Elementary Abelian Difference Families with Block Size $\leq 6^*$

Kejun Chen[†]and Zhenfu Cao Department of Computer Science Shanghai Jiao Tong University Shanghai 200030, China

Ruizhong Wei Department of Computer Science Lakehead University Thunder Bay, ON, P7B 5E1 Canada

1 Introduction

Let G be an additive abelian group of order v and let $\mathcal{F} = \{B_1, B_2, \dots, B_t\}$ be a family of k-subsets of G, where

$$B_i = \{b_{i1}, b_{i2}, \cdots, b_{ik}\}, i = 1, 2, \cdots, t.$$

Such a family is called a (v, k, λ) elementary abelian difference family (denoted as (v, k, λ) -EADF) in G if the following conditions are hold:

1. Any nonzero element of G occurs exactly λ times in the list of differences

 $b_{ij} - b_{ih}$: $1 \le i \le t$, $1 \le j \ne h \le k$;

2. For any $g \in G$,

 $B_i + g = B_i \Leftrightarrow g = 0$ for $i = 1, 2, \dots, t$,

Bulletin of the ICA, Volume 43 (2005), 80-84

^{*}Research supported by the Fund for Postdoctors grant 2003033312 and the NSF of Jiangsu Province Education Commission (KC), NSF for distinguished Young Scholars grant 60225007 (ZC), and NSERC grant 239135-01 (RW)

[†]Present address: Department of Mathematics, Yancheng Teachers College, Jiangsu 224002, China

where $B_i + g = \{b_{ij} + g : 1 \le j \le k\}$.

The members of a difference family \mathcal{F} are called *base blocks*. A (v, k, λ) -EADF is called *cyclic* when G is a cyclic group. A necessary condition for the existence of a (v, k, λ) -EADF is

 $\lambda(v-1) \equiv 0 \pmod{k(k-1)}.$

Let $\mathcal{F} = \{B_1, B_2, \dots, B_t\}$ be a family of nonempty subsets of an additive group G; the *development* of \mathcal{F} is defined by $dev\mathcal{F} = \{B_i + g : i = 1, 2, \dots, t, g \in G\}$. For other definitions in design theory, see [5]. The following theorem explains the relationship between difference families and 2-designs.

Theorem 1.1 Let G be an additive group of order v and let \mathcal{F} be a (v, k, λ) -EADF in G. Then $(G, dev\mathcal{F})$ is a 2- (v, k, λ) design having G as a group of automorphisms which is sharply transitive on the points.

In particular, a cyclic (v, k, λ) -EADF gives rise to a 2- (v, k, λ) design with an automorphism consisting of a single cycle of length v, i.e. a cyclic 2- (v, k, λ) design. As pointed out in [4], a (v, k, 1) cyclic difference family leads to a (v, k, 1) optimal optical orthogonal code.

When $\lambda = 1$, the known results about EADF with block size $k \leq 6$ can be summarized as follows:

Theorem 1.2 ([1, 2, 3, 6, 8, 9])

- 1. For any prime power $q \equiv 1 \pmod{6}$, there exists a (q, 3, 1)-EADF.
- 2. For any prime power $q \equiv 1 \pmod{12}$, there exists a (q, 4, 1)-EADF.
- 3. For any prime power $q \equiv 1 \pmod{20}$, there exists a (q, 5, 1)-EADF.
- 4. For any prime power $q \equiv 1 \pmod{30}$, there exists a (q, 6, 1)-EADF with exception of q = 61.

For general λ , fundamental results on the existence of (q, k, λ) -EADF have been given by Wilson in [9], which can be summarized as follows.

Theorem 1.3 ([9]) Let $q \ge k$ be a prime power, k and λ be integers such that $\lambda(q-1) \equiv 0 \pmod{k(k-1)}$. Then there exists a (q,k,λ) -EADF if one of the following conditions is satisfied.

1. $q > (\frac{k(k-1)}{2})^{k(k-1)};$ 2. 2λ is a multiple of either k or k-1; or 3. $\lambda \ge k(k-1).$

In this note, we observe that Theorems 1.3 can be used to solve most cases of the existence of EADFs with $\lambda > 1$ from the existence of EADFs with $\lambda = 1$. By constructing some small difference sets, the following result can be easily obtained.

Theorem 1.4 Let q be a prime power and $\lambda > 1$ be a positive integer. Then for each $k \in \{3, 4, 5, 6\}$ there exists a (q, k, λ) -EADF in GF(q) if and only if $\lambda(q-1) \equiv 0 \pmod{k(k-1)}$.

For general background on difference families and related block designs, see [5].

2 Proof of Theorem 1.4

The following result is immediate.

Lemma 2.1 If there exists a (q, k, λ_1) -EADF and a (q, k, λ_2) -EADF in GF(q), then there exists a $(q, k, s\lambda_1 + t\lambda_2)$ -EADF in GF(q), for any positive integers s and t.

The following lemma follows from Theorem 1.3.2 and Theorem 1.2.

Lemma 2.2 Let $\lambda > 1$ be a given positive integer. Then there exists a $(q, 3, \lambda)$ -EADF in GF(q) for any prime power q such that $\lambda(q - 1) \equiv 0 \pmod{6}$.

Note that if $gcd(\lambda, k(k-1)) = 1$, then $\lambda(q-1) \equiv 0 \pmod{k(k-1)}$ if and only if $q-1 \equiv 0 \pmod{k(k-1)}$. In this case, the existence of (q, k, λ) -EADF in GF(q) follows from the existence of (q, k, 1)-EADF in GF(q) by Lemma 2.3. So, by Theorems 1.2, we have the following.

Theorem 2.3 Let $k \in \{4, 5, 6\}$ and $\lambda > 1$ be a given positive integer. If $gcd(\lambda, k(k-1)) = 1$, then there exists a (q, k, λ) -EADF in GF(q) for any prime power q such that $\lambda(q-1) \equiv 0 \pmod{k(k-1)}$ with possible exception of (q, k) = (61, 6). **Lemma 2.4** Let $\lambda > 1$ be a given positive integer. Then there exists a $(q, 4, \lambda)$ -EADF in GF(q) for any prime power q such that $\lambda(q - 1) \equiv 0 \pmod{12}$.

Proof If $\lambda \ge 12$, then by Theorem 1.3.3, there exists a $(q, 4, \lambda)$ -EADF in GF(q). If $\lambda \in \{2, 3, 4, 6, 8, 9, 10\}$, then 2λ is a multiple of 4 or 3. So, by Theorem 1.3.2, there exists a $(q, 4, \lambda)$ -EADF in GF(q). If $\lambda \in \{5, 7, 11\}$, then we have $gcd(\lambda, 12) = 1$. By Theorem 2.3 there exists a $(q, 4, \lambda)$ -EADF in GF(q).

By a similar argument we have the following lemma.

Lemma 2.5 Let $\lambda > 1$ be a given positive integer. Then there exists a $(q, 5, \lambda)$ difference family in GF(q) for any prime power q such that $\lambda(q - 1) \equiv 0 \pmod{20}$.

By Theorem 1.2 we know that there does not exist a (61, 6, 1) difference family in GF(61). However we have the following constructions (see [5, pp. 273 and 301].

Lemma 2.6 There exist a (61, 6, 2)-EADF in GF(61) and a $(2^4, 6, 2)$ -EADF in GF(2^4).

To prove Lemma 2.8, we need the following lemma.

Lemma 2.7 [9] If there exists a (q, k, λ) -EADF is GF(q), then there exists a (q^n, k, λ) -EADF in GF(q) for any $n \ge 1$.

Lemma 2.8 Let $\lambda \geq 2$ be a given positive integer. Then there exists a $(q, 6, \lambda)$ -EADF in GF(q) for any prime power q such that $\lambda(q - 1) \equiv 0 \pmod{30}$.

Proof For (q, 6, 2)-EADF, the necessary condition is $q \equiv 1 \pmod{15}$. If prime power $q \equiv 16 \pmod{30}$, then q must be the form of 2^{4n} with $n \geq 1$. So the conclusion follows from Lemmas 2.7 and 2.6.

If $\lambda \geq 30$, then by Theorem 1.3.3, there exists a $(q, 6, \lambda)$ -EADF in GF(q).

If $\lambda \in \{3s : 1 \le s \le 9\} \cup \{5t : 1 \le t \le 5\}$, then 2λ is a multiple of 6 or 5. By Theorem 1.3.2, there exists a $(q, 6, \lambda)$ -EADF in GF(q).

If $\lambda \in M = \{7, 11, 13, 17, 19, 23, 29\}$, then $gcd(\lambda, 30) = 1$. By Theorem 2.3, there exists a $(q, 6, \lambda)$ -EADF in GF(q), where $q \neq 61$. For q = 61, let $\lambda_1 = 2, \lambda_2 = 3$. Then for each $\lambda \in M$, we can write $\lambda = s\lambda_1 + t\lambda_2$ with $s \in \{2, 4, 5, 7, 8, 10, 13\}$ and t = 1. From the above proof we know that there exists a (61, 6, 3)-EADF in GF(61). Also, there exists a (61, 6, 2)-EADF in GF(61). So, by Lemma 2.1, there exists a $(61, 6, \lambda)$ -EADF in GF(61).

If $\lambda \in E = \{4, 8, 14, 16, 22, 26, 28\}$, then it is easy to see that $\lambda(q-1) \equiv 0 \pmod{30}$ if and only if $q \equiv 1 \pmod{15}$. Since there exists a (q, 6, 2)-EADF in GF(q), there exists a $(q, 6, \lambda)$ -EADF in GF(q).

Combining all of the lemmas in this section, we complete the proof of Theorem 1.4.

References

- R. C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics 9 (1939), 353-399.
- [2] M. Buratti, Constructions for (q, k, 1) difference families with q a prime power and k = 4, 5, Discrete Math. 138 (1995), 169-175.
- [3] M. Buratti, Improving two theorems of Bose on difference families, J. Combin. Designs 3 (1995), 15-24.
- [4] M. Buratti, A powerful method for constructing difference families and optimal optical orthogonal codes, *Designs, Codes and Cryptography* 5 (1995), 13-25.
- [5] C. J. Colbourn and J. H. Dinitz (eds.), CRC Handbook of Combinatorial Designs, CRC Press, New York, 1996.
- [6] K. Chen and L. Zhu, Existence of (q, k, 1) difference families with q a prime power and k = 4, 5, J. Combin. Designs, 7 (1999), 21-30.
- [7] K. Chen and L. Zhu, Existence of (q, 6, 1) difference families with q a prime power, *Designs, Codes and Cryptography* **15** (1998), 167-173.
- [8] E. Netto, Zur theorie der tripelsysteme, Math. Ann. 42 (1893), 143-152.
- [9] R. M. Wilson, Cyclotomy and difference families in elementary abelian groups, J. Number Theory 4 (1972), 17-47.