The Ramsey numbers of Fans versus \boldsymbol{K}_{4}

Surahmat $^{1,2 \star}$, E.T. Baskoro ${ }^{1}$, H.J. Broersma ${ }^{2}$
${ }^{1}$ Department of Mathematics
Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia, \{kana_s, ebaskoro\}@dns.math.itb.ac.id
${ }^{2}$ Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, broersma@math.utwente.nl

Abstract

For two given graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we determine the Ramsey number $R\left(F_{l}, K_{4}\right)$, where F_{l} is the graph obtained from l disjoint triangles by identifying precisely one vertex of every triangle (F_{l} is the join of K_{1} and $l K_{2}$). It is known that for fixed $l, R\left(F_{l}, K_{n}\right) \leq(1+o(1)) \frac{n^{2}}{\log n}(n \rightarrow \infty)$. We prove that $R\left(F_{l}, K_{n}\right)=2 l(n-1)+1$ for $n=4$ and $l \geq 3$. We conjecture that $R\left(F_{l}, K_{n}\right)=2 l(n-1)+1$ for $l \geq n \geq 5$.

Keywords: Ramsey number, fan, complete graph.
AMS Subject Classifications: 05C55, 05D10.

1 Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write $V(G)$ or V for the vertex set of G and $E(G)$ or E for the edge set of G. The graph \bar{G} is the complement of the graph G, i.e., the graph obtained from the complete graph $K_{|V(G)|}$ on $|V(G)|$ vertices by deleting the edges of G.

The graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For any nonempty subset $S \subset V$, the induced subgraph by S is the maximal subgraph of G with vertex set S; it is denoted by $G[S]$.

[^0]If $e=\{u, v\} \in E$ (in short, $e=u v$), then u is called adjacent to v, and u and v are called neighbors. For $x \in V$ and $B \subset V$, define $N_{B}(x)=\{y \in$ $B: x y \in E\}$ and $N_{B}[x]=N_{B}(x) \cup\{x\}$.

We denote by K_{n} the complete graph on n vertices. A fan F_{l} is the graph on $2 l+1$ vertices obtained from l disjoint triangles (K_{3} 's) by identifying precisely one vertex of every triangle (F_{l} is the join of K_{1} and $l K_{2}$). By S_{n} we denote a star on n vertices (i.e., $S_{n}=K_{1, n-1}$, the join of K_{1} and $\left.(n-1) K_{1}\right)$.

Given two graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest natural number N such that every graph F on N vertices satisfies the following condition: F contains G as a subgraph or \bar{F} contains H as a subgraph.

We will also use the short notations $H \subseteq F, F \supseteq H, H \nsubseteq F$, and $F \nsupseteq H$ to denote that H is (not) a subgraph of F, with the obvious meanings.

Chvátal and Harary [2] studied Ramsey numbers for graphs and established the lower bound: $R(G, H) \geq(\chi(G)-1)(c(H)-1)+1$, where $\chi(G)$ is the chromatic number of G and $c(H)$ is the number of vertices of the largest component of H. More specifically, Chvátal [1] showed that $R\left(K_{m}, T_{n}\right)=(m-1)(n-1)+1$ where T_{n} is a tree on n vertices. Radziszowski and Xia [6] gave a simple and unified method to establish the Ramsey number $R\left(G, K_{3}\right)$, where G is either a path, a cycle or a wheel. Li and Rousseau [5] used probabilistic arguments to show that $R\left(F_{l}, K_{n}\right) \leq$ $(1+o(1)) \frac{n^{2}}{\log n}(n \rightarrow \infty)$. Gupta et al. [3] showed $R\left(F_{l}, K_{3}\right)=4 l+1$ for any integer $l \geq 2$. For other interesting results see a survey paper of [7]. In this paper, we study the first open case for fans versus larger complete graphs, namely $R\left(F_{l}, K_{4}\right)$.

2 Main Result

The aim of this paper is to determine the Ramsey number of a fan F_{l} with $2 l+1$ vertices versus K_{n} for $n=4$. We will show that $R\left(F_{l}, K_{4}\right)=6 l+1$ for any integer $l \geq 3$.

For the lower bound, consider the graph $G=(n-1) K_{2 l}$. Clearly, G has $2 l(n-1)$ vertices and it contains no fan F_{l}, whereas its complement contains no K_{n}. Thus $R\left(F_{l}, K_{n}\right) \geq 2 l(n-1)+1$.

It is known that $R\left(F_{1}, K_{4}\right)=R\left(K_{3}, K_{4}\right)=9$. Hendry [4] found the Ramsey number $R\left(F_{2}, K_{4}\right)$. Applying the above lower bound we get $R\left(F_{3}, K_{4}\right)=$ 19.

To prove the upper bound for $n=4$ we will use the result on trees due to Chvátal [1] as well as the result on F_{l} versus K_{3} from [3] as follows.

Theorem 1. For any integer $l \geq 4, R\left(F_{l}, K_{4}\right)=6 l+1$.

Proof. Let G be a graph on $6 l+1$ vertices containing no fan F_{l}. We will show that \bar{G} contains a K_{4}. Suppose to the contrary that \bar{G} contains no K_{4}. Since $R\left(S_{2 l+1}, K_{4}\right)=6 l+1$ by [1], G must contain an $S_{2 l+1}$. Let x_{0} be the vertex of highest degree in an $S_{2 l+1}$ and denote by $X=\left\{x_{1}, x_{2}, \ldots, x_{2 l-1}, x_{2 l}\right\}$ the set of neighbors of x_{0} in $S_{2 l+1}$. Since \bar{G} contains no K_{4}, there exists at least one edge in any subgraph $G\left[X_{1}\right]$ of G induced by $X_{1} \subseteq X$ with $\left|X_{1}\right|=4$. Thus, $G\left[X \cup\left\{x_{0}\right\}\right]$ contains a fan F_{l-1}. Without loss of generality, let $x_{i} x_{i+1} \in$ $E(G)$ for each $i=1,3,5, \ldots, 2 l-3$. Then, since $F_{l} \notin G, x_{2 l-1} x_{2 l} \notin E(G)$. Let $B=V(G) \backslash\left(X \cup\left\{x_{0}\right\}\right)$. We have $\left|N_{B}\left(x_{0}\right)\right| \leq 1$, since otherwise considering $x_{2 l-1}, x_{2 l}$ and two vertices from $N_{B}\left(x_{0}\right)$ we obtain $G \supseteq F_{l}$. Let $D=B \backslash N_{B}\left(x_{0}\right)$. We also obtain $\bar{G}[D] \nsupseteq K_{3}$, otherwise combined with x_{0} we find a K_{4} in \bar{G}. Note that $|D| \geq 4 l-1$. Since $R\left(F_{l}, K_{3}\right)=4 l+1$ for $l \geq 2$ by the result in [3], we have $G[D] \supseteq F_{l-1}$. Let y_{0} denote the vertex of highest degree in an F_{l-1} and $Y=\left\{y_{1}, y_{2}, \ldots, y_{2 l-2}\right\}$ the set of neighbors of y_{0} in F_{l-1}. Next, let $P=D \backslash\left(Y \cup\left\{y_{0}\right\}\right)$. We obtain that $\left|N_{P}\left(y_{0}\right)\right| \leq 2$ since otherwise $\bar{G}[D] \supseteq K_{3}$. Let $Q=P \backslash N_{P}\left(y_{0}\right)$. Now, $G[Q]$ is a complete graph; otherwise vertices $q_{1}, q_{2} \in Q$ and y_{0} for $q_{1} q_{2} \notin E(G)$ form a K_{3} in $\bar{G}[D]$. Since $|Q|=|B|-\left|N_{B}\left(x_{0}\right)\right|-(2 l-1)-\left|N_{P}\left(y_{0}\right)\right|=2 l+1-\left|N_{B}\left(x_{0}\right)\right|-\left|N_{P}\left(y_{0}\right)\right|$, depending on the neighborhoods of x_{0} and y_{0} we find a complete graph $G[Q]$ on at least $2 l-2$ and at most $2 l+1$ vertices. We distinguish the following two cases and subcases.

Case 1. $\left|N_{B}\left(x_{0}\right)\right|=0$.
For this case we distinguish the following three subcases.
Subcase 1.1. $\left|N_{P}\left(y_{0}\right)\right|=0$.
We obtain $|Q|=2 l+1$. This implies $G[Q]=K_{2 l+1} \supseteq F_{l}$, a contradiction.
Subcase 1.2. $\left|N_{P}\left(y_{0}\right)\right|=1$.
Let $p \in N_{P}\left(y_{0}\right)$. We obtain $G[Q]=2 l$. To avoid an $F_{l} \subseteq G$, every vertex in $V(G) \backslash Q$ has at most one neighbor in Q. We claim that $G\left[Y \cup\left\{y_{o}, p\right\}\right]=K_{2 l}$. Suppose to the contrary that some distinct $y_{i}, y_{j} \in Y \cup\{p\}$ are nonadjacent.
Then these two vertices together with a common nonneighbor in Q (existing by the previous statement) induce a K_{3} in $\bar{G}[D]$. Both of $\left\{x_{2 l-1}, x_{2 l}\right\}$ have at most one neighbor in Q and in $Y \cup\left\{y_{0}, p\right\}$; otherwise an F_{l} in G is immediate. Now it is easy to obtain a vertex $q \in Q$ and a vertex $y \in Y \cup\left\{y_{0}, p\right\}$ such that $\left\{x_{2 l-1}, x_{2 l}, q, y\right\}$ is an independent set, contradicting that $\bar{G} \nsupseteq K_{4}$.

Subcase 1.3. $\left|N_{P}\left(y_{0}\right)\right|=2$.
Let $p_{1}, p_{2} \in N_{P}\left(y_{0}\right)$. It is clear that p_{1} is nonadjacent to p_{2} and $G[Q]=$ $K_{2 l-1}$. Since $\bar{G}[D] \nsupseteq K_{3}$, for each $y \in Y$ is adjacent to one of p_{1}, p_{2}. If
$N_{Y}\left(p_{1}\right) \cap N_{Y}\left(p_{2}\right) \neq \emptyset$, then we easily obtain an F_{l} in G. Hence $N_{Y}\left(p_{1}\right) \cap$ $N_{Y}\left(p_{2}\right)=\emptyset$. Since $\bar{G}[D] \nsupseteq K_{3},\left|N_{Q}\left(p_{i}\right)\right| \geq 4$ for some $i \in\{1,2\}$. Assume $Q^{\prime}=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \subseteq N_{Q}\left(p_{2}\right)$. We obtain that p_{1} is adjacent to at most one vertex in Q^{\prime} since otherwise $G[P] \supseteq F_{l}$ with q is the center for some $q \in Q^{\prime}$.

Fig. 1. The proof of Theorem 1 Subcase 1.3.

We claim that $N_{Y}\left(p_{2}\right)=\emptyset$. Suppose to the contrary $y^{\prime} \in N_{Y}\left(p_{2}\right)$. Since G contains no F_{l}, y^{\prime} is nonadjacent to any vertex in Q^{\prime}. Since p_{1} is adjacent to at most one vertex in Q^{\prime} and $N_{Y}\left(p_{1}\right) \cap N_{Y}\left(p_{2}\right)=\emptyset$, we obtain a K_{3} in $\bar{G}[D]$ formed by vertices p_{1}, y^{\prime} and q_{i} for some $i \in\{1,2,3,4\}$.

The previous claim implies that p_{1} is adjacent to all vertices in Y. If $y z \notin E(G)$ for $y, z \in Y$, then similarly we have that $\left\{y, z, p_{2}\right\}$ is an independent set in $G[D]$. This implies $G\left[Y \cup\left\{p_{1}, y_{0}\right\}\right]=K_{2 l}$. Clearly all $a \in V(G) \backslash\left(Y \cup\left\{p_{1}, y_{0}\right\}\right)$ have at most one neighbor in this $K_{2 l}$, since otherwise $G \supseteq F_{l}$. See Figure 1. Because $Q^{\prime} \subseteq N_{Q}\left(p_{2}\right)$ and $G[Q]=K_{2 l-1}$, for each vertex in $V(G) \backslash\left(Q^{\prime} \cup\left\{p_{2}\right\}\right)$ are adjacent to at most one vertex in Q^{\prime}, since otherwise $G \supseteq F_{l}$ with some $q \in Q^{\prime}$ as its center. Now we can find four vertices which are independent in G, namely $\left\{x_{2 l-1}, x_{2 l}, q^{*}, y^{*}\right\}$
for some suitable $q^{*} \in Q^{\prime}$ and $y^{*} \in Y \cup\left\{p_{1}, y_{0}\right\}$, a contradiction.
Case 2. $\left|N_{B}\left(x_{0}\right)\right|=1$.
Let $b \in N_{B}\left(x_{0}\right)$. Then by obvious arguments, the set $\left\{b, x_{2 l-1}, x_{2 l}\right\}$ is an independent set of vertices in G, and every other vertex is adjacent to at least one of them. We again distinguish three subcases.

Subcase 2.1. $\left|N_{P}\left(y_{0}\right)\right|=0$.
We obtain $G[Q]=K_{2 l}$. At least one of $\left\{b, x_{2 l-1}, x_{2 l}\right\}$ has at least two neighbors in Q, since otherwise $\bar{G} \supseteq K_{4}$. This yields an F_{l} in G, a contradiction.

Subcase 2.2. $\left|N_{P}\left(y_{0}\right)\right|=1$.
Let $p \in N_{P}\left(y_{0}\right)$. We obtain $G[Q]=K_{2 l-1}$. As in the previous case, $\left|N_{Q}(x)\right| \geq$ 3 for some $x \in\left\{b, x_{2 l-1}, x_{2 l}\right\}$. Suppose $Q_{1}=N_{Q}\left(x_{2 l-1}\right)$ with $\left|Q_{1}\right| \geq 3$. Now, let $Y^{*}=Y \cup\left\{p, y_{0}\right\}$ and so $\left|Y^{*}\right| \geq 8$. We claim that $G\left[Y^{*}\right]=K_{2 l}$. Suppose to the contrary that $y z \notin E(G)$ for some $y, z \in Y^{*}$. We know that $\left|N_{Q_{1}}(y)\right| \leq 1$, since otherwise $G\left[Q \cup\left\{x_{2 l-1}, y\right\}\right] \supseteq F_{l}$ with some $q \in N_{Q_{1}}(y)$ as its center; similarly, $\left|N_{Q_{1}}(z)\right| \leq 1$. But then $\{y, z, t\}$ induces a K_{3} in $\bar{G}[D]$ for some $t \in Q_{1}$, a contradiction. Since \bar{G} contains no K_{4}, at least one of $\left\{x_{2 l-1}, x_{2 l}, b\right\}$ has at least two neighbors in $G\left[Y^{*}\right]$, and we obtain an F_{l} in G, a contradiction.

Subcase 2.3. $\left|N_{P}\left(y_{0}\right)\right|=2$.
As in Subcase 1.3, let $p_{1}, p_{2} \in N_{P}\left(y_{0}\right)$. We obtain that p_{1} is nonadjacent to p_{2} and $G[Q]=K_{2 l-2}$. Since $\bar{G}[D] \nsupseteq K_{3}$, every vertex of Y is adjacent to p_{1} or p_{2}. We first observe that this implies that $N_{Y}\left(p_{1}\right) \cap N_{Y}\left(p_{2}\right)=$ \emptyset; otherwise, using the previous statement we easily obtain an F_{l} in G. Since $\bar{G}[D] \nsupseteq K_{3}$, we also obtain that $\left|N_{Q}\left(p_{i}\right)\right| \geq 3$ for some $i \in\{1,2\}$. Let $N_{Q}\left(p_{2}\right) \supseteq Q_{2}$ with $Q_{2}=\left\{q_{1}, q_{2}, q_{3}\right\}$. We claim that $G\left[Y \cup\left\{y_{0}\right\}\right]=$ $K_{2 l-1}$. Suppose to the contrary that $t_{1} z_{1} \notin E(G)$ for some $t_{1}, z_{1} \in Y$. Consider $t_{2}, z_{2} \in Y$ such that $t_{1} t_{2}, z_{1} z_{2} \in E(G)$. As we argued before, each of $t_{1}, t_{2}, z_{1}, z_{2}$ is adjacent to exactly one of p_{1}, p_{2}. If p_{i} is adjacent to only one of t_{1}, t_{2}, then p_{3-i} is adjacent to the other, and an F_{l} is immediate. We get that one of p_{1}, p_{2} is adjacent to t_{1}, t_{2} and the other to z_{1}, z_{2}. By similar arguments, no $t \in\left\{t_{1}, t_{2}\right\}$ is adjacent to any vertex in $\left\{z_{1}, z_{2}\right\}$. Suppose without loss of generality that $p_{1} z_{1}, p_{1} z_{2}, p_{2} t_{1}, p_{2} t_{2} \in E(G)$. Each vertex of Q_{2} is adjacent to all vertices in $\left\{t_{1}, t_{2}\right\}$ or in $\left\{z_{1}, z_{2}\right\}$; otherwise $q t, q z \notin$ $E(G)$ for some $q \in Q_{2}, t \in\left\{t_{1}, t_{2}\right\}$ and $z \in\left\{z_{1}, z_{2}\right\}$, and so $\bar{G}[D] \supseteq K_{3}$. We obtain an F_{l} in G from Q, p_{2} and t_{1}, t_{2} (or z_{1}, z_{2}), a contradiction. This proves our claim that $G\left[Y \cup\left\{y_{0}\right\}\right]=K_{2 l-1}$. Our next claim is that $N_{Y}\left(p_{2}\right)=\emptyset$. Suppose to the contrary that $N_{Y}\left(p_{2}\right) \neq \emptyset$. If $\left|N_{Y}\left(p_{1}\right)\right| \geq 1$, then we obtain from Y, y_{0}, p_{1}, p_{2} that G contains an F_{l}. So $N_{Y}\left(p_{1}\right)=\emptyset$
and $N_{Y}\left(p_{2}\right)=Y$ since $N_{Y}\left(P_{1}\right)$ and $N_{Y}\left(P_{2}\right)$ partition Y. This implies that $G\left[Y \cup Q_{2} \cup\left\{p_{2}\right\}\right]$ contains an F_{l}, a contradiction. Thus $N_{Y}\left(p_{2}\right)=\emptyset$, and hence $N_{Y}\left(p_{1}\right)=Y$ since $N_{Y}\left(P_{1}\right)$ and $N_{Y}\left(P_{2}\right)$ partition Y. We get that $G\left[Y \cup\left\{y_{0}, p_{1}\right\}\right]=K_{2 l}$. See Figure 2. At least one of $\left\{b, x_{2 l-1}, x_{2 l}\right\}$ has at least two neighbors in $Y \cup\left\{y_{0}, p_{1}\right\}$; otherwise we have $K_{4} \subseteq \bar{G}$. Now clearly we obtain an F_{l} in G, our final contradiction.

Fig. 2. The proof of Theorem 1 Subcase 2.3.

3 Conjecture

To conclude the paper, we conjecture that $R\left(F_{l}, K_{n}\right)=2 l(n-1)+1$, if $l \geq n \geq 5$.

References

1. V. Chvátal, Tree-Complete Graph Ramsey Numbers, Journal of Graph Theory 1 (1977) 93.
2. V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, III: Small off-Diagonal Numbers, Pacific Journal of Mathematics, 41 (1972) 335-345.
3. S.K. Gupta, L. Gupta and A. Sudan, On Ramsey Numbers for Fan-Fan Graphs, Journal of Combinatorics, Information \& System Sciences 22 (1997) 85-93.
4. G.R.T. Hendry, Ramsey Numbers for Graphs with Five Vertices, Journal of Graph Theory, 13 (1989) 245-248.
5. Li Yusheng and C.C. Rousseau, Fan-Complete Graph Ramsey Numbers, Journal of Graph Theory 23 (1996) 413-420.
6. S.P. Radziszowski and J. Xia, Paths, Cycles and Wheels without Antitriangles, Australasian Journal of Combinatorics 9 (1994) 221-232.
7. S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, July (2002) \#DS1.9, http://www.combinatorics.org/

[^0]: * Permanent address: Department of Mathematics Education UNISMA, Jalan MT Haryono 193 Malang 65144, Indonesia.

