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1 Introduction

Let G be an additive abelian group of order v and let F = {By, Bg,---, B}
be a family of k-subsets of G, where

B; = {bi1,big, -, bik}, 1= 1,2, -, L.

Such a family is called a (v, k, A) elementary abelian difference family (de-
noted as (v, k, \)-EADF) in G if the following conditions are hold:

1. Any nonzero element of G occurs exactly A times in the list of differ-

ences
bij —bin:1<i<t, 1<j#h<k;

2. For any g € G,

Bi+!]=Bi<=>g=0f0r1::1’2,...7t,
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where B; + g = {bi; +g:1 < j < k}.

The members of a difference family F are called base blocks. A (v, k, \)-
EADF is called cyclic when G is a cyclic group. A necessary condition for
the existence of a (v, k, A\)-EADF is

Av—1)=0 (mod k(k —1)).

Let F = {B, By, - -, B:} be a family of nonempty subsets of an additive
group G; the development of F is defined by devF = {B; +g : i =
1,2,---,t, g € G}. For other definitions in design theory, see [5]. The
following theorem explains the relationship between difference families and
2-designs.

Theorem 1.1 Let G be an additive group of order v and let F be a (v, k, A)-
FADF in G. Then (G,devF) is a 2-(v, k, A) design having G as a group of

autornorphisns which is sharply transilive on the points.

In particular, a cyclic (v, k, \)-EADI" gives rise to a 2-(v, k, \) design
with an automorphism consisting of a single cycle of length v, i.e. a cyclic
2-(v, k, ) design. As pointed out in [4], a (v, k, 1) cyclic difference family
leads to a (v, k, 1) optimal optical orthogonal code.

When A = 1, the known results about EADF with block size k < 6 can
be summarized as follows:

Theorem 1.2 ([1, 2, 3, 6, 8, 9))

1. For any prime power g=1 (mod 6), there exists a (q,3,1)-EADF.
2. For any prime power g =1 (mod 12), there exists a (q,4,1)-FADF.
3. For any prime power g =1 (mod 20), there ezists a (¢q,5,1)-EADF.
4. For any prime power g =1 (mod 30), there ezists a (q,6,1)-FADF

with exceplion of q = 61.

For general A, fundamental results on the existence of (g, k, A\)-EADF
have been given by Wilson in [9], which can be summarized as follows.

Theorem 1.3 ([9]) Let q > k be a prime power, k and A be integers such
that M(q — 1) =0 (mod k(k — 1)). Then there exists a (q,k, \)-IFADI of

one of the following condilrons s salisfied.
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1. ¢> (k(k 1))k(k71),.
2. 2 is a multiple of either k or k — 1; or
3 AN>k(k-1).

In this note, we observe that Theorems 1.3 can be used to solve most
cases of the existence of EADFs with A > 1 from the existence of EADFs
with A = 1. By constructing some small difference sets, the following result
can be easily obtained.

Theorem 1.4 Let q be a prime power and A\ > 1 be a positive integer.
Then for each k € {3,4,5,6} there exists a (q,k,\)-EADF in GF(q) if and
only if N(g—1)=0 (mod k(k —1)).

For general background on difference families and related block designs,
sce [5].

2 Proof of Theorem 1.4
The following result is immediate.

Lemma 2.1 If there exists a (¢, k, \1)-EADF and a (q,k, A\2)-EADF in
GF(q), then there exists a (q, k, s A1 +tA2)-EADF in GF(q), for any positive
integers s and t.

The following lemma follows from Theorem 1.3.2 and Theorem 1.2.

Lemma 2.2 Let A\ > 1 be a given positive integer. Then there erists a
(q,3,\)-EADF in GI'(q) for any prime power q such that A\(q — 1) =0
(mod 6).

Note that if ged(M, k(k — 1)) = 1, then A(¢g — 1) =0 (mod k(k — 1))
if and only if g— 1 = 0 (mod k(k — 1)). In this case, the existence of
(q,k,\)-EADF in GF(q) follows from the existence of (g,k,1)-EADF in
CF(q) by Lemma 2.3. So, by Theorems 1.2, we have the following.

Theorem 2.3 Let k € {4,5,6} and A > 1 be a given positive integer.
If ged(A, k(k — 1)) = 1, then there exists a (g,k, N\)-EADF in GF(q) for
any prime power q such that A(q — 1) =0 (mod k(k — 1)) with possible
cxeeplion of (q,k) = (61,6).
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Lemma 2.4 Let A\ > 1 be a gwen positive integer. Then there exists a
(g, 4, \)-EADF in GF(q) for any prime power q such that A(g — 1) = 0
(mod 12).

Proof If A > 12, then by Theorem 1.3.3, there exists a (g,4, A\)-EADF in
GF(q). If X € {2,3,4,6,8,9,10}, then 2X is a multiple of 4 or 3. So, by
Theorem 1.3.2, there exists a (q,4,A)-EADF in GF(q). If A € {5,7,11},
then we have ged(\, 12) = 1. By Theorem 2.3 there exists a (q,4, \)-EADF
in GF(q). 1]

By a similar argument we have the following lemma.

Lemma 2.5 Let A\ > 1 be a given positive integer. Then there exists a
(g,5, ) difference family in GF(q) for any prime power q such that A\(q —
1)=0 (mod 20).

By Theorem 1.2 we know that there does not exist a (61, 6, 1) difference
family in GF(61). However we have the following constructions (see [5, pp.
273 and 301].

Lemma 2.6 There exist a (61,6,2)-EADF in GF(61) and a (2%,6,2)-
EADF in GI°(2%).

To prove Lemma 2.8, we need the following lemma.

Lemma 2.7 (9] If there exists a (q, k, A)-EADF is GF'(q), then there exists
a (@™, k,\)-EADF in GF(q) for anyn > 1.

Lemma 2.8 Let A > 2 be a given positive integer. Then there caisls a
(4,6, \)-EADF i GI°(q) for any prime power q such that AN(g — 1) = 0
(mod 30).

Proof I'or (q,6,2)-I2ADI", the necessary condition is ¢ = 1 (mod 15). If
prime power ¢ = 16  (mod 30), then g must be the form of 2™ with n > 1.
So the conclusion follows from Lemmas 2.7 and 2.6.

If A > 30, then by Theorem 1.3.3, there exists a (g, 6, A\)-IEADF in
GF(q).

IfAe{3s: 1 <s<9uU{bt: 1 <t <5}, then 2) is a multiple of 6 or
5. By Theorem 1.3.2, there exists a (q,6, A)-EADF in GF(q).
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IfAxeM={7,11,13,17,19, 23,29}, then ged()\, 30) = 1. By Theorem
2.3, there exists a (q, 6, A\)-EADF in GF(q), where q # 61. For q = 61, let
A1 =2, A = 3. Then for each A € M, we can write A = s\; + t\y with
s €{2,4,5,7,8,10,13} and ¢t = 1. From the above proof we know that there
exists a (61,6, 3)-EADF in GF(61). Also, there exists a (61, 6,2)-EADF in
G I'(61). So, by Lemma 2.1, there exists a (61,6, \)-EADF in GF(61).

IfA e F={4,8,14, 16,22, 26, 28}, then it is easy to see that A(g—1) =0
(mod 30)if andonly ifg =1 (mod 15). Since there exists a (g, 6, 2)-EADF
in GF(q), there exists a (q, 6, A\)-EADF in GF(q). 0

Combining all of the lermmas in this section, we complete the proof of
Theorem 1.4.
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