Two-fold Kirkman Packing Designs

Beiliang Du
Department of Mathematics
Suzhou University
Suzhou 215006 P.R. China

Abstract

This article investigates the spectrum of two-fold Kirkman Packing Designs and it is found that it contains all positive integers $v \geq 3$ except 5,6.

1 Introduction

Let X be a set of v points. A packing of X is a collection of subsets of X (called blocks) such that any pair of distinct points from X occur together in most λ block in the collection. A packing is called resolvable if its block set admits a partition into parallel classes, each parallel class being a partition of the point set X.

A Kirkman Triple System $K T S(v)$ is a collection \mathcal{T} of 3-subsets of X (triples) such that any pair of distinct elements from X occur together in exactly one triple, and such that \mathcal{T} admits a partition into $\frac{v-1}{2}$ parallel classes. Thus, a $\operatorname{KTS}(v)$ is both a resolvable packing with $\lambda=1$. It is well known that a $K T S(v)$ exists if and only if $v \equiv 3(\bmod 6)$ (see, for example, [8]).

A Nearly Kirkman Triple System $N K T S(v)$ is a collection \mathcal{T} of 3 subsets of X (triples) such that any pair of distinct elements from X occur together in at most one triple, and such that \mathcal{T} admits a partition into $\frac{v}{2}-1$ parallel classes. Thus an $\operatorname{NKTS}(v)$ is both a resolvable packing with $\lambda=1$. It is well known that an $N K T S(v)$ exists if and only if $v \equiv 0(\bmod 6)$ and $v \geq 18$ (see, for example, [9]).

Cerńy, Horák and Wallis [3] introduced a particular generalization of Kirkman Triple System and Nearly Kirkman Triple System to the case where v is not a multiple of 3 . They require all blocks to be of size three except that, each resolution class should contain either one block of size
two (when $v \equiv 2(\bmod 3))$ or one block of size four $($ when $v \equiv 1(\bmod 3)$). They define a Kirkman packing design $K P D(v)$ to be a resolvable packing of a v-set by the maximum possible number of resolution classes of this type.

Some simple computation shows:

- a $K P D(v)$ contains at most $\frac{v}{2}$ resolution classes $($ when $v \equiv 2(\bmod 6))$ or $\frac{v-1}{2}$ resolution classes (when $\left.v \equiv 5(\bmod 6)\right)$.
- a $K P D(v)$ contains at most $\frac{v-3}{2}$ resolution classes (when $\left.v \equiv 1(\bmod 6)\right)$ or $\frac{v}{2}-2$ resolution classes (when $\left.v \equiv 4(\bmod 6)\right)$.

Kirkman packing design have been studied by many researchers (see, for example, [3], [5] and [7]), the result was updated by Cao and the author recently.

Theorem 1.1 ([2]) There is a $K P D(v)$ for the following cases:

1. $v \equiv 2(\bmod 6)$,
2. $v \equiv 5(\bmod 6)$ with $v \geq 17$,
3. $v \equiv 4(\bmod 6)$ with $v \geq 16$, and
4. $v \equiv 1(\bmod 6)$ with $v \geq 19$.

In this article, we shall be restricting our attention to the case $\lambda=2$. A two-fold Kirkman Triple System $K T S_{2}(v)$ is a collection \mathcal{T} of 3 -subsets of X (triples) such that any pair of distinct elements from X occur together in exactly two triple, and such that \mathcal{T} admits a partition into $v-1$ parallel classes. Thus, a $K T S_{2}(v)$ is both a resolvable packing with $\lambda=2$. It is well known that a $K T S_{2}(v)$ exists if and only if $v \equiv 0(\bmod 3)$ and $v \neq 6$.

Theorem $1.2([6])$ There is a $K T S_{2}(v)$ if and only if $v \equiv 0(\bmod 3)$ and $v \neq 6$.

The problem we now study in this article is the two-fold Kirkman Packing Designs analogous of the Čerńy, Horák and Wallis [3]. We introduced the two-fold resolvable packing which requires all blocks to be of size three except that, each resolution class should contain either one block of size two $($ when $v \equiv 2(\bmod 3))$ or one block of size four $($ when $v \equiv 1(\bmod 3))$. We define a two-fold Kirkman packing design $K P D_{2}(v)$ to be a resolvable packing of a v-set by the maximum possible number of resolution classes of this type.

Some simple computation shows:

- a $K P D_{2}(v)$ contains at most v resolution classes (when $\left.v \equiv 2(\bmod 3)\right)$.
- a $K P D_{2}(v)$ contains at most $v-3$ resolution classes (when $v \equiv 1$ $(\bmod 3))$.

Take a two-fold Kirkman Triple System on $v+1$ points $K T S_{2}(v+1)$ and delete one point, we can dispense with the case $v \equiv 2(\bmod 3)$ relatively quickly.

Theorem 1.3 There is a $K P D_{2}(v)$ for every $v \equiv 2(\bmod 3)$ except for $v=5$.

Proof. We only need prove there is no $K P D_{2}(5)$. Suppose there exists a $K P D_{2}(5)$, then there exists a parallel class of blocks, say $\{1,3\},\{0,2,4\}$. The total number of parallel classes is 5 , and accordingly, there are 4 parallel classes in addition to the mentioned parallel class. Each such parallel class contains one block of size two and one block of size three. If the pair of elements 1 and 3 is a leave or in a block of size two. Notice that each block of size three in the remaining 4 parallel classes must contain a pair of even elements, but there are only 3 such pairs remained. Consequently the construction is impossible. If the pair of elements 1 and 3 be in a block of size three. Notice that the block of size two in the parallel class must contain a pair of even elements and then each block of size three in the remaining 3 parallel classes must contain a pair of even elements, but there are only 2 such pairs remained. Consequently the construction is impossible.

In the remainder of this article we shall investigate the existence of $K P D_{2}(v)$ for every $v \equiv 1(\bmod 3)$, and it is found that it contains all positive integers $v \equiv 1(\bmod 3)$. That is, we will prove

Theorem 1.4 There is a $K P D_{2}(v)$ for every $v \equiv 1(\bmod 3)$.

2 Preliminaries

In this section we shall define some of the auxiliary designs and some of the fundamental results which will be used later. The reader is refered to [4] for more information on designs, and, in particular, group divisible designs and frames.

Let K and M be sets of positive integers. A group divisible design (GDD) $G D(K, \lambda, M ; v)$ is a triple $(X, \mathcal{G}, \mathcal{B})$ where

1. X is a v-set (of points),
2. \mathcal{G} is a collection of nonempty subsets of X (called groups) with cardinality in M and which partition X,
3. \mathcal{B} is a collection of subsets of X (called blocks) with cardinality at least two in K,
4. no block intersects any group in more than one point,
5. each pair set $\{x, y\}$ of points not contained in a group is contained in exactly λ blocks.

The group-type (or type) of the $\operatorname{GDD}(X, \mathcal{G}, \mathcal{B})$ is the multiset of sizes $|G|$ of the $G \in \mathcal{G}$ and we usually use the "exponential" notation for its description: group-type $1^{i} 2^{j} 3^{k} \cdots$ denotes i occurences of groups of size 1 , j occurences of groups of size 2, and so on.

A GDD $(K, \lambda, M ; v)$ is resolvable if the blocks of \mathcal{B} can be partitioned into parallel classes.

We need to establish some more notations. We shall denote by $G D(k, \lambda$, $m ; v)$ a $G D(\{k\}, \lambda,\{m\} ; v)$. If $m \notin M$, the $G D(K, \lambda, M \cup\{m *\} ; v)$ denotes a $G D(K, \lambda, M \cup\{m\} ; v)$ which contains a unique group of size m and if $m \in$ M, then a $G D(K, \lambda, M \cup\{m *\} ; v)$ is a $G D(K, \lambda, M ; v)$ containing at least one group of size m. We shall sometimes refer to a GDD $G D(K, 1, M ; v)$, $(X, \mathcal{G}, \mathcal{B})$ as a K-GDD. A transversal design $T D(k, n)$ is a $\{k\}$-GDD of type n^{k}. It is well known that a $T D(k, n)$ is equivalent to $k-2$ mutually orthogonal Latin squares of order n.

A GDD $(X, \mathcal{G}, \mathcal{B})$ is called frame resolvable if its block set \mathcal{B} admits a partition into holey parallel classes, each holey parallel class being a partition of $X-G_{j}$ for some $G_{j} \in \mathcal{G}$. A Kirkman Frame is a frame resolvable GDD in which all the blocks have size three. It is a simple consequence of the define that to each group G_{j} in a Kirkman Frame $(X, \mathcal{G}, \mathcal{B})$ there correspond exactly $\frac{\lambda\left|G_{j}\right|}{2}$ holey parallel classes of triples that partition X G_{j}. The groups in a Kirman Frame are often referred to as holes.

For the two-fold Kirkman Frame we have
Theorem 2.1 ([1]) A two-fold Kirkman Frame of type g^{u} exists if and only if $v \geq 4$ and $g(u-1) \equiv 0(\bmod 3)$.

We now illustrate the main technique that we will be using throughout the remainder of the article, which is a variant of Stinson's "Filling in Holes" construction. In applying the "Filling in Holes" construction, we will require two-fold Kirkman Frames in which the blocks are not necessarily all of the same size. To get these, we use the following "Weighting Construction".

Theorem 2.2 ([10]) Suppose that there is a K-GDD of type $g_{1}^{t_{1}} g_{2}^{t_{2}} \cdots g_{m}^{t_{m}}$ and that for each $k \in K$ there is a two-fold Kirkman Frame of type h^{k}. Then there is a two-fold Kirkman Frame of type $\left(h g_{1}\right)^{t_{1}}\left(h g_{2}\right)^{t_{2}} \cdots\left(h g_{m}\right)^{t_{m}}$.

Finally, as the "Filling in Holes" construction will generally involve adjoining more than one infinite point to a Kirkman Frame, we will require the notation of an incomplete two-fold Kirkman Packing Design. Let $v \equiv w \equiv 1$ $(\bmod 3)$, an incomplete two-fold Kirkman Packing Design, $I K P D_{2}(v, w)$, is a triple (X, Y, \mathcal{B}) where X is a set of v elements, Y is a subset of X of size $w(Y$ is called the hole) and \mathcal{B} is a collection of subsets of X (blocks), each of size 3 or 4 , such that

1. $\left|Y \cap B_{i}\right| \leq 1$ for all $b_{i} \in \mathcal{B}$,
2. any pair of distinct elements in X occur together either in Y or in at most two blocks,
3. \mathcal{B} admits a partition $v-w$ parallel classes on X, each of which contains one block of size four, and a further $w-3$ holey parallel classes of triple on $X \backslash Y$.
4. each element of $X \backslash Y$ is contained in exactly four blocks of size four.

Example 2.3 There is an $\operatorname{IKP} D_{2}(v, 4)$ for $v \in\{16,19,22\}$.
Point Set: $X=Z_{v-4} \cup Y, Y=\left\{a, x_{1}, x_{2}, x_{3}\right\}$.
Parallel Classes: Develop the following class mod $(v-4)$:

$$
\begin{array}{ll}
v=16: & \{0,1,2,6\},\{a, 3,5\},\left\{x_{1}, 4,9\right\},\left\{x_{2}, 7,10\right\},\left\{x_{3}, 8,11\right\} . \\
v=19: & \text { Holey Parallel Class: }\{i, i+4, i+8\}(0 \leq i \leq 3) . \\
& \{0,1,4,11\},\{3,6,12\},\{a, 2,9\}, \\
& \left\{x_{1}, 5,7\right\},\left\{x_{2}, 8,10\right\},\left\{x_{3}, 13,14\right\} . \\
& \text { Holey Parallel Class: }\{i, i+5, i+10\}(0 \leq i \leq 4) . \\
v=22: \quad\{0,1,2,4\},\{3,6,13\},\{7,11,16\},\{a, 5,12\}, \\
& \left\{x_{1}, 8,14\right\},\left\{x_{2}, 9,17\right\},\left\{x_{3}, 10,15\right\} . \\
& \text { Holey Parallel Class: }\{i, i+6, i+12\}(0 \leq i \leq 5) .
\end{array}
$$

3 The main result

Lemma 3.1 There exists a $K P D_{2}(v)$ for every $v \equiv 1(\bmod 3)$ with $v \leq 49$, and for $v \in\{6 t+1: t \geq 9\}$.

Proof. We construct directly $K P D_{2}(7)$ as follows:

$$
\begin{aligned}
& \{0,1,2,3\},\{4,5,6\} ;\{0,1,4,5\},\{2,3,6\} ; \\
& \{0,2,4,6\},\{1,3,5\} ;\{0,3,5,6\},\{1,2,4\} .
\end{aligned}
$$

For the case $v \in\{6 t+1: t \geq 3\}$, we start with the $\operatorname{design} K P D(v)$ and take two copies of each block to obtain the desired design. For the cases $v=16$ and 22 , we start with the design $\operatorname{IKPD}(v, 4)$ and fill the hole with a block of size 4 to obtain the desired design. For the case $v=10$, see [11]. For the others see Appendix.

Lemma 3.2 Suppose

1. there is a two-fold Kirkman Frame of type $g_{1} g_{2} \cdots g_{m}$,
2. there is an $\operatorname{IKPD} D_{2}\left(g_{i}+w, w\right)$ for every $i<m$,
3. there is a $K P D_{2}\left(g_{m}+w\right)$.

Then there is a $K P D_{2}\left(\sum_{1 \leq i \leq m} g_{i}+w\right)$.
Proof. We start with a two-fold Kirkman Frame of type $g_{1} g_{2} \cdots g_{m}(X, \mathcal{G}, \mathcal{B})$, where $\mathcal{G}=\left\{G_{1}, G_{2}, \cdots, G_{m}\right\}$ and $\left|G_{i}\right|=g_{i}(1 \leq i \leq m)$. For $i<m$, there are g_{i} frame parallel classes missing the group G_{i}, and the same number of parallel classes in the $I K P D_{2}\left(g_{i}+w, w\right)$ which contain a block of size four; match these arbitrarily, placing the g_{i} points of the $I K P D_{2}\left(g_{i}+w, w\right)$ on the i-th group of the frame and the w points in its hole on w new points.

Next, each $I K P D_{2}\left(g_{i}+w, w\right)$ contains $w-3$ parallel classes of triple. From union of this with $w-3$ holey parallel classes of the $K P D_{2}\left(g_{m}+w\right)$, to form $w-3$ additional parallel classes. There remain g_{m} parallel classes of the $K P D_{2}\left(g_{m}+w\right)$, which can be matched arbitrarily with the g_{m} frame parallel classess of the m-th group to complete the construction.

It is easy to check that this construction gives a Kirkman Packing Design with $\sum_{1 \leq i \leq m} g_{i}+w-3$ resolution classes. The proof is completed.

Lemma 3.3 If $t \geq 5$ and $t \notin\{6,10,14,18,22\}$, then there is a $K P D_{2}(12 t+$ $3 k+4$) for $4 \leq k \leq t$.

Proof. We start with the resolvable $T D(5, t)$ (which existence see [4]) and give the $t-k$ points in one group weight 0 and the remaining points weight 1 to obtain a $\{4,5, k, t\}$-GDD of type $5^{k} 4^{t-k}$. And then give the points of the GDD weight 3 to obtain a two-fold Kirkman Frame of type $15^{k} 12^{t-k}$ by Theorem 2.2. The result then follows from Lemma 3.2, the input designs $I K P D_{2}(16,4)$ and $I K P D_{2}(19,4)$ come from Example 2.3.

Lemma 3.4 There exists a $K P D_{2}(v)$ for every $v \in\{6 t+4: 8 \leq t \leq$ $15\} \cup\{142\}$.

Proof. For $v=52$, we start with the $T D(4,4)$ and give the points weight 3 to obtain a Kirkman Frame of type 12^{4} by Theorem 2.2. The result then
follows from Lemma 3.2, the input design $K P D(16)$ comes from Lemma 3.1 .

For $v=58$, we start with the $T D(5,4)$ and give the 2 points in one group weight 0 and the remaining points weight 1 to obtain a $\{4,5\}$-GDD of type $4^{4} 2^{1}$. And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type $12^{4} 6^{1}$ by Theorem 2.2. The result then follows from Lemma 3.2, the input design $K P D(10)$ comes from Lemma 3.1.

For $v=64,70$ and 76 , we start with the $T D(5,5)$ and give the s points in one group weight 0 and the remaining points weight $1, s=5,3$ and 1 , to obtain a $\{4,5\}$-GDD of type $5^{4}(5-s)^{1}$. And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type $15^{4}(15-3 s)^{1}$ by Theorem 2.2. The result then follows from Lemma 3.2, the input design $K P D(19)$ comes from Lemma 3.1.

For $v=82,88$ and 94 , we start with the $T D(6,5)$ and give the s points in one group weight 0 and the remaining points weight $1, s=4,2$ and 0 , to obtain a $\{5,6\}$-GDD of type $5^{5}(5-s)^{1}$. And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type $15^{5}(15-3 s)^{1}$ by Theorem 2.2. The result then follows from Lemma 3.2, the input designs $K P D(7)$ and $K P D(13)$ come from Lemma 3.1.

For $v=142$, we start with the $T D(8,7)$ and give the 3 point in one group and 1 point in each of the other groups weight 0 and the remaining points weight 1 to obtain a $\{6,7,8\}$-GDD of type $6^{7} 4^{1}$. And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type $18^{7} 12^{1}$ by Theorem 2.2. The result then follows from Lemma 3.2, the input design $I K P D(22,4)$ comes from Example 2.3.

The Proof of Theorem 1.4: From Lemma 3.3 we know that the result is true for $v \geq 100$ and $v \neq 142$ or 145 . For the cases $v<100$ and $v=142$ and 145, we know that the result is true from Lemmas 3.1 and 3.4.

References

[1] A.M. Assaf and A. Hartman, Resolvable group divisible designs with block size three, Discrete Math., 77 (1989), 5-20.
[2] H. Cao and B. Du, Kirkman packing designs $K P D\left(\left\{w, s^{*}\right\}, v\right)$ and related threshold schemes, Discrete Math., to appear.
[3] A. Čerńy, P. Horák and W.D. Wallis, Kirkman's school projects, Discrete Math., 167/168 (1997), 189-196.
[4] C.J. Colbourn and J.H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, Inc., Boca Raton, 1996.
[5] C.J. Colbourn and A.C.H. Ling, Kirkman school project designs, Discrete Math., 203 (1999), 49-56.
[6] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory, 17A (1974), 275-289.
[7] N.C.K. Phillips, W.D. Wallis and R.S. Rees, Kirkman packing and covering designs, JCMCC, 28 (1998), 299-325.
[8] DR.R. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl problem, Amer. Math. Soc. Symp. Pure Math., 19 (1971), 187-204.
[9] R. Rees and D. Stinson, On resolvable group-divisible designs with block size 3, Ars Combin., 23 (1987), 107-120.
[10] D.R. Stinson, Frames for Kirkman triple systems, Discrete Math., 65 (1987), 289-300.
[11] Y. Zhang, Private communications.

Appendix

Point Set: $Z_{v-3} \cup\left\{x_{1}, x_{2}, x_{3}\right\}$
Parallel Classes: Develop the following class mod $(v-3)$:

$$
\begin{aligned}
& v=13:\{0,1,3,5\},\left\{x_{1}, 2,6\right\},\left\{x_{2}, 4,7\right\},\left\{x_{3}, 8,9\right\} \\
& v=28:\{0,1,9,20\},\{2,12,23\},\{4,16,19\} \\
&\{5,11,13\},\{6,15,18\},\{7,22,24\} \\
& v=34: \quad\left\{x_{1}, 3,21\right\},\left\{x_{2}, 7,8\right\},\left\{x_{3}, 10,14\right\} \\
&\{0,1,15,28\},\{2,17,29\},\{3,12,26\},\{4,5,7\} \\
&\{6,8,30\},\{9,19,27\},\{13,18,24\},\{14,20,25\} \\
&\left\{x_{1}, 10,22\right\},\left\{x_{2}, 11,21\right\},\left\{x_{3}, 16,23\right\} . \\
& v=40: \quad\{0,19,29,36\},\{1,4,7\},\{2,6,11\},\{8,10,21\} \\
&\{12,30,35\},\{13,23,25\},\{15,28,32\} \\
&\{16,30,31\},\{17,22,33\},\{18,27,34\} \\
&\left\{x_{1}, 3,9\right\},\left\{x_{2}, 5,24\right\},\left\{x_{3}, 14,26\right\} . \\
&\{0,1,3,7\},\{2,10,15\},\{4,13,23\},\{5,16,28\} \\
&\{6,20,35\},\{8,24,41\},\{9,27,29\},\{11,32,33\} \\
&\{12,36,39\},\{18,22,31\},\{19,30,37\},\{21,26,38\} \\
&\left\{x_{1}, 14,42\right\},\left\{x_{2}, 17,25\right\},\left\{x_{3}, 34,40\right\} .
\end{aligned}
$$

