in T7;
by the construction of stepwise coloring, no interior vertex of the path has
a monochromatic neighborhood. Thus, td(T) < (d(T") +1 < £/2+ 1.

IMinally, assumc T has four limbs. Then as belore there exists an even
pair. Define T7 by removing an cven pair [rom 7'; this may create an end-
vertex. But still 77 has at most three leaves. If 77 has at least 1 vertices,
then by the inductive hypothesis td(7") < 2; the two limbs can be reinserted
as belore, and so (d(T) <2+ 1, as required.

Suppose then that 77 has at most three vertices. In that case, T has
only two leaves and so T must have [our limbs and a vertex v of degree 4
adjacent Lo at least two leaves. One could choose as limbs the two leaves
adjacent Lo v; so the only way one can be forced to a T of order 3is il T is

a star on four edges. But then coloring the central vertex and one leal red



and the remaining three leaves blue, and then joining one of the blue leaves
to cach of other three leaves, produces a 2-coloring such that no vertex has
a monochromatic neighborhood, so that td(T) < 3, as required. a

In particular, if a tree T has an odd number £ of leaves, then td(T) =
(£ 4+ 1)/2. There arc many examples of trees T with an even number £ of
leaves for which td(T) = £/2 + 1 (for example stars), and many examples
with (d(T) = €/2 (for example, the corona of any nontrivial tree, i.c, the
tree obtained by adding a pendant edge to cach vertex of a nontrivial tree).
There does not appear to be an casy characterization of trees T with an
even number £ of leaves satislying cither td(T) = €/2 or td(T) = €/2 + 1.

As an immediate consequence of Theorem 1 we have the following result.

Corollary 1 Lel I be a forest unlh nonlrinal cornponenls and wilh € leaves.

Then, td(I°) < €/2+ 1.

Proov. Let Ty, ..., T denote the components of [°. 1f k=1, then [is a
tree and the result follows from Theorem 1. Tence we may assume k > 2.
Forz=1,2,...,k, let u; and v; be two distinct leaves in 7;. Let T be the
tree obtained from /7 by adding the k& — 1 edges wv; y fore=1,...,k— 1.
Then T has € — 2(k — 1) leaves, and so by Theorem 1, d(T) < €/2 — k + 2.
Hence, td(I°) <k — 1+ td(T) < €/2+ 1. ]

As a conscquence of Corollary 1, if /7 is a [orest with nontrivial compo-
nents and with € leaves, then €/2 < (d(17) < £/2 + 1. That there exist such
forests [7 with td(l7) = €/2 4+ 1 may be scen by considering, for example,
the forest I© = m/P’ where m > 1 and & > 3 are both odd integers. Then
[¥ has € = 2mn leaves. Il td([7) = m, then there exists a set 190 of m edges
joining the 2m leaves of [ such that td(/° + 19;:) = 0. However [7+ [ is
the disjoint union of cycles at least one of which is odd (since m and k are
both odd), and so, by Lemma 1, td(/ + I2:) > 0, a contradiction. Hence,
W(l')y =1¢/2+ 1.
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