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Abstract. For two given graphs G and H, the Ramsey number 
R( G, H) is the smallest positive integer N such that for every graph 
F of order N the following holds: either F contains G as a subgraph 
or the complement of F contains H as a subgraph. In this paper, 
we determine the Ramsey number R(F1, K4), where Fi is the graph 
obtained from l disjoint triangles by identifying precisely one vertex 
of every triangle (Fi is the join of K1 and lK2) . It is known that 

2 
for fixed l, R(Fi,Kn) ~ (1 +o(1)) 1~n(n ➔ oo) . We prove that 
R(F,,K,.) = 2l(n -1) + 1 for n = 4 and l ~ 3. We conjectuxe that 
R(F,,K,.) = 2l(n -1) + 1 for l ~ n ~ 5. 
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1 Introduction 

Throughout the paper, all graphs are finite and simple. Let G be such a 
graph. We write V(G) or V for the vertex set of G and E(G) or E for 
the edge set of G. The graph G is the complement of the graph G, i.e., 
the graph obtained from the complete graph KIV(G)I on IV(G)I vertices by 
deleting the edges of G. 

The graph H = (V', E') is a subgraph of G = (V, E) if V' ~ V and 
E' ~ E . For any nonempty subset SC V, the induced subgraph by Sis the 
maximal subgraph of G with vertex set S; it is denoted by G[S]. 
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If e = { u, v} E E (in short, e = uv), then u is called adjacent to v, and 
u and v are called neighbors. For x E V and BCV, define NB(x) = {y E 

B: xy EE} and NB[x] = NB(x) U {x} . 
We denote by Kn the complete graph on n vertices. A fan Fl is the graph 

on 2l + 1 vertices obtained from l disjoint triangles (K3 's) by identifying 
precisely one vertex of every triangle (Ft is the join of K 1 and lK2)- By 
Sn we denote a star on n vertices (i.e., Sn = Ki ,n- l , the join of K 1 and 
(n - l)K1) -

Given two graphs G and H, the Ramsey number R (G , H) is defined 
as the smallest natural number N such that every graph F on N vertices 
satisfies the following condition: F contains G as a subgraph or F contains 
H as a subgraph. 

We will also use the short notations H ~ F , F ;;::_, H , H <;?; F , and F ~ H 
to denote that His (not) a subgraph of F, with the obvious meanings. 

Chvatal and Harary [2] studied Ramsey numbers for graphs and es­
tablished the lower bound: R (G , H ) 2: (x(G) - l )(c(H ) - 1) + 1, where 
x(G) is the chromatic number of G and c(H ) is the number of vertices 
of the largest component of H . More specifically, Chvatal [l] showed that 
R (Krn, Tn ) = (m - l)(n - 1) + 1 where Tn is a tree on n vertices. Radzis­
zowski and Xia [6] gave a simple and unified method to establish the Ram­
sey number R(G, K 3), where G is either a path, a cycle or a wheel. Li 
and Rousseau [5] used probabilistic arguments to show that R (F,, , K n) :::; 
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(1 + o(l)) l~n (n -too) . Gupta et al. (3] showed R(F,, , K 3) = 4l + 1 for any 
integer l 2'. 2. For other interesting results see a survey paper of [7] . In this 
paper, we study the first open case for fans versus larger complete graphs, 
namely R(Fi, K4). 

2 Main Result 

The aim of this paper is t o determine the Ramsey number of a fan Fi with 
2l + 1 vertices versus Kn for n = 4. We will show that R (F), K 4 ) = 6l + l 
for any integer l 2'. 3. 

For the lower bound, consider the graph G = (n - l )K 21. Clearly, G 
has 2l(n - 1) vertices and it contains no fan F1, whereas its complement 
contains no Kn. Thus R(F1, Kn) 2'. 2l(n - 1) + l. 

It is known that R(F1 , K 4 ) = R(K3 , K 4 ) = 9. Hendry [4] found the 
Ramsey number R(F2, K4) . Applying the above lower bound we get R (F3, K 4 ) = 
19. 

To prove the upper bound for n = 4 we will use t he result on trees due 
to Chvatal [l) as well as the result on F1 versus K 3 from [3) as follows. 

Theorem 1. For any integer l 2'. 4, R (F1, K 4 ) = 6l + l. 
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Proof. Let G be a graph on 61 + 1 vertices containing no fan F,, . We will show 
that G contains a K 4 • Suppose to the contrary that G contains no K 4 • Since 
R(S21+ 1 , K4) = 6l+l by [l], G must contain an S21+1 . Let Xo be the vertex of 
highest degree in an S 21+1 and denote by X = { x 1 , x 2 , .. . , x 21 _ 1, x 2 i} the set 
of neighbors of x 0 in S21+1- Since G contains no K 4 , there exists at least one 
edge in any subgraph G[X1] of G induced by X 1 ~ X with IX1 I = 4. Thus , 
G[X U { x0 }] contains a fan F,, _1 . Without loss of generality, let XiXi+1 E 

E(G) for each i = 1, 3, 5, .. . , 21 - 3. Then, since F1 CZ, G, x21-iX21 ¢ E(G) . 
Let B = V(G)\(X U {xo}). We have INB(xo)I ~ 1, since otherwise con­
sidering x21-i,X21 and two vertices from NB(x0 ) we obtain G 2 F,, . Let 
D = B\NB(x0 ) . We also obtain G[D] R. K 3 , otherwise combined with x0 

we find a K4 in G. Note that IDI ~ 41 - 1. Since R(F1, K a) = 41 + 1 for 
l ~ 2 by the result in [3], we have G[D] 2 F,, _1 . Let y0 denote the vertex of 
highest degree in an F,,_ 1 and Y = {y1 , Y2, ... , y21-2 } the set of neighbors of 
Yo in F,, _1 . Next, let P = D\(Y U {y0 } ). We obtain that INp(yo)I ~ 2 since 
otherwise G[D] 2 Ka. Let Q = P\Np(y0 ) . Now, G[Q] is a complete graph ; 
otherwise vertices q1,q2 E Q and y0 for q1q2 ¢. E(G) form a K3 in G[D] . 
Since IQI = IBI-INB(xo)l-(21-1)-INP(Yo)I = 21+1-INB(xo)I-INP(Yo)I, 
depending on the neighborhoods of x 0 and Yo we find a complete graph G[Q] 
on at least 21 - 2 and at most 21 + 1 vertices. We distinguish the following 
two cases and subcases. 

Case 1. INB(xo)I = 0. 

For this case we distinguish the following three subcases. 

Subcase 1.1. INP(Yo)I = 0. 
We obtain IQI = 21 + 1. This implies G[Q] = K21+ 1 2 F1 , a contradict ion . 

Subcase 1.2. INP(Yo)I = 1. 
Let p E Np(yo) - We obtain G[Q] = 2l. To avoid an F,, ~ G, every vertex in 
V(G)\Q has at most one neighbor in Q. We claim that G[YU{y0 ,p}] = K21-

Suppose to the contrary that some distinct Yi, Yi E YU{p} are nonadjacent. 
Then these two vertices together with a common nonneighbor in Q ( exist­
ing by the previous statement) induce a K3 in G[D] . Both of {x21-i , x2i} 
have at most one neighbor in Q and in YU {y0 ,p}; otherwise an F1 in 
G is immediate. Now it is easy to obtain a vertex q E Q and a vertex 
y E YU {Yo,P} such that {x21-i,X21,q,y} is an independent set, contra­
dicting that GR. K4. 

Subcase 1.3. INP(Yo)I = 2. 
Let P1,P2 E Np(yo) . It is clear that P1 is nonadjacent to P2 and G[Q] = 
K21 - 1 - Since G[D] R. K3, for each y E Y is adjacent to one of P1,P2- If 
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Ny(p1 ) n Ny(J:>i) f 0, then we easily obtain an F1 in G. Hence Ny(p1 ) n 
Ny(p,i) = 0. Since G[D] 1 K3, INQ(pi) I 2: 4 for some i E {1 , 2} . Assume 
Q' = {q1,qz,q3,q4} ~ NQ(J:>i) . We obtain that p1 is adjacent to at most 
one vertex in Q' since otherwise G[P] 2 F1 with q is the center for some 
q E Q'. 

B p Q 

Fig. 1. The proof of Theorem 1 Subcase 1.3. 

We claim that Ny (p,i) = 0. Suppose to the contrary y' E Ny (p2 ). Since 
G contains no Fl, y' is nonadjacent to any vertex in Q'. Since p 1 is adjacent 
to at most one vertex in Q' and Ny(pi) n Ny(p2 ) = 0, we obtain a K 3 in 
G[D] formed by vertices p 1 , y' and qi for some i E {1 , 2, 3, 4}. 

The previous claim implies that p1 is adjacent to all vertices in Y. If 
y z (/. E(G) for y, z E Y, then similarly we have that {y, z, p 2 } is an in­
dependent set in G[D] . This implies G[Y U {p1 , Yo}] = K21- Clearly all 
a E V ( G) \ (Y U {P1 , Yo}) have at most one neighbor in t his K 21, since oth­
erwise G 2 Fi - See Figure 1. Because Q' ~ NQ(p2 ) and G (Q] = K 2 , _ 1 , 

for each vertex in V ( G) \ ( Q' U {P2}) are adjacent to at most one vertex 
in Q' , since otherwise G 2 F1 with some q E Q' as its center. Now we can 
find four vert ices which are independent in G, namely { x 2, _ 1 , x 21, q* , y*} 
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for some suitable q• E Q' and y• E YU {p1, y0 }, a contradiction. 

Case 2. INB(xo)I = l. 

Let b E NB ( xo). Then by obvious arguments, the set { b, x21-i, x2i} is an 
independent set of vertices in G, and every other vertex is adjacent to at 
least one of them. We again distinguish three subcases. 

Subcase 2.1. INp(yo)I = 0. 
We obtain G[Q] = K 21. At least one of {b, x2i-i, x2i} has at least two neigh­
bors in Q, since otherwise G 2 K 4 . This yields an Fi in G, a contradict ion. 

Subcase 2.2. INp(yo)I = l. 
Letp E Np(yo) -We obtain G[Q] = K2i - 1. As in the previous case, INq (x)f?: 
3forsomex E {b,x21- 1,x2i}. Suppose Qi= Nq(x21 - d with IQ1I?: 3. Now , 
let y• =YU {P,Yo} and so IY*I ?: 8. We claim that G[Y*] = K2i - Sup­
pose to the contrary that yz (/. E(G) for some y, z E y•. We know that 
INq 1 (y)I ~ 1, since otherwise G[Q U {x2i- i, y }] 2 Fi with some q E Nq, (y) 
as its center; similarly, JNQ1 (z)I ~ l. But then {y,z,t} induces a K 3 in 
G[D] for some t E Q1, a contradiction. Since G contains no K 4 , at least 
one of {x2,_ 1, x2i, b} has at least two neighbors in G[Y*], and we obtain an 
Fi in G, a contradiction. 

Subcase 2.3. INP(Yo)I = 2. 
As in Subcase 1.3, let p1 ,P2 E Np(y0 ). We obtain that PI is nonadjacent 
to P2 and G[Q] = K2i - 2. Since G[D] R. K 3 , every vertex of Y is adjacent 
to p1 or P2· We first observe that this implies that Nv(pI) n Ny(p2 ) = 
0; otherwise, using the previous statement we easily obtain an Fi in G. 
Since G[D] R. K 3 , we also obtain that jNq(pi)I ?: 3 for some i E {l, 2} . 
Let NQ(P2) 2 Q2 with Q2 = {q1,q2,q3 }. We claim that G[Y u {yo}] = 
K 2i-i- Suppose to the contrary that t 1zI (/. E(G) for some t1, z1 E Y. 
Consider t2, z2 E Y such that tit2, z1z2 E E(G). As we argued before, each 
of tI,t2,z1,z2 is adjacent to exactly one of PI,P2· If Pi is adjacent to only 
one of tI, t2 , then PJ-i is adjacent to the other, and an Fi is immediate. We 
get that one of PI, P2 is adjacent to t I , t2 and the other to z1 , z2 . By similar 
arguments, no t E { tI, t2} is adjacent to any vertex in { z1, z2}. Suppose 
without loss of generality that PIZi,Piz2,P2ti,P2t2 E E(G) . Each vertex of 
Q2 is adjacent to all vertices in {t1,t2} or in {z1,z2}; otherwise qt,qz r/:. 
E(G) for some q E Q2, t E {t1, t2} and z E {z1, z2}, and so G[D] 2 K3. 
We obtain an Fi in G from Q, P2 and t1 , t2 (or z1, z2), a contradiction. 
This proves our claim that G[Y U {y0 }] = K2i-I - Our next claim is that 
Nv(P2) = 0. Suppose to the contrary that Nv(P2) -::p 0. If 1Nv(p1 )1 ?: 1, 
then we obtain from Y,y0 ,p1 ,P2 that G contains an Fi- So Ny(pi) = 0 
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and Ny(p,i) = Y since Ny(P1 ) and Ny(P2) partition Y . This implies that 
G[Y U Q2 U {P2}] contains an FL a contradiction. Thus Ny(y2 ) = 0, and 
hence Ny(J>i) = Y since Ny(Pi) and Ny(P2) partition Y. We get that 
G[Y U {Yo,pi}] = K21 . See Figure 2. At least one of {b, x21- 1 ,x2i} has at 
least two neighbors in YU {y0 ,pi}; otherwise we have K 4 ~ G. Now clearly 
we obtain an F1 in G, our final contradiction. ■ 

S 21+1 

B p Q 

Fig. 2. The proof of Theorem 1 Subcase 2.3. 

3 Conjecture 

To conclude the paper, we conjecture t hat R (F,, , Kn) = 2l (n - 1) + 1, if 
l ~ n ~ 5. 
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