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Abstract 

Suppose that we know t he vertex degrees in one part of a bipart ite 

graph G. We compute the smallest number of matchings of size m 

that G can have (provided there is at least one) . In fact, our results 

a lso app ly to the more general problem of count ing matchings in 

matroids. 

1 Introduction 

Let G be a bipartite graph with a bipartition V(G) = X U Y. Let X := 

{xi, ... ,xn} . Let d; := d(x;) be t he degree of x;. Here we solve the 

following pr oblem. 

Problem 1 Given d := (di, ... , dn) and an integer m ~ n, what is the 

smallest num ber of matchings of size m that G can have, provided there is 

at least one m -matching? 

Ostr and [4] (see Hwa ng [2) for another proof) has settled t he case 

m = n when the matchings to count must cont ain every ver tex of X. 

McCart hy [3) genera lized Ostrand's resul ts to t he setting where we have a 
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matroid on Y and we count the number of independent n-matchings, that 

is, we additionally require that the set of matched vertices of Y is an inde­

pendent set. Our bound on partial matchings holds also for matroids, see 

Section 4. 

One motivation behind this study is that sometimes the existence of 

a certain combinatorial object can be proved by applying Hall's Marriage 

Theorem (see [l, Chapter VIII.2] for some examples). Thus a lower bound 

in Problem 1 should give a quantitative strengthening of these results 

wherein we deduce a lower bound on the number of the constructed objects. 

2 Notation and Preliminary Remarks 

When dealing with matroids we will follow the terminology in (5]. Given 

a matroid M on Y, let Im(G, M) denote the number of independent m­

matchings. Rado's theorem [6) implies that (G, M) has an independent 

m-matching if and only if 

\fA ~ X p(r(A)) 2 IAI - n + m, (1) 

where pis the rank function of Mand r(A) := {y : :lx E A { x, y} E E( G) }. 

Any set A achieving the bound in (1) is called critical. It is easy to 

see that for any critical A every independent m-matching contains p(r(A)) 
vertices from r(A) (the largest possible number) as well as all vertices in 

X \ A but does not connect these two sets. 

If M is the free matroid (that is, p(A) = IAI for all A ~ Y), then (1) 

gives the well-known defect version of Hall's Marriage Theorem. 

Note that m-matchings in G can be equivalently considered as systems 

of m distinct representatives of the set system (r(x1), . . . , r(xn)). However, 

in this paper we will use the graph version. 

3 Construction and Its Properties 

First of all, we can assume without loss of generality that each di is positive 

( otherwise we remove x;) and that d 1 :$ · · · :$ dn. 

To construct our graph H = Hm(d) we have to specify sets r(xi) - Let 

us assume that Y is a sufficiently large initial segment of positive integers. 
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(In fact, our construction gives IYI = max(m, dn), the smallest possible 

value.) For i E (n) define 

r(x;) := { [d;], 
[d; - 1) U {i - n + m}, 

if d; ~ i - n + m, 
otherwise. 

Note that H contains a matching of size m: consider the edges { x;, i-n+m} 

for i E [n - m + 1, n]. 
Let us state a few properties of H which we will need later. Let X; := 

{x1, .. . ,x;}. 

Lemma 2 I/we haved; $ i-n+mforsomei, thenI'(X;) = [i-n+m]. 

(In particular, X; is critical and H has no matching of size m + l.} 

Proof. For any j $ i we have di $ d; $ i - n + m, so I'(xj) ~ [i - n + m], 

which shows that I'(X;) ~ [i - n + m]. The converse inclusion follows by 

observing that j E (m) is always connected to Xj + n - m · I 

Lemma 2 allows us to compute /m(d), the number ofm-matchings in H. 

If d; $ i - n + m for some i, then 

1 n 
/,.,.(d) = (n _ m)! !! max(d; + n - m - i + 1, 1) . (2) 

Indeed, if we add n - m new vertices to Y which are connected to every­
thing in X, then, in view of Lemma 2, the new graph H' has precisely 
(n - m)! • /,.,.(d) matchings of size n. Note that 

and for this graph it is easy to compute the number of n-matchings (alter­

natively, see Ostrand [4)), giving (2). 

If d; > i-n+m for all i, then we have r(x;) ~ r(xi) for any i < j and 

the number of m-matchings can be expressed as 

m 

IT max(d.,, - i + 1, 0) . (3) 

It seems that there is no nice formula, like (2), for /m(d) in this case. 

In the remainder of this paper, when we write /m(d) we will mean that 

we remove any zeros from d, reorder d to be non-decreasing and then use 

the formulas (2) and (3). 
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Lemma 3 The function fm(d) is non-decreasing with respect to each ar­

gument di. 

Proof. It is enough to prove the claim when we increase some di by 1: 

d: = d; + 1 while all other di = di . We can assume that either i = n 

or di < d;+i• When we analyze the corresponding graphs, Hand H', we 

see that H' is obtained from H by adding one more edge. Of course, this 

cannot decrease the number of m-matchings. I 

4 Lower Bound 

In this section the term 'matching' implicitly means 'an independent match­

ing.' 

Theorem 4 Let G be a bipartite graph with a bipartition V(G) =XU Y . 

Let M be a matroid on Y with rank function p. Let X := { x 1, ... , Xn} and 

di:= p(r(xi)). Assume 1 S d 1 S · · · :S dn. 

If Im(G, M) 2:: 1, then 

(4) 

Proof. We use induction on n with the case n = 1 being trivially true. Let 

n ~ 2. The proof splits into two cases. Recall that a set A ~ X is called 

critical if we have equality in (1). 

Case 1 There is a critical A~ X (possibly A= X). 

This means that (G, M) admits no (m + 1)-matching. Let G' be ob­

tained from G by adding n - m new vertices to Y which are connected to 

everything in X . Let the matroid M' be the matroid union of M and the 

free matroid on the new vertices; its rank function is 

p'(B) = p(B n Y) + IB \ YI . 

Clearly, I,.(G, M) = Im(G', M')/(n-m)!. Now, the result of McCarthy [3], 

when applied to (G', M'), settles this case. 

Case 2 There is no critical set. 
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Let us bound N 1 , the number of m-matchings containing x 1. -We can 

choose a non-loop y E r(x 1) in at least d1 possible ways. 

Let us show that the pair (G', M'), where G' := G - xi -y and M' := 

M/y, has an (m - !)-matching. If this is not true, then by (1) we can find 

A~ X \ {xi} with 

p' (r G' (A)) ~ I A I - ( n - 1) + ( m - 1) - 1 = I A I - n + m - 1. 

This implies that A is critical with respect to ( G, M), a contradiction. 

Clearly, p'(r0 ,(xi))?: d; - 1. By the monotonicity of fm and induction 

on n, we have 

Ni?: difm- i(d2 -1, . .. ,dn - 1). 

To bound N2, the number ofm-matchings omitting xi, let G' := G-xi. 

Similarly to above, one can show t hat ( G' , M) has an m-matching. Thus 

To complete the proof, it is enough to prove that 

If the value di occurs in d at most d 1 + n - m times, then in Hm(d) 
we have r(xi) ~ r(xi) for any i. Splitting m-matchings of Hm(d) into two 

groups according to whether or not they contain xi we conclude that (5) 

holds. (It is an equality, in fact.) 

So, suppose that di appears j > di + n - m times in d: d1 = ... = dj. 

Here we deduce first that 

(6) 

where d' consists of d1 - 1 repeated d1 + n - m - 1 times, then d1 repeated 

j - d1 - n + m times, followed by dj+l -1, .. . ,dn -1. But in Hm- i(d' ) 
t he vertices of degree d1 - 1 form a critical set by Lemma 2 so they claim 

the whole of [d1 - 1] in any (m - ! )-matching. The graph Hm- i(d' ) is 

obtained from H m- i (d2 - 1, .. . , dn - 1) by adding extra edges connecting 

[d1 - 1] ~ Y to vertices in X of degree d1 - 1. This shows that 

and implies (5) by (6), finishing the proof. I 
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5 Concluding Remarks 

Observe that Problem 1 can also be solved if we omit the condition that G 

contains an m-matching. Indeed, it is straightforward to deduce from (1) 

that the restrictions on d, n force an m-matching if and only if di ~ i-n+m 

for each i E [n]. 

The question of maximizing the number of m-matchings is trivial with 

the extremal construction being the disjoint union of stars K 1 ,d,. (While 

for matroids t here is no upper bound at all.) 
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