# The Ramsey numbers of Fans versus $K_4$

Surahmat<sup>1,2\*</sup>, E.T. Baskoro<sup>1</sup>, H.J. Broersma<sup>2</sup>

<sup>1</sup> Department of Mathematics Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia, {kana\_s, ebaskoro}@dns.math.itb.ac.id <sup>2</sup> Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, broersma@math.utwente.nl

Abstract. For two given graphs G and H, the Ramsey number R(G, H) is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we determine the Ramsey number  $R(F_l, K_4)$ , where  $F_l$  is the graph obtained from l disjoint triangles by identifying precisely one vertex of every triangle  $(F_l$  is the join of  $K_1$  and  $lK_2$ ). It is known that for fixed l,  $R(F_l, K_n) \leq (1 + o(1)) \frac{n^2}{logn} (n \to \infty)$ . We prove that  $R(F_l, K_n) = 2l(n-1) + 1$  for n = 4 and  $l \geq 3$ . We conjecture that  $R(F_l, K_n) = 2l(n-1) + 1$  for  $l \geq n \geq 5$ .

Keywords: Ramsey number, fan, complete graph.

AMS Subject Classifications: 05C55, 05D10.

## 1 Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write V(G) or V for the vertex set of G and E(G) or E for the edge set of G. The graph  $\overline{G}$  is the *complement* of the graph G, i.e., the graph obtained from the complete graph  $K_{|V(G)|}$  on |V(G)| vertices by deleting the edges of G.

The graph H = (V', E') is a subgraph of G = (V, E) if  $V' \subseteq V$  and  $E' \subseteq E$ . For any nonempty subset  $S \subset V$ , the *induced subgraph* by S is the maximal subgraph of G with vertex set S; it is denoted by G[S].

Bulletin of the ICA, Volume 43 (2005), 96-102

<sup>\*</sup> Permanent address: Department of Mathematics Education UNISMA, Jalan MT Haryono 193 Malang 65144, Indonesia.

If  $e = \{u, v\} \in E$  (in short, e = uv), then u is called *adjacent to* v, and u and v are called *neighbors*. For  $x \in V$  and  $B \subset V$ , define  $N_B(x) = \{y \in B : xy \in E\}$  and  $N_B[x] = N_B(x) \cup \{x\}$ .

We denote by  $K_n$  the *complete* graph on *n* vertices. A fan  $F_l$  is the graph on 2l + 1 vertices obtained from *l* disjoint triangles  $(K_3$ 's) by identifying precisely one vertex of every triangle  $(F_l$  is the join of  $K_1$  and  $lK_2$ ). By  $S_n$  we denote a star on *n* vertices (i.e.,  $S_n = K_{1,n-1}$ , the join of  $K_1$  and  $(n-1)K_1$ ).

Given two graphs G and H, the Ramsey number R(G, H) is defined as the smallest natural number N such that every graph F on N vertices satisfies the following condition: F contains G as a subgraph or  $\overline{F}$  contains H as a subgraph.

We will also use the short notations  $H \subseteq F$ ,  $F \supseteq H$ ,  $H \not\subseteq F$ , and  $F \not\supseteq H$  to denote that H is (not) a subgraph of F, with the obvious meanings.

Chvátal and Harary [2] studied Ramsey numbers for graphs and established the lower bound:  $R(G,H) \geq (\chi(G) - 1)(c(H) - 1) + 1$ , where  $\chi(G)$  is the chromatic number of G and c(H) is the number of vertices of the largest component of H. More specifically, Chvátal [1] showed that  $R(K_m, T_n) = (m-1)(n-1) + 1$  where  $T_n$  is a tree on n vertices. Radziszowski and Xia [6] gave a simple and unified method to establish the Ramsey number  $R(G, K_3)$ , where G is either a path, a cycle or a wheel. Li and Rousseau [5] used probabilistic arguments to show that  $R(F_l, K_n) \leq$  $(1+o(1))\frac{n^2}{\log n}(n \to \infty)$ . Gupta et al. [3] showed  $R(F_l, K_3) = 4l + 1$  for any integer  $l \geq 2$ . For other interesting results see a survey paper of [7]. In this paper, we study the first open case for fans versus larger complete graphs, namely  $R(F_l, K_4)$ .

#### 2 Main Result

The aim of this paper is to determine the Ramsey number of a fan  $F_l$  with 2l + 1 vertices versus  $K_n$  for n = 4. We will show that  $R(F_l, K_4) = 6l + 1$  for any integer  $l \ge 3$ .

For the lower bound, consider the graph  $G = (n-1)K_{2l}$ . Clearly, G has 2l(n-1) vertices and it contains no fan  $F_l$ , whereas its complement contains no  $K_n$ . Thus  $R(F_l, K_n) \ge 2l(n-1) + 1$ .

It is known that  $R(F_1, K_4) = R(K_3, K_4) = 9$ . Hendry [4] found the Ramsey number  $R(F_2, K_4)$ . Applying the above lower bound we get  $R(F_3, K_4) = 19$ .

To prove the upper bound for n = 4 we will use the result on trees due to Chvátal [1] as well as the result on  $F_l$  versus  $K_3$  from [3] as follows.

**Theorem 1.** For any integer  $l \ge 4$ ,  $R(F_l, K_4) = 6l + 1$ .

**Proof.** Let G be a graph on 6l+1 vertices containing no fan  $F_l$ . We will show that  $\overline{G}$  contains a  $K_4$ . Suppose to the contrary that  $\overline{G}$  contains no  $K_4$ . Since  $R(S_{2l+1}, K_4) = 6l+1$  by [1], G must contain an  $S_{2l+1}$ . Let  $x_0$  be the vertex of highest degree in an  $S_{2l+1}$  and denote by  $X = \{x_1, x_2, \dots, x_{2l-1}, x_{2l}\}$  the set of neighbors of  $x_0$  in  $S_{2l+1}$ . Since  $\overline{G}$  contains no  $K_4$ , there exists at least one edge in any subgraph  $G[X_1]$  of G induced by  $X_1 \subseteq X$  with  $|X_1| = 4$ . Thus,  $G[X \cup \{x_0\}]$  contains a fan  $F_{l-1}$ . Without loss of generality, let  $x_i x_{i+1} \in$ E(G) for each i = 1, 3, 5, ..., 2l - 3. Then, since  $F_l \not\subseteq G$ ,  $x_{2l-1}x_{2l} \notin E(G)$ . Let  $B = V(G) \setminus (X \cup \{x_0\})$ . We have  $|N_B(x_0)| \leq 1$ , since otherwise considering  $x_{2l-1}, x_{2l}$  and two vertices from  $N_B(x_0)$  we obtain  $G \supseteq F_l$ . Let  $D = B \setminus N_B(x_0)$ . We also obtain  $\overline{G}[D] \not\supseteq K_3$ , otherwise combined with  $x_0$ we find a  $K_4$  in  $\overline{G}$ . Note that  $|D| \ge 4l - 1$ . Since  $R(F_l, K_3) = 4l + 1$  for  $l \geq 2$  by the result in [3], we have  $G[D] \supseteq F_{l-1}$ . Let  $y_0$  denote the vertex of highest degree in an  $F_{l-1}$  and  $Y = \{y_1, y_2, ..., y_{2l-2}\}$  the set of neighbors of  $y_0$  in  $F_{l-1}$ . Next, let  $P = D \setminus (Y \cup \{y_0\})$ . We obtain that  $|N_P(y_0)| \leq 2$  since otherwise  $\overline{G}[D] \supseteq K_3$ . Let  $Q = P \setminus N_P(y_0)$ . Now, G[Q] is a complete graph; otherwise vertices  $q_1, q_2 \in Q$  and  $y_0$  for  $q_1q_2 \notin E(G)$  form a  $K_3$  in  $\overline{G}[D]$ . Since  $|Q| = |B| - |N_B(x_0)| - (2l-1) - |N_P(y_0)| = 2l + 1 - |N_B(x_0)| - |N_P(y_0)|$ , depending on the neighborhoods of  $x_0$  and  $y_0$  we find a complete graph G[Q]on at least 2l - 2 and at most 2l + 1 vertices. We distinguish the following two cases and subcases.

**Case 1.**  $|N_B(x_0)| = 0.$ 

For this case we distinguish the following three subcases.

Subcase 1.1.  $|N_P(y_0)| = 0$ . We obtain |Q| = 2l + 1. This implies  $G[Q] = K_{2l+1} \supseteq F_l$ , a contradiction.

### **Subcase 1.2.** $|N_P(y_0)| = 1$ .

Let  $p \in N_P(y_0)$ . We obtain G[Q] = 2l. To avoid an  $F_l \subseteq G$ , every vertex in  $V(G) \setminus Q$  has at most one neighbor in Q. We claim that  $G[Y \cup \{y_o, p\}] = K_{2l}$ . Suppose to the contrary that some distinct  $y_i, y_j \in Y \cup \{p\}$  are nonadjacent. Then these two vertices together with a common nonneighbor in Q (existing by the previous statement) induce a  $K_3$  in  $\overline{G}[D]$ . Both of  $\{x_{2l-1}, x_{2l}\}$  have at most one neighbor in Q and in  $Y \cup \{y_0, p\}$ ; otherwise an  $F_l$  in G is immediate. Now it is easy to obtain a vertex  $q \in Q$  and a vertex  $y \in Y \cup \{y_0, p\}$  such that  $\{x_{2l-1}, x_{2l}, q, y\}$  is an independent set, contradicting that  $\overline{G} \not\supseteq K_4$ .

**Subcase 1.3.**  $|N_P(y_0)| = 2$ .

Let  $p_1, p_2 \in N_P(y_0)$ . It is clear that  $p_1$  is nonadjacent to  $p_2$  and  $G[Q] = K_{2l-1}$ . Since  $\overline{G}[D] \not\supseteq K_3$ , for each  $y \in Y$  is adjacent to one of  $p_1, p_2$ . If

 $N_Y(p_1) \cap N_Y(p_2) \neq \emptyset$ , then we easily obtain an  $F_l$  in G. Hence  $N_Y(p_1) \cap N_Y(p_2) = \emptyset$ . Since  $\overline{G}[D] \not\supseteq K_3$ ,  $|N_Q(p_i)| \ge 4$  for some  $i \in \{1, 2\}$ . Assume  $Q' = \{q_1, q_2, q_3, q_4\} \subseteq N_Q(p_2)$ . We obtain that  $p_1$  is adjacent to at most one vertex in Q' since otherwise  $G[P] \supseteq F_l$  with q is the center for some  $q \in Q'$ .



Fig. 1. The proof of Theorem 1 Subcase 1.3.

We claim that  $N_Y(p_2) = \emptyset$ . Suppose to the contrary  $y' \in N_Y(p_2)$ . Since G contains no  $F_l$ , y' is nonadjacent to any vertex in Q'. Since  $p_1$  is adjacent to at most one vertex in Q' and  $N_Y(p_1) \cap N_Y(p_2) = \emptyset$ , we obtain a  $K_3$  in  $\overline{G}[D]$  formed by vertices  $p_1, y'$  and  $q_i$  for some  $i \in \{1, 2, 3, 4\}$ .

The previous claim implies that  $p_1$  is adjacent to all vertices in Y. If  $yz \notin E(G)$  for  $y, z \in Y$ , then similarly we have that  $\{y, z, p_2\}$  is an independent set in G[D]. This implies  $G[Y \cup \{p_1, y_0\}] = K_{2l}$ . Clearly all  $a \in V(G) \setminus (Y \cup \{p_1, y_0\})$  have at most one neighbor in this  $K_{2l}$ , since otherwise  $G \supseteq F_l$ . See Figure 1. Because  $Q' \subseteq N_Q(p_2)$  and  $G[Q] = K_{2l-1}$ , for each vertex in  $V(G) \setminus (Q' \cup \{p_2\})$  are adjacent to at most one vertex in Q', since otherwise  $G \supseteq F_l$  with some  $q \in Q'$  as its center. Now we can find four vertices which are independent in G, namely  $\{x_{2l-1}, x_{2l}, q^*, y^*\}$  for some suitable  $q^* \in Q'$  and  $y^* \in Y \cup \{p_1, y_0\}$ , a contradiction.

Case 2.  $|N_B(x_0)| = 1.$ 

Let  $b \in N_B(x_0)$ . Then by obvious arguments, the set  $\{b, x_{2l-1}, x_{2l}\}$  is an independent set of vertices in G, and every other vertex is adjacent to at least one of them. We again distinguish three subcases.

**Subcase 2.1.**  $|N_P(y_0)| = 0.$ 

We obtain  $G[Q] = K_{2l}$ . At least one of  $\{b, x_{2l-1}, x_{2l}\}$  has at least two neighbors in Q, since otherwise  $\overline{G} \supseteq K_4$ . This yields an  $F_l$  in G, a contradiction.

#### Subcase 2.2. $|N_P(y_0)| = 1$ .

Let  $p \in N_P(y_0)$ . We obtain  $G[Q] = K_{2l-1}$ . As in the previous case,  $|N_Q(x)| \geq 3$  for some  $x \in \{b, x_{2l-1}, x_{2l}\}$ . Suppose  $Q_1 = N_Q(x_{2l-1})$  with  $|Q_1| \geq 3$ . Now, let  $Y^* = Y \cup \{p, y_0\}$  and so  $|Y^*| \geq 8$ . We claim that  $G[Y^*] = K_{2l}$ . Suppose to the contrary that  $yz \notin E(G)$  for some  $y, z \in Y^*$ . We know that  $|N_{Q_1}(y)| \leq 1$ , since otherwise  $G[Q \cup \{x_{2l-1}, y\}] \supseteq F_l$  with some  $q \in N_{Q_1}(y)$  as its center; similarly,  $|N_{Q_1}(z)| \leq 1$ . But then  $\{y, z, t\}$  induces a  $K_3$  in  $\overline{G}[D]$  for some  $t \in Q_1$ , a contradiction. Since  $\overline{G}$  contains no  $K_4$ , at least one of  $\{x_{2l-1}, x_{2l}, b\}$  has at least two neighbors in  $G[Y^*]$ , and we obtain an  $F_l$  in G, a contradiction.

#### Subcase 2.3. $|N_P(y_0)| = 2$ .

As in Subcase 1.3, let  $p_1, p_2 \in N_P(y_0)$ . We obtain that  $p_1$  is nonadjacent to  $p_2$  and  $G[Q] = K_{2l-2}$ . Since  $\overline{G}[D] \not\supseteq K_3$ , every vertex of Y is adjacent to  $p_1$  or  $p_2$ . We first observe that this implies that  $N_Y(p_1) \cap N_Y(p_2) =$  $\emptyset$ ; otherwise, using the previous statement we easily obtain an  $F_l$  in G. Since  $\overline{G}[D] \not\supseteq K_3$ , we also obtain that  $|N_Q(p_i)| \ge 3$  for some  $i \in \{1, 2\}$ . Let  $N_Q(p_2) \supseteq Q_2$  with  $Q_2 = \{q_1, q_2, q_3\}$ . We claim that  $G[Y \cup \{y_0\}] =$  $K_{2l-1}$ . Suppose to the contrary that  $t_1z_1 \notin E(G)$  for some  $t_1, z_1 \in Y$ . Consider  $t_2, z_2 \in Y$  such that  $t_1 t_2, z_1 z_2 \in E(G)$ . As we argued before, each of  $t_1, t_2, z_1, z_2$  is adjacent to exactly one of  $p_1, p_2$ . If  $p_i$  is adjacent to only one of  $t_1, t_2$ , then  $p_{3-i}$  is adjacent to the other, and an  $F_l$  is immediate. We get that one of  $p_1, p_2$  is adjacent to  $t_1, t_2$  and the other to  $z_1, z_2$ . By similar arguments, no  $t \in \{t_1, t_2\}$  is adjacent to any vertex in  $\{z_1, z_2\}$ . Suppose without loss of generality that  $p_1z_1, p_1z_2, p_2t_1, p_2t_2 \in E(G)$ . Each vertex of  $Q_2$  is adjacent to all vertices in  $\{t_1, t_2\}$  or in  $\{z_1, z_2\}$ ; otherwise  $qt, qz \notin dt$ E(G) for some  $q \in Q_2$ ,  $t \in \{t_1, t_2\}$  and  $z \in \{z_1, z_2\}$ , and so  $\overline{G}[D] \supseteq K_3$ . We obtain an  $F_l$  in G from Q,  $p_2$  and  $t_1, t_2$  (or  $z_1, z_2$ ), a contradiction. This proves our claim that  $G[Y \cup \{y_0\}] = K_{2l-1}$ . Our next claim is that  $N_Y(p_2) = \emptyset$ . Suppose to the contrary that  $N_Y(p_2) \neq \emptyset$ . If  $|N_Y(p_1)| \ge 1$ , then we obtain from  $Y, y_0, p_1, p_2$  that G contains an  $F_l$ . So  $N_Y(p_1) = \emptyset$  and  $N_Y(p_2) = Y$  since  $N_Y(P_1)$  and  $N_Y(P_2)$  partition Y. This implies that  $G[Y \cup Q_2 \cup \{p_2\}]$  contains an  $F_l$ , a contradiction. Thus  $N_Y(p_2) = \emptyset$ , and hence  $N_Y(p_1) = Y$  since  $N_Y(P_1)$  and  $N_Y(P_2)$  partition Y. We get that  $G[Y \cup \{y_0, p_1\}] = K_{2l}$ . See Figure 2. At least one of  $\{b, x_{2l-1}, x_{2l}\}$  has at least two neighbors in  $Y \cup \{y_0, p_1\}$ ; otherwise we have  $K_4 \subseteq \overline{G}$ . Now clearly we obtain an  $F_l$  in G, our final contradiction.



Fig. 2. The proof of Theorem 1 Subcase 2.3.

## 3 Conjecture

To conclude the paper, we conjecture that  $R(F_l, K_n) = 2l(n-1) + 1$ , if  $l \ge n \ge 5$ .

## References

 V. Chvátal, Tree-Complete Graph Ramsey Numbers, Journal of Graph Theory 1 (1977) 93.

- 2. V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, III: Small off-Diagonal Numbers, *Pacific Journal of Mathematics*, 41(1972) 335-345.
- 3. S.K. Gupta, L. Gupta and A. Sudan, On Ramsey Numbers for Fan-Fan Graphs, Journal of Combinatorics, Information & System Sciences 22 (1997) 85-93.
- G.R.T. Hendry, Ramsey Numbers for Graphs with Five Vertices, Journal of Graph Theory, 13 (1989) 245-248.
- 5. Li Yusheng and C.C. Rousseau, Fan-Complete Graph Ramsey Numbers, Journal of Graph Theory 23 (1996) 413-420.
- 6. S.P. Radziszowski and J. Xia, Paths, Cycles and Wheels without Antitriangles, Australasian Journal of Combinatorics 9 (1994) 221-232.
- S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, July (2002) #DS1.9, http://www.combinatorics.org/