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Abstract

Let B(k,\) be the spectrum of integers n such that there exists
a Sx(2,k,n), a balanced incomplete block design of order n, block
size k and index A. Lindner and Rosa [6] introduced the definition
of a S1(2,4,n) having a metamorphosis into a Sx(2,3,n) and proved
that the necessary condition n € B(3,\) N B(4, A) is also sufficient.

The aim of this paper is to present two different genceralizations
of Lindner and Rosa’s idea in order to consider metamorphoses of
Sx(2,4,n) for n € B(4,)) and n € B(3, \).

AMS classification: 05B05.
Keywords: Block design; maximum packing; metamorphosis.

1 Introduction

A balanced incomplete block design Sy(2, k,n) is a pair (X, B), where X
is a n-set and B is a collection of k-subsets of X (blocks) such that any 2-
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subset of X is contained in exactly A blocks. For A = 1 we write S(2, k,n)
instead of S(2,k,n).

A maximum packing of triples M PT(n, ) is a pair (X,C), where X
is an n-set and C is a collection of 3-subsets of X (blocks) such that: ()
each 2-subset of X is contained in at most A blocks of C, (i7) if D is any
collection of 3-subsets of X satisfying (i). then |C| > |D]|.

Let (X,C) be a MPT(n,A); the leave of (X,C) is a multigraph (X,£)
where an edge {z,y} € £ has multiplicity m if and only if the corresponding
2-subset {z,y} is contained in exactly A — m blocks of C.

Let (X,B) be a S)(2,4,n). If a star is removed from each block of B
the resulting collection of triangles P(B) is a partial $,(2,3,n) (X, P(B)).
If the edges belonging to the deleted stars can be arranged into a collection
of triangles T'(B), then (X, P(B)UT(B)) is a Sx(2,3,n), called a metamor-
phosis of the Sx(2,4,n) (X,B). Lindner and Rosa [6] posed the following
spectrum. problemn: “For every positive integer A, determine the spectrum
of integers n such that there exists a S)(2,4,n) having a metamorphosis
into a S)(2,3,n)”. The necessary condition for the existence of a S(2,4,n)
having a metamorphosis into a Sx(2,3,n) is n € B(3,\) N B(4, \), where
B(k. X) is the set of the integers n such that there is a Sy(2. k.n). Lind-
ner and Rosa [6] proved that these necessary conditions are also sufficient.
Table 1 summarizes Lindner and Rosa’s results.

Table 1
A (mod 6) | spectrum of S5(2,4,n) having
a metamorphosis into Sx(2,3,n)
0 n>4
1,5 n =1 (mod 12)
2.4 n =1 (mod 3)
3 n =1 (mod 4)

For n € B(4,)\) and n ¢ B(3,)), the following question is natural:
How can we generalize the metamorphosis definition in order to construct
a S)(2,4,n) having a metamorphosis into some design as close as possible
to a Sx(2,3,n)? The aim of this paper is to present two different answers.

Metamorphosis of a S5(2,4,n) into a minimum S,(2,3,v). Let

(X, B) be a Sx(2,4,n). Let v be the minimum integer such that v > n
and v € B(3,A), and let V = X UY where |Y| = v — n. If a star
is removed from each block of B the resulting collection of triangles
P(B) is a partial S)(2,3,n) (X,P(B)). If the edges belonging to
the deleted stars and to graphs Ky and Kx y, can be arranged into
a collection of triples T'(B), then (X, P(B) U T'(B)) is a S)(2,3,v).
called a metamorphosis of the S)(2,4,n) (X, B) into the minimun
S)‘(2, 3, v).
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Metamorphosis of a S)(2,4,n) into a MPT(n, )\). Let (X,B) be a
S5x(2,4,n). If a star is removed from each block of B the resulting
collection of triangles P(B) is a partial Sx(2,3,n) (X, P(B)). If the
edges belonging to the deleted stars can be arranged into a collection
of triangles T'(B) and a collection of edges £ such that (X, P(B) U
T(B)) is a MPT(n,\) with leave (X.£). then (X, P(B) U T(B)) is
called a metamorphosis of the Sx(2.4,n) (X, B) into a MPT'(n, ).

It is straightforward to see that both these definitions coincide with
Lindner and Rosa’s metamorphosis whenever n € B(3, \).
In this paper we solve the spectrum problems related to above defi-

nitions. leaving a few open cases in the case of the metamorphosis of a
S5x(2.4.n) into a MPT (n, A).

2 Metamorphosis of a S)(2,4,n) into a mini-
mum S)(2,3,v)

In Table 2 we show the sets B(k, A) of integers n for which there exists a

Sx(2.k.n) for k= 3,4 [11)].

Table 2
A (mod 6) B(4,)\) B(3.))
0 n>4 n>3
1.5 n=1.4 (mod 12) | n=1,3 (mod 6)
2,4 n=1 (mod 3) n=0,1 (mod 3)
n=0,1 (mod 4) n=1 (mod 2)

Pairing Tables 1 and 2, we get the necessary conditions for the existence
of a Sx(2,4,n) having a metamorphosis into a minimum Sx(2.3,v) (see

Table 3). The sufficiency for v = n is proved in [6]. In this section we prove
the sufficiency for v > n.

Table 3
A (mod 6) n v—n
0 n>4 0
1,5 1 (mod 12) 0
1.5 4 (mod 12) 3
2.4 1 (mod 3) 0
3 1 (mod 4) 0
3 0 (mod 4) 1
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A (K, )\)-GDD (group divisible design of index X, block sizes in K and
order v) is a triple (V, G, B), where V' is a v-set, G = {G,,Ga,...,Gp} is a
partition of V into subsets (called groups), and B is a collection of subsets
(blocks) of V' which satisfy the properties:

1. If B € B then |B| € K.

2. Every pair of distinct clements of V' occurs in exactly A blocks or once
group. but not both.

3. |G| > 1.

We say that the (K,A)-GDD is of type vf'vh? ... v, if there are h;
groups of size v;, i = 1,2,...,t. We write (k, A\)-GDD instead of ({k}, \)-
GDD.

Let (V.G,B) be a (4,A)-GDD. If a star is removed from each block
of B the resulting collection of triangles P(B) is a partial (3.A)-GDD
(V.G, P(B)). If the edges belonging to the deleted stars can be arranged
into a collection of triangles T'(B), then (V, G, P(B)UT(B)) is a (3,A)-GDD,
called a metamorphosis of the (4, \)-GDD (V,G.B).

The following result is given by Lindner and Rosa [6).

Lemma 2.1. For every integer h > 5, there is a (4,1)-GDD of type 12"
having a metamorphosis into a (3,1)-GDD of type 12".

Obviously, only the cases A = 1,3 must be considered. Starting cases
are collected in the following lemma. See [9] for a proof.

Lemma 2.2. 1. A S(2,4,n) having a metamorphosis into a S(2,3,n +
3) emists for n = 4, 16,28, 40,52.

2. A S3(2.4.n) having a metamorphosis into a S3(2,3.n+ 1) exists for
n =4,8,12,16, 28,32.

3. There exists a S(2,4, 16) with one hole H of size 4 having a metamor-
phosis into a partial S(2, 3, 16) whose leave ts given by three 1-factors
on vertex set X \ H.

Theorem 2.3. A S(2,4,n) having a metamorphosis into a S(2,3,n + 3)
erists for every integer n =4 (mod 12), n > 4.

Proof For n = 4,16, 28,40, 52, sece Lemma 2.2. Let n =4+ 12h, h > 5.
By Lemina 2.1, there is a (4, 1)-GDD of type 12" having a metamorphosis
into a (3, 1)-GDD of type 12". Denote the groups by Gi, i =1,2,..., h. Let
H = {00}, 009,003, 004}. Produce a S(2,4.16) on vertex set Gy U IT having
a metamorphosis into a S(2, 3, 19) on vertex set Gy U H U {ay,a2,a3}. For
every 1 = 2,3,...,h, produce a copy of the S(2, 4, 16), given in 3 of Lemma
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2.2, on vertex set G; UH and hole ‘H . This design has a metamorphosis into
a partial S(2,3,16) with leave F}, j = 1,2,3. Form the triples {a;.2,y},
{z,y} e F}. O

Theorem 2.4. A S3(2,4,n) having a metamorphosis into a S3(2,3,n+ 1)
exists for every integer n =0 (mod 4), n > 4.

Proof For n = 4,8.12,16,28,32, see Lemma 2.2. A PBD of order
m with block sizes 5. 9 and 13 exists for all m = 1 (mod 4) except for
m = 17,29,33 [11]. Remove a point to obtain a ({5,9,13},1)-GDD of
order m — 1 with groups whose sizes lic in {4, 8, 12}. Placc a solution on
each block (see [6]) and on each group.

3 Metamorphosis of a S)(2,4,n) into a
MPT(n, \)

Let (X,C) be a MPT(n, ) with leave (X,E). If € = 0, then (X,C) is a
Sx(2,3,n) and Lindner and Rosa’s metamorphosis works. So we have to
find a solution for n = 4 (mod 12). if A = 1.5 (mod 6), and for n = 0
(mod 4). if A = 3 (mod 6). So, only A = 1,3 must be considered. Note
that there are different graphs which can be leaves of a MPT(n,3), n = 8
(mod 12) [10]. In this paper we don’t consider all possible leaves but only
one, as shown in Table 4.

Table 4
A n leave
=1,5 (mod 6) | =4 (mod 12) | 1FY
=3 (mod 6) =0 (mod 12) | 1F
=3 (mod 6) =4 (mod 12) | 1FY
=3 (mod 6) =8 (mod 12) | 1F;

Here 1F, 1FY and 1Fj are the following graphs.
1F a matching on n vertices;

1FY a tripole (matching on n —4 vertices and a tree on 4 vertices with
one vertex of degree 3);

1F; a matching on n—2 vertices and a triple edge {a, b}, {a,b}. {a, b}.
Starting cascs are collected in the following lemma. See (9] for a proof.

Lemma 3.1. 1. There exists a S(2,4,n) having a metamorphosis into
a MPT(16,1).
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2. There ezists a S(2.4,16) (X,B) with one hole H of size 4 having
a metamorphosis into a partial S(2,3,16) (X,C) whose leave is one
1-factor on vertez set X \ H.

3. A S3(2,4,n) having a metamorphosis into a M PT(n,3) (with leave
shoum in Table 4) there is for n = 8,12,20, 24, 32.

4. There esists a (4,1)-GDD of type 41 having a metamorphosis into a
(3.1)-GDD of type 41.

5. There exists a S3(2,4,32) (X,B) such that: (i) (X,B) embeds a
S3(2.4.8) (A, A) having a metamorphosis into a MPT(8.3) (A, P(A)U
T(A)); (12) (X.B) has a metamorphosis into a M PT(32.3) (X. P(B)U
T(B)); (iit) (A, P(A) U T(A)) is embedded into (X, P(B) U T(B));
(iv) the leave of (A.P(A) U T(A)) is a subgraph of the leave of
(X, P(B) UT(B)).

Theorem 3.2. A S(2.4,n) having a metamorphosis into a MPT(n.1)

exists for every integer n = 4 (mod 12), n > 4, except possibly for n =
28.40.52.

Proof The proof for n = 4 is trivial. For n = 16. Lemma 3.1 gives
a 5(2,4,16) having a metamorphosis into a M PT(16,1) which embeds a
MPT(4,1). Let n =4+ 12h, h > 5. By Lemuna 2.1. there is a (4,1)-GDD
of type 12" having a metamorphosis into a (3. 1)-GDD of type 12", Denote
the groups by G;. i = 1.2,...,h. Let H = {00,.002,003,004}. As in
Lemma 3.1, produce a S(2.4,16) on vertex set Gy UH. Fori=2,3,... h.

produce a copy of the S(2.4,16) on vertex set G; U H, having the hole H.
O

Theorem 3.3. A S3(2,4,n) having a metamorphosis into a M PT(n.3)
(with leave shoun in Table 4) exists for every integer n = 0 (mod 4), n > 4.
except possibly for n = 28,36, 40, 44, 48, 52, 56, 68, 80, 92, 104.

Proof For n = 8,12,20, 24,32, see Lemma 3.1. For n = 0 (mod 12),
n > 60, place a copy of the S3(2, 4,12), given in Lemma 3.1, into each group
of the (4,1)-GDD of Lemma 2.1.

Forn =4 (mod 12), n > 4 and n # 28, 40.52. paste together a solution
of A =1 (Theorem 3.2) and a solution of A =2 [6].

Let n =8 (mod 12), n > 116. The Handbook of Combinatorial Designs
(11] gives a (4,1)-GDD of type 6" for every u > 5, and of type 6“3 for every
u > 4. Giving weight 4 to all points. we get a (4,1)-GDD (X.G,.B;) of
type 24" and a (4,1)-GDD (X,Gy,B2) of type 24“12, respectively. Let
A ={ay,ag,...,ag}. If n =8 (mod 24). then

e On each block of B; place a copy of the (4.1)-GDD given in 4 of
Lemna 3.1.
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e For each group G € Gy, produce a copy of the S3(2,4, 32), given in 5
of Lemma 3.1, having vertex set G U A and hole A.

e On the hole A place a S3(2,4,8) having metamorphosis into a
MPT(8,3).

If n =20 (mod 24), then

e On each block of By place a copy of the (4,1)-GDD given in 4 of
Lemma 3.1.

e For each group G € G, such that |G| = 24, produce a copy of the

S53(2,4,32), given in 5 of Lemma 3.1, having vertex set G U A and
hole A.

e On the group of size 20 place a S3(2, 4. 20) having metamorphosis into
a MPT(20.3). O

Open Questions and Remarks

1. Remove the possible exceptions in Theorems 3.2 and 3.3.

2. For A =3 and n = 8 (mod 12). find a metamorphosis of a Sx(2.4,n)
into a M PT(n.\) with any possible leave [10].

3. Let G be a subgraph of G. Then Lindner and Rosa’s metamor-
phosis can be easily generalized in the following way. Let (X,B)
be a G-decomposition of the multigraph AK, [11]. If a graph iso-
morphic to G \ G is removed from each G-block of B, the resulting
collection of Gy-blocks P(B) is a partial G;-decomposition of AK,
(X, P(B)). If the edges belonging to the deleted subgraphs can be ar-
ranged into a collection of Gy-blocks T'(B), then (X, P(B) U T(B))
is a Gj-decomposition of AK,. called a metamorphosis of the G-
decomposition (X, B). The related spectrum problem has been solved
for many pairs of graphs G and G, [1, 2, 3. 4, 5, 7, 8].

Extend both metamorphosis definitions, given in this paper for

Sx(2,4,n), to G-decompositions of AK, and solve the related spec-
trum problems.

4. During the meeting ISGDA (Messina, October 2003) we learnt that
the generalization of the metamorphosis definition given in Section 3 is
not new. The problem of the metamorphosis of some graph designs of
order v and index X into a M PT(v, A) is considered by other authors
and their papers are not published yet. But, as we know, no other
paper studies the same problem of Section 3.
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1 Introduction Consider a set P of permutation matrices of order

n. What is the smallest integer m such that P can be partitioned into
subsets Py, Pa, ..., Pm such that

XAP PeBl, (=12

are (0,1)-matrices? Let G(P) be a graph with vertex set P with an edge
joining two permutation matrices P, Q € P provided PP and @ have a 1
in common (that is, a 1 in the same position). The integer m cquals the
chromatic number x(G(P)). Natural sets P of permutation matrices arise
by choosing A = [a;;] to be a (0,1)-matrix and

P=Ps={P:P < A,P is a permutation matrix}. (1)

(Here the inequality P < A is interpreted entrywise.) In this case the sets
P; in the partition must satisfy

Y{P:PeP}<A
A more restrictive problem requires that
Y (P:PeP)=A (i=12...,m) (2)

If (2) holds, then
Y {P:PePa}=mA,

and we say that P4 has a perfect partition. The cardinality of the set Py
equals the permanent of A defined, as usual, by:

per(A)= > au,as, G,

(i1,42,...,in )ESA

Bulletin of the ICA, Volume 43 (2005), 67-79



where the summation is over the symmetric group S, of all permutations
of {1,250}

Suppose that P4 has a perfect partition. Then therc are two conse-
quences for the structure of A. First, there is an integer k& such that all
row and column sums of A equal k, and this integer k satisfies the equation

per(A) = mk. Second, a perfect partition implics that cach 1 of A belongs
to m permutation matrices P < A, and hence, where A(z,5) denotes the
submatrix of A obtained by deleting row 7 and column j, that

perA(i, 7) = m if a;; =1,

that is, the permanental minors of the 1’s of A all equal the same constant
m.

Let G4 = G(P4). Since the chromatic number of G4 equals the min-
imal number ol independent scts into which P4 can be partitioned, we
have
per(A)
a(Gp)’

x(Ga) > (3)

where a(G 4) is the maximal size ol an independent set of G 4. We can have
cquality in (3) only if a(G 4)|per(A). If P4 has a perfect partition, then the
integer m in (2) equals x(G ). Since x(G 4) is an integer, (3) implies that

per(/‘)}
a(Ga) |

X(Ga) [ ()

By a theorem of Folkman and Fulkerson [2] (sce also Theorem 6.4.3 in
[1]), the independence number a(G ) equals

v sum(Ag;)
k+l—n

:k+l>n}

where the minimum is taken over all pairs of integers k and | with n <
k+1 < 2n and k x | submatrices Ag; of A, and sum(Ay;) is the sum of the
entries of Agy.

There is a geometrical interpretation of the perfect partition problem.
Recall that a necessary condition for the existence of a perfect partition for
P4 is that the sum of matrices in P4 is a multiple of A. Thus, the average
of P, which can also be viewed as the centroid of the convex hull of Py,
has the form yA. Clearly, every clement in P, is an extreme point of the
convex hull of P4. (To sce this, note that cvery clement X in Py has the
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same Frobenius norm (trace X X*)'/2 and therefore cannot be written as a
convex combination of the others.) If A has row sums and column sums
all equal to k, then one needs at least k clements in P4 whose average
(regarded as the centroid of the convex hull of the k elements) is equal to

vA; if the desired partition is a partition of P4 in k-element sets, then each
of them has the same average as that of Py.

In the subsequent discussion, let J, be the n x n matrix of all 1’s. In
the next section we consider perfect partitions of S, = P, (where we now
regard S, as the set of n x n permutation matrices) and the alternating
group A,, of all nxn even permutation matrices (permutation matrices with
determinant equal to 1). In Section 3, we consider the set D,, =P, of
n X n derangement permutation rnalrices; we present some partial results
and open problems. Additional open questions are discussed in the final
section.

2 Partitioning S, and A,, We have «(.J,) = n and per(J,) = n!,
and it is easy to show that 3 y s X = (n — 1)!J,. Can we partition S,
into (n — 1)! subsets so that the sum of the matrices in cach subset is .J,,7
The answer is affirmative.

Proposition 2.1 The set S, = P, 1s a disjoinl union of (n — 1)! subsels
such that the sum of the matrices in each subsel 1s J,,. Ience S, has a
perfect partitzon.

Proof. Let H = {I,,P,...,P™ '} where P is the basic n x n circulant
matrix

010 0 0
0 0 1 0 0
e 0 0 (5)
0 0 0 0 1
1 00 0 0

Then H is a cyclic group with n elements whose sum is the matrix .J,.
There are (n — 1)! cosets of H in S,. ISach coset has the form QN =
{QP? :5=0,...,n—1} for some Q € S,,. Clearly, the sum of the matrices
in each coset is also the matrix J,. O

Now we consider the group A,, of even permutation matrices. We have
|An| =n!/2, and it is not hard to show that "y, X = [(n - 1)!/2]J, il
n > 3. Can we partition A,, into (n — 1)!/2 subsets so that the sum of the
matrices in each subsct is J,,7 We have the [ollowing result.
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Proposition 2.2 Suppose n > 3. The set A, can be partilioned into (n —
1)!/2 subsels so thal the sum of the malrices in cach subset is J,,.
Proof. We consider three cases according to n.

Case 1. If n > 3 is odd, then the basic circulant matrix /° is in A,,. Thus
H = {P) is a subgroup of A,, with (n — 1)!/2 cosets, and the sum of the
matrices in each coset is J,.

Case 2. If n = 4k for some positive integer k, we can prove by induction
that:

There is a subgroup H in A, with n clements whose sum equals J,,
and hence the cosets of the group H will be a desired partition.

When k = 1, let {4 be the subgroup of A4 containing all the clements
of order 2 or 0 (H, is the 2-Sylow subgroup of A4). One can readily check

that the the sum of the matrices in H4 sum up to J,.
Now, suppose the result is true for n = 4k for some k > 1. Consider

the case when n = 4(k + 1). By the induction assumption, there is a
group Hyk of Ayk such that the sum ol the matrices in [l4x is Jak. Let
H={A®B:Ae Hy B € Hy}, where X ® Y = (z;;Y) denotes the
usual tensor product of two matrices. Then [/ is a subgroup of A, with
n = 4(k+ 1) elements whose sum is the matrix .J,,. By induction, our claim
is proved.

Case 3. Let n = 2m [or some odd integer m. We consider the subgroup K
of A,, consisting of matrices of the form A® I3, where A and 3 are m x m
permutation matrices. There are (m!)?/2 such matrices. To sce this, if we
allow A and B to be arbitrary matrices in S,,, there will be (m!)? such
matrices in S,,. Since half of them are odd permutations, we sce that K

has (m!)2/2 elements as asserted.

We claim that K can be partitioned into m((m — 1)!)2/2 subscts such
that each subset has m clements summing up to J,, © .J,,. To this end, let
P € 8, be the basic circulant. Let G = (), and let. Q1G, ..., Q.G be the
cosets of G in Sy, where r = (m —1)!, Q1,...,Qr/2 € Ajn and Q; ¢ Ap
for j > r/2.

For each 4,7 = 1,...,7/2, consider the following m-clement subsets of
An:

Si1={(QieQ;)Po P :k=0,...,m—1},

Sije={XUn®P): X €Sij1}, Sija={XUn®P?):X €S}, ...,
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vy Siim={XUm®P™ ) : X € Sij1}.
We get m(r/2)? disjoint m-element subsets of K.
Next, for each 7,7 =7/2+1,...,r, consider

Sij ={(Q1@Qj)(P€BP)kZk=0,...,'rn—1},

Sij2={X(Im®P): X €Sij1}, Sija={X(Um®P?):X €S}, ...,
5ty Si]m={X(l1n®[)"‘71):X€Si]1}~
We get another m(r/2)? disjoint m-clement subsets of K.
Consequently, we get mr?/2 = m((m — 1)!)?/2 disjoint m-clement sub-

sets of K. Moreover, the matrices in cach subset sum up to J,, ® J,, as
desired.

Now, consider the matrix R obtained by switching the first two rows

of ((;:: é:) Then R € A,.. Let

H=KU{RX:XeK}.

One easily checks that f1 is the subgroup of A,, consisting of matrices of

the form
A 0 1 BN
0 B A p o}

Morcover, for cach set S;;x defined above, we may construct
Ti]k = Sijk U {RX X € S,'Jk}.

Then each Tj;x will have n = 2m elements summing up to J,, and these
T;;k form a partition of the subgroup /1.

Now, let H Wi H WyH, ..., W, Il be the cosets of Il in A, where
L+ 1= [A,|/[H]. Bach coset Wl is a disjoint. union of W T;,,’s, and cach
W, T, has n elements summing up to /. 0

Corollary 2.3 The sel Sy, has a perfecl partition in which each part of Lhe
partition consists of all even permulation malrices or all odd permulalion
malrices.

Proof. As in the proof of Proposition 2.1, the coset ol odd permutations
also can be partitioned into sets summing to J,. ()
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3 Partitioning D, = P,;__, : Partial Result Let L, = J, — [,,.
For n = 2,...,5 we show that D, = P, can be partitioned into subscts
each with n — 1 matrices that sum to L,.

In the following discussion, we identify a permutation o in disjoint
cycle representation with the corresponding permutation matrix in S,,. For
example, (1,2)(3,4) represents the permutation obtained from the identity
matrix by interchanging the first and second rows, and also the third and
fourth rows. Then o € S, is a derangement if and only if o(3) # 1 for : =
1,...,n. Moreover, the elements in a set of derangements {o1,...,0n-1} C
D, sum to L, if and only if 0,(i) # 05(z) forr #sand forallt:=1,...,n
We have the following partial result for the partition problem of Py,
Proposition 3.1 The set D,, has a perfect partilion if n < 5.

Proof. If n = 2, then D, = {L,} is a singleton. If n = 3, then the
members of D,, = {(1,2,3),(1,3,2)} sum to L,.

FFor n = 4, a permutation belongs to D,, il and only il it is a 4-cycle or
a product of two disjoint transpositions. If

B ={(1,2)(3,4),(1,3,2,4), (1,4, 2,3)},

Fy, ={(1,3)(2,4),(1,2,3,1),(1,4,3,2)},
F3 = {(1,4)(2,3),(1,2,4,3),(1,3,1,2)},
then Dy = U‘Ll[’k and the members of cach [ sum to [4.

For n = 5, a permutation belongs to D,, il and only if it is of the form
(1,12, 13,24, 15) OT (i1,12)(13, 14, 15). Let DL C Dy be the sct of derangements
of the form (44, 72,23, 14,15) and let Dg C D5 be the set of derangements of
the form (74, 12) (43, 14, 75). Observe that |Dg| = 24 and |DZ| = 20. We show
that D§ and Df can be partitioned into 6 and 5 subscts, respectively, such
that the members of each subset sum to Ls.

Let m = (1,2,8,4,5), » = (1,2,3,5,4), 5 = (1,2,4,3,8), y =
(1,2,4,5,3), 78 = (1,2,5,8,4), and 75 = (1,2,5,4,3). M7 = {m, 7%, 72,72}
then the collection of subsets Ti,..., Ty forms a partition of Dg such that
the members of each Tk sum to Ls. Now, consider the [ollowing subscts of

D¢
Ry ={(1,2)(3,4,5),(1, 3)(2,5,4),(1,1)(2,3,5), (1,5)(2,4,3) }

Ry = {(2,1)(3,5,4), (2,3)(1,4,5), (2,4)(1,5,3), (2,5)(1,3,4)}
Ry = {(3,1)(2,4,5), (3,2)(1,5,4), (3,4)(1,2,5), (3,5)(1,4, 2)}
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Ra = {(4,1)(2,5,3),(4,2)(1,3,5), (4, 3)(1,5,2), (4,5)(1,2,3)}
Rs = {(5,1)(2,3,4), (5,2)(1,4, 3), (5, 3)(1,2,4), (5,4)(1, 3,2)}.

Then the collection of subsets Ry, ..., %5 [orms a partition of DY such that
the members of each I, sum to L. This completes the partition of Dy. O

The problem of partitioning D,, with n > 6 is more difficult. In the
following, we describe several different approaches we considered.

First, we divide the set D, into subscts according to diflerent cycle
decompositions, and we attempt to show that each of these subsets admits
a partition into (n — 1)-element subsets with clements summing to L,. In
particular, when n = 5, the partition was done in this way. When we apply
this idea to Dg, we get the following subsets:

T,: the set of length-6 cycles — 120 elements;

T>: the set of permutations obtained by the product of a 2-cycle and a
4-cycle - 90 elements;

T3: the set of permutations obtained by the product of two 3-cycles 40
clements;

T4: the sct of permutations obtained by the product of three 2-cycles — 15
clements.

For each subset, the sum of its elements (say, denoted by X) will be a
multiple of L, because all of the diagonal entries of X are zeroes and

PXP' = X for every permutation matrix /°. Towever, this approach to
partitioning D,, fails when n = 6. One can check that the set Ty cannot
be partitioned into three 5-clement subscets such that the clements in cach
subset. sum up to Lg.

An alternative idea is to sclect 15 elements 7q,..., 75 from T and
construct disjoint subsets

Ui={r:5=1,...,5}

so that each of them has elements summing up to Lg. Note that cach U;
will have two elements in T3, two elements in T3, and one clement in Ty. If
this is done, then we are left with 90 elements in T, the entire set Ty, and
10 elements in T3.

Another scheme is Lo select one element in 7, and lour clements in 7
of the form 71,7,41,72,72’] to form a sct. whose clements sum up to Lg.

Here is an example:

(1,2)(3,4)(5,6), (1,3,5,2,6,4), (1,4,6,2,5,3), (1,6,3,2,4,5), (1,5,4, 2,3, 6).
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In fact, one can construct 15 sets of such form and use up the 15 clements
in Ty together with 60 clements in Tj.

It is also possible to use two clements in T3 and three clements in T)
to form a set whose elements sum up to Lg. Here is an example:

(1,2,3)(4,5,6),(1,3,2)(4,6,5), (1,4,2,5,3,6), (1,5,2,6,3,4), (1,6,2,4,3,5).

One can actually construct 20 subscts of this form and use up the 40 cle-
ments in 73 together with 60 elements in T;.

One may want to use the two schemes in the last two paragraphs to
exhaust the elements in Ty, T3, and T4, but this strategy scems to be
impossible. Of course, even if it can be done, one must still partition the
elements in T3 into 18 sets, each of which has clerments summing up to Ls.
Here is an example of such a set:

(1i2)(3’47 51 6)’ (11 3)(214a 61 5)1 (11 4)(21 57 3»6)9 (175)(2a 6141 3)1 (13 6)(2$ 3) 51 4)

It is unclear whether one can construct 18 disjoint subscts of T, with the
desired property.

Thus, the problem of finding a perfect partition for Py, scemns difficult.
We close this section with a statement of the problem and some related

questions:
Problem 3.2 Tor n > 6, is there a perfect partition for Py, or P;,_ N A,”

Problem 3.3 For n > 6, is there a perfect partition for the collection of
permutations in P, with some specific cyele decomposition?

FFor example, can the sct of permutations obtained by the product of
a 2-cycle and an (n — 2)-cycle be partitioned into subscts such that the
clements of each subsct sum up to L,? The answer is no for n =4, ycs lor
n =5, and unknown for n > 6.

4 Additional Problems We continue to use /? to denote the basic
P N i > c . n1 pk, - n-1 pk
circulant as defined in (5). Note that J, =", ( P*and L, =Y | P~

For any subsets K C {0,1,...,n — 1}, let

Pi== 3 P

kc K

A general question is:
Problem 4.1 Determine K C {0,1,...,n — 1} so that Pp, (respectively,
Ppryx NAy) has a perlect partition.
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By the results in the previous sections, we sce that both problems in
Problem 4.1 have affirmative answers if |K| = n. If |K| = 1, then both
problems also have affirmative answers trivially. If |K| = 2, then we have
the following proposition.

Proposition 4.2 Let A = I, + P* with 0 < k < n. Then P admils a
perfect partition.

Proof. Write P* in disjoint cycle notation. There are two cascs.

Case 1. If (n, k) is relatively prime, then ¥ is just one long cycle, and

I, and P* are the only two elements in P4, which admits a trivial perfect
partition.

Case 2. If d > 1 is the greatest common divisor of n and k, and m = n/d,
then P* is the product of d cycles of length m. Now, we can rewrite
A = I, + P* as the direct sum of d m x m matrices, cach of which is
In + Q, where Q is the m x m basic circulant. In this form, one readily
checks that X € Py ifandonlyif X = X, ®---0 X4 such that X; € {/,,,Q}.
Thus, there are 2% matrices in P4. Morcover, P4 has a perfect partition
consisting of sets of the form {X, A — X} with X € P,. ]

If |K| = n — 1, we basically have the P, problem, and we only have
partial results. If |K| = 3, even the necessary condition for a perfect parti-
tion may not hold. Here is an example which can be verified readily.
Example 4.3 Forn =5 there are 13 maltrices in Py for A = I, + P + P?

or A = I, + P% 4+ P3. In cither case, a perfect partilion is impossible.

Note that in general, if | K| = n—2, then Py = J,, — P"— PP*. Replacing
Pk by P? Py for a suitable 5 € {0,...,n— 1}, we may assume that (r, s) =
(=4, with 1 <1 <n/2, or (r,s) = (0,1). FFor example, for n =5, we only
need to consider the cases in Example 1.3.

If nis even and (r, s) = (=, 1) with 1 <1 < n/2, then up to a permu-
tation cquivalence, i.e., replace A by RAS for some suitable I?, S € §,,, we
can assume that Px = J, — (/,,/2 ® J2), which can be viewed as a general-
ization of L,. In general, if n = km, we consider L, x = Jn — (10 @ Ji).
We have the [ollowing.

Proposition 4.4 Suppose n >4 and n = km. Then per (L, k) 2s a mulli-
ple of (n— k). Moreover, if n > k > 2, then |'P/,“'k NA,| =per(lnkg)/2 is

also a mullaple of (n — k).
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Proof. Use Laplace expansion about the first row of L, ¢. Note that
all of the submatrices of L,, x obtained by dcleting the first row and jth
column with k < 7 < n are permutationally equivalent and have the same
permanent, say, r. Thus, per (L, x) = (n — k)r

Next, suppose n > k > 2. Then for cach o € P, , we have (1,2)0 €
PL.,, and either o or (1,2)0 is an cven permutation. Thus, half of the
clements in Pp,_, belong to A,. Next, consider the Laplace expansion of
per (Ln k) as in the first paragraph of the proof. We claim that r is cven.
To this end, suppose A is obtained from I, x by deleting its first row and
(k+1)st column. Note that for any permutation o € Py, we have o(1,2) €
P4, and either o or o(1,2) is an even permutation (in S,, _1). Thus, |Pa| =71
is even. Consequently, |P,,n N An | = per (Ink)/2 = (n— k)(r/2) is also
a multiple of (n — k). a

‘Note that the sccond assertion of the above proposition is not valid for
Py,... As shown in Scction 3, the number of even and odd permutations in

Py, may be different:

n 3[4 57 6
P 2944|265
P, 0A - [[2]3]24] 130

Nevertheless, for (n, k) = (3,1),(4,1),(5,1) it is not hard to find a perfect
partition for P;_ N A,; see the results in the last section. In general, we
have the following.
Problem 4.5 Dectermine whether there is a perfect partition for Py, - (re-
spectively, P, NAp).

Notice that finding a perfect partition for Py, is the same as finding
a perfect partition for P4 with A = J,,0 © J, 0. Ixamining Case 3 in the
proof of Proposition 2.2, we have the following.
Proposition 4.6 Suppose n is even. There is always a perfect parlilion

Jor Pu,. ... (respeclively, Py, ., 0N Ap).

Answering Problem 4.5 for other valucs of (n, k) is not so casy. Ior
(n, k) = (6,2), we have an affirmative answer.
Proposition 4.7 There is a perfecl partilion for P, ,.

Proof. lect Lga = (Aij)i<iy<s, where Ay = 0 for 2 = 1,2,3, and
Aij = Jp for v # 3. We first show that [P, ,| = 80. Every permutation
matrix in P, is determined by sclecting exactly one nonzero entry from
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cach row and column of Lgy. Consider the number of ways to construct a
matrix X € Py, if the 1 in the (1, 3) position of Lg 3 is selected to be in X
In the following discussion, a nonzero entry of Lg » is said to be available il
no other nonzero entry in its row or column has been selected to be in X.
We consider two cases, depending on the nonzero entry scleeted from the
second row of Lg o.

Case 1. Ifthe (2,4) entry of Lg 5 is selected to be in X, then the remaining
four nonzero entries of X must be obtained by sclecting two nonzero entrics
each from the A3 and Ag; submatrices of Lgy. The nonzero entries from

each of these two submatrices can be sclected in one of two ways: cither
entirely on the submatrix diagonal or entirely ofl of the submatrix diagonal.
Thus, there are 2 x 2 = 4 possible ways to construct X in this case.

Case 2. If the (2,4) entry of Lg2 is not seclected, then there are two
available nonzero entries in the second row of g 2 that can be sclected; both

choices lie in A;3. Each choice sequentially forces the selection of one of
two available nonzero entries each from the A, Ay, and As; submatrices,
thereby determining the final selection of the only available nonzero entry

from the A3p submatrix. Thus, there arc 2% = 16 ways to construct X in
this case.

Combining the two preceding cases, there are 4 + 16 = 20 matrices
in Prq, with a 1 in the (1,3) position. By analogous arguments, one can
show that there are 20 matrices in Py, , with a 1 in the (1, k) position for
k =4,5,6. Thus, |PL,,| =4 x 20 = 80.

Next, we show that Pp,, admits a perfect partition. Let T, € Sy
correspond to the permutation (1,2), and let 23 € S3 correspond to the
permutation (1,3,2). Let

W ={Rs® Iy, R3 T, /f;"l ® Iy, /I’.:"‘ ® Ty}.

Then W, (3,4)W, (5,6)W, and (3,4)(5,6)W arc disjoint subscts of Py, ,
such that the matrices in cach subset sum up to Lg 5, and each of the four
subsels contains exactly one matrix from Casc 1 above.

The remaining 64 matrices in Pp, , can be partitioned as [ollows. Recall
that cach of the 16 matrices X, ..., X1 from Case 2 above has exactly onc
nonzero entry from every A;; in Lgo with i # 7. Now, we associate cach
matrix X, from Case 2 with three other matrices X, 5, X, 3, and X, 4 in
PlLe., as determined in the following manner:

Xr2: From cach nonzero A;j, sclect the entry horizontally adjacent
to the entry that was selected to be in X,
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Xr3: From cach nonzero Ajj, sclect the entry vertically adjacent
to the entry that was selected to be in X,.
Xr4: From each nonzero A;j, select the entry diagonal to the entry
that was selected to be in X,.
Then we have 16 disjoint sets of the form {X,, X, 5, X, 3, X, 4} such
the matrices in each set sum up to Lgo. I'or example, the following four
matrices in Ppg, constitute a set in the partition:

001 000 000 1 0 0
00 0 0 1 00 0 0 0 1
0 000 01 000 01 0
Ky = 1 0 0 00 3 Xf'2_010 0 0 o}’
000 1 00 001 00 0
01 00 00 ] 90 0 0 ©
0700 g1 D 00 0 0 0 1
g 0. 1.0 8.0 0 o oraes 0
¥ 0 8 0.0 "0 O ol panaOas gty ™ 0
Ars=ts g0 0 6 11" Aea =Yoo o 1.0
071 B 0 0.0 1 00 0 0 0
g 04 1205 08 1 8,070

None of the 64 matrices partitioned into scts of the form {X,, X, 2, X;3, Xr4}
were previously used up in sets of the form oW, because all matrices be-
longing to sets of the form oW in the partition have cither two or zero
entries from ecach nonzero A;; in Lg . We thus have a perfect partition of
Plya: =)

‘We close the paper with some general questions.

Problem 4.8 I'or which n x n (0,1)-matrices A does P4 have a perfect
partition?

Note that such matrices A must be regular, and il k is the constant row
and column sum, k£ must be a factor of the permanent of A. In addition,
the permanental minors of the 1’s of A arc constant.

Problem 4.9 Determine a good upper bound on the chromatic number
x(G 4) of the permutation graph of a regular matrix A. More specifically,
find a constant ¢, such that

x(GA) € e ["”("’} |

k
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An even more general problem is the [ollowing.

Problem 4.10 Let P = {P; : i € I} be a set of permutation matrices of
order n. Let A be a multiset of (0, 1)-matrices of order n. When is therc a
partition of 7 into sets Iy, I, ..., I,, such that the matrices Y _{P; : j € I;},
(:=1,2,...,m), are the matrices in A, including multiplicitics?

The problem discussed in this paper concerns sets of permutation ma-
trices P4 where A is a (0, 1)-matrix and A is the multisct consisting of A
with a certain multiplicity.

References

(1] R.A. Brualdi and H.J. Ryser, Combinatorial Malriz Theory, Cam-

bridge, 1991.

[2] J. Folkman and D.R. Fulkerson, Edge colorings in bipartite graphs,
Combinatorial Mathematics and Their Applications (R.C. Bose and
"T. Dowling, eds.), University of North Carolina Press, Chapel Tlill,

561-577.

79



