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Abstract. For two given graphs G and H, the Ramsey number
R(G, H) is the smallest positive integer N such that for every graph
F of order N the following holds: either F' contains G as a subgraph
or the complement of F' contains H as a subgraph. In this paper,
we determine the Ramsey number R(F}, K4), where F; is the graph
obtained from I disjoint triangles by identifying precisely one vertex
of every triangle (F} is the join of K; and [K3). It is known that
for fixed I, R(Fi,Kn) < (1 + o(l))ﬁ:—n('n — 00). We prove that
R(F;,K,)=2l(n—1)+1 for n =4 and | > 3. We conjecture that
R(Fi,K,)=2l(n—1)+1forl > n>5.
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1 Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a
graph. We write V(G) or V for the vertex set of G and E(G) or E for
the edge set of G. The graph G is the complement of the graph G, i.e.,
the graph obtained from the complete graph K|y (g)| on |V (G)| vertices by
deleting the edges of G.

The graph H = (V',E') is a subgraph of G = (V,E) if V' C V and
E' C E. For any nonempty subset S C V, the induced subgraph by S is the
maximal subgraph of G with vertex set S; it is denoted by G[S].
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If e = {u,v} € E (in short, e = uv), then u is called adjacent to v, and
u and v are called neighbors. For z € V and B C V, define Ng(z) = {y €
B :zy € E} and Np[z] = Np(z) U {z}.

We denote by K, the complete graph on n vertices. A fan F; is the graph
on 2l + 1 vertices obtained from [ disjoint triangles (K3’s) by identifying
precisely one vertex of every triangle (F; is the join of K; and [K3). By
Sn we denote a star on n vertices (i.e., S, = Ky n—1, the join of K; and
(n — 1)K;).

Given two graphs G and H, the Ramsey number R(G,H) is defined
as the smallest natural number NV such that every graph F' on N vertices
satisfies the following condition: F contains G as a subgraph or F contains
H as a subgraph.

We will also use the short notations H CF, F D H H¢Z F,and F 2 H
to denote that H is (not) a subgraph of F', with the obvious meanings.

Chvétal and Harary [2] studied Ramsey numbers for graphs and es-
tablished the lower bound: R(G,H) > (x(G) — 1)(c(H) — 1) + 1, where
x(G) is the chromatic number of G and c¢(H) is the number of vertices
of the largest component of H. More specifically, Chvatal [1] showed that
R(K,,Tn) = (m—1)(n — 1) + 1 where T}, is a tree on n vertices. Radzis-
zowski and Xia [6] gave a simple and unified method to establish the Ram-
sey number R(G,K3), where G is either a path, a cycle or a wheel. Li
and Rousseau [5] used probabilistic arguments to show that R(Fj, K,) <

1+ o(1))ﬁ;—n(n — 00). Gupta et al. [3] showed R(F}, K3) = 4l + 1 for any
integer | > 2. For other interesting results see a survey paper of [7]. In this
paper, we study the first open case for fans versus larger complete graphs,

namely R(Fj, Kj).

2 Main Result

The aim of this paper is to determine the Ramsey number of a fan F; with
2l + 1 vertices versus K, for n = 4. We will show that R(F}, K;) = 6l + 1
for any integer | > 3.

For the lower bound, consider the graph G = (n — 1)Ky;. Clearly, G
has 2l(n — 1) vertices and it contains no fan Fj, whereas its complement
contains no K,,. Thus R(F;,K,) > 2l(n—1) + 1.

It is known that R(Fy,K4) = R(K3,K4) = 9. Hendry [4] found the
Ramsey number R(F3, K4). Applying the above lower bound we get R(F3, K4) =
19.

To prove the upper bound for n = 4 we will use the result on trees due
to Chvétal [1] as well as the result on F; versus K3 from [3] as follows.

Theorem 1. For any integer | > 4, R(F;, K4) = 61 + 1.
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Proof. Let G be a graph on 6/+1 vertices containing no fan F;. We will show
that G contains a K4. Suppose to the contrary that G contains no K. Since
R(S214+1,K4) = 6l+1by [1], G must contain an Sz, ;. Let 2o be the vertex of
highest degree in an S+ and denote by X = {21, z2,...,221-1, 22} the set
of neighbors of zg in Sy;41. Since G contains no Ky, there exists at least one
edge in any subgraph G[X;] of G induced by X; C X with |X;| = 4. Thus,
G[X U {z0}] contains a fan F;_;. Without loss of generality, let z;z;; €
E(G) for each i = 1,3,5,...,2l — 3. Then, since F; € G, zoy—1z21 ¢ E(G).
Let B = V(G)\(X U {zo}). We have |[Np(zo)| < 1, since otherwise con-
sidering z3;—1,z2 and two vertices from Np(zg) we obtain G D F;. Let
D = B\Ng(zp). We also obtain é[D] 2 K3, otherwise combined with zg
we find a K4 in G. Note that |[D| > 41 — 1. Since R(Fj, K3) = 4l + 1 for
! > 2 by the result in [3], we have G[D] D Fi_;. Let yo denote the vertex of
highest degree in an F;_; and Y = {y1,¥2, ..., y21—2} the set of neighbors of
Yo in Fj_;. Next, let P = D\(Y U {yo}). We obtain that |Np(yo)| < 2 since
otherwise G[D] D K3. Let Q = P\Np(yo). Now, G[Q] is a complete graph;
otherwise vertices ¢1,q2 € Q and y for q1q2 ¢ E(G) form a K3 in G[D].
Since |Q| = |B|~|Np(zo)|—(21—1)—|Np(yo)| = 21+1—|Np(zo)|—|Np(yo)|,
depending on the neighborhoods of z¢ and yo we find a complete graph G[Q)]
on at least 2] — 2 and at most 2! + 1 vertices. We distinguish the following
two cases and subcases.

Case 1. [Ng(zg)| = 0.
For this case we distinguish the following three subcases.

Subcase 1.1. [Np(yo)| = 0.
We obtain |Q| = 2l + 1. This implies G[Q] = K2i4+1 2 F}, a contradiction.

Subcase 1.2. |Np(yo)| = 1.

Let p € Np(yo). We obtain G[Q] = 2. To avoid an F; C G, every vertex in
V' (G)\Q has at most one neighbor in Q. We claim that G[Y U{y,,p}] = K.
Suppose to the contrary that some distinct y;,y; € YU{p} are nonadjacent.
Then these two vertices together with a common nonneighbor in @ (exist-
ing by the previous statement) induce a K3 in G[D]. Both of {z9;_1,z2}
have at most one neighbor in @ and in Y U {yo,p}; otherwise an Fj in
G is immediate. Now it is easy to obtain a vertex ¢ € @ and a vertex
y € Y U {yo,p} such that {zs;_1,2,q,y} is an independent set, contra-
dicting that G 2 Kj.

Subcase 1.3. |Np(yo)| = 2.

Let p1,p2 € Np(yo)- It is clear that p; is nonadjacent to p; and G[Q] =
Ko,_;. Since G[D] 2 Ks, for each y € Y is adjacent to one of p;,ps. If
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Ny (p1) N Ny (p2) # 0, then we easily obtain an F} in G. Hence Ny (p;) N
Ny (p2) = 0. Since G[D] 2 K3, |Ng(p;i)| > 4 for some i € {1,2}. Assume
Q' = {¢1,492,93,9a} C Ng(p2). We obtain that p; is adjacent to at most
one vertex in Q' since otherwise G[P] D F; with ¢ is the center for some

qgeEQ".

S21+1

B

Fig. 1. The proof of Theorem 1 Subcase 1.3.

We claim that Ny (p2) = . Suppose to the contrary y’ € Ny (ps). Since
G contains no Fj, y’ is nonadjacent to any vertex in @’. Since p; is adjacent
to at most one vertex in Q' and Ny (p;) N Ny (p2) = 0, we obtain a K3 in
G|D] formed by vertices p;,y’ and g¢; for some i € {1,2,3,4}.

The previous claim implies that p; is adjacent to all vertices in Y. If
yz € E(G) for y,z € Y, then similarly we have that {y,z,p>} is an in-
dependent set in G[D]. This implies G[Y U {p1,y0}] = K. Clearly all
a € V(G)\(Y U{p1,y0}) have at most one neighbor in this Ko, since oth-
erwise G 2D Fj. See Figure 1. Because Q' C Ng(p2) and G[Q] = Ko,
for each vertex in V(G) \ (Q' U {p2}) are adjacent to at most one vertex
in @', since otherwise G D F; with some ¢ € Q' as its center. Now we can
find four vertices which are independent in G, namely {z2_1,z2,¢%,y"}
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for some suitable ¢* € Q' and y* € Y U {p1,yo0}, a contradiction.
Case 2. [Np(z9)| = 1.

Let b € Np(zo). Then by obvious arguments, the set {b,z2,—1, 2} is an
independent set of vertices in G, and every other vertex is adjacent to at
least one of them. We again distinguish three subcases.

Subcase 2.1. |[Np(yo)| = 0.
We obtain G[Q] = K. At least one of {b, 311,z } has at least two neigh-
bors in @, since otherwise G O K. This yields an F; in G, a contradiction.

Subcase 2.2. |Np(yo)| = 1.

Let p € Np(yo). We obtain G[Q] = K2;—1. As in the previous case, |[Ng(z)| >
3for some z € {b,z2—1,x2}. Suppose Q1 = Ng(z2;-1) with |Q1]| > 3. Now,
let Y* = Y U {p,yo} and so |[Y*| > 8. We claim that G[Y*] = Ky. Sup-
pose to the contrary that yz ¢ E(G) for some y,z € Y*. We know that
|Ng, (¥)| < 1, since otherwise G[QU {z2;—1,y}] 2 F; with some g € Ng, (y)
as its center; similarly, |[Ng, (z)| < 1. But then {y,z,t} induces a K3 in
G|D] for some t € Qy, a contradiction. Since G contains no Ky, at least
one of {z2;_1, 2z, b} has at least two neighbors in G[Y*], and we obtain an
F; in G, a contradiction.

Subcase 2.3. |[Np(yo)| = 2.

As in Subcase 1.3, let p;,p2 € Np(yo). We obtain that p; is nonadjacent
to p2 and G[Q] = Ky _o. Since G[D] 2 K3, every vertex of Y is adjacent
to p1 or pa. We first observe that this implies that Ny (p1) N Ny (p2) =
@; otherwise, using the previous statement we easily obtain an F; in G.
Since G[D] 2 K3, we also obtain that |[Ng(p;)| > 3 for some i € {1,2}.
Let Ng(p2) 2 Q2 with Q2 = {q1,¢2,¢3}- We claim that G[Y U {yo}] =
Ks_1. Suppose to the contrary that t12; € E(G) for some t1,z7 € Y.
Consider ty, z2 € Y such that t1t2, 2122 € E(G). As we argued before, each
of t1,12, 21, 22 is adjacent to exactly one of p;,p». If p; is adjacent to only
one of ¢1,ts, then p3_; is adjacent to the other, and an Fj is inmediate. We
get that one of p;, p» is adjacent to t;,t2 and the other to z;, zo. By similar
arguments, no t € {t;,¢2} is adjacent to any vertex in {z1,2z2}. Suppose
without loss of generality that p;z1, p1 22, pot1,pata € E(G). Each vertex of
Q2 is adjacent to all vertices in {¢1,t2} or in {z,22}; otherwise ¢t,qz ¢
E(G) for some q € Q2, t € {t1,t2} and z € {z1, 22}, and so -C'-[D] D Kas.
We obtain an F; in G from @, p2 and t;,t2 (or z3,22), a contradiction.
This proves our claim that G[Y U {yo}] = K21—1. Our next claim is that
Ny (p2) = 0. Suppose to the contrary that Ny (p2) # 0. If [Ny (p1)| > 1,
then we obtain from Y,yo,p1,p2 that G contains an F;. So Ny(p,) = 0
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and Ny (p2) =Y since Ny (P,) and Ny (P») partition Y. This implies that
G[Y U Q2 U {p2}] contains an Fj, a contradiction. Thus Ny (p2) = @, and
hence Ny (p;) = Y since Ny(P;) and Ny(P,) partition Y. We get that
G[Y U {yo,p1}] = Ka. See Figure 2. At least one of {b,z5 1,72} has at
least two neighbors in YU {yg, p1 }; otherwise we have K4 C G. Now clearly
we obtain an F; in G, our final contradiction. =]

.h

P2

sllp LQ

Fig. 2. The proof of Theorem 1 Subcase 2.3.

3 Conjecture

To conclude the paper, we conjecture that R(F}, K,,) = 2l(n — 1) + 1, if
l>n>5.
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