On the Nonexistence of Bent Hamiltonian Paths in the Grid Graph $P_{3} \times P_{5} \times P_{5}$

Patric R. J. Östergård*
Department of Electrical and Communications Engineering
Helsinki University of Technology
P.O. Box 3000
02015 HUT, Finland
E-mail: patric.ostergard@hut.fi

Abstract

The existence of bent Hamiltonian paths in grid graphs $P_{n_{1}} \times$ $P_{n_{2}} \times \cdots \times P_{n_{d}}$ has earlier been settled with the exception of the case $P_{3} \times P_{5} \times P_{5}$. Using a basic counting argument, that case is settled here.

A grid graph is a Cartesian product $P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{d}}$, where $P_{n_{i}}$ is the path with n_{i} vertices. W.l.o.g., we assume that $n_{i} \geq 2$. A Hamiltonian path in a graph G is a sequence of adjacent vertices that contains each vertex of G exactly once. A path in a grid graph that changes direction at every pair of successive edges is said to be bent.

Ruskey and Sawada [1] recently studied the existence of bent Hamiltonian paths in grid graphs $P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{d}}$. They left the case $P_{3} \times P_{5} \times P_{5}$ open, and conjectured that there is no bent Hamiltonian path in that graph. We shall now show that this conjecture is true. The proof is based on a refinement of the counting argument in the proof of [1, Theorem 3].

Theorem 1 There is no bent Hamiltonian path in $P_{3} \times P_{5} \times P_{5}$.
Proof. Let G be the graph $P_{3} \times P_{5} \times P_{5}$ and label the vertices of G with triples $(i, j, k), 0 \leq i \leq 2,0 \leq j, k \leq 4$. Assume that there is a bent

[^0]Hamiltonian path P in G. We count the degrees in P of the vertices $S:=\{(i, j, k): i, j, k$ even $\}$ in two ways.

Since $|S|=2 \cdot 3 \cdot 3=18$ and all but at most two of the vertices have degree 2 in the path, the sum of the degrees is at least $2 \cdot 18-2=34$. All edges incident to a vertex in S are along the paths where two of the coordinate values are fixed and even. There are 12 such paths with 5 vertices (and 4 edges) and 9 with 3 vertices (and 2 edges). As P is bent, it can contain at most 2 and 1 , respectively, of the edges of these paths, and each such edge contributes with 1 to the total degree. Hence the degree sum is at most $12 \cdot 2+9 \cdot 1=33$. Since $33<34$, we have a contradiction.

Together with the results in [1], this completes the characterization of grid graphs that have a bent Hamiltonian path.

Theorem 2 There is a bent Hamiltonian path in $P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{d}}$ iff (1) $d=1$ and $n_{1}=2$; or (2) $d=2$ and $\min \left\{n_{1}, n_{2}\right\}=2$; or (3) $d=3$ and the graph is (up to permuting the coordinates) neither $P_{3} \times P_{3} \times P_{2 k+1}$, $k \geq 1$ nor $P_{3} \times P_{5} \times P_{5}$; or (4) $d \geq 4$.

References

[1] F. Ruskey and J. Sawada, Bent Hamilton cycles in d-dimensional grid graphs, Electron. J. Combin. 10 (2003), \#R1.

[^0]: *Supported in part by the Academy of Finland under Grant No. 100500.

