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Abstract 

This article investigates the spectrum of two-fold Kirkman Pack
ing Designs and it is found that it contains all positive integers v ~ 3 
except 5, 6. 

1 Introduction 

Let X be a set of v points. A packing of X is a collection of subsets of X 
( called blocks) such that any pair of distinct points from X occur together in 
most .>.. block in the collection. A packing is called resolvable if its block set 
admits a partition into parallel classes, each parallel class being a partition 
of the point set X. 

A Kirkman Triple System KTS(v) is a collection T of 3-subsets of X 
(triples) such that any pair of distinct elements from X occur together in 
exactly one triple, and such that T admits a partition into v 21 parallel 
classes. Thus, a KTS(v) is both a resolvable packing with.>..= 1. It is well 
known that a KTS(v) exists if and only if v = 3 (mod 6) (see, for example, 
[8]). 

A Nearly Kirkman Triple System N KTS(v) is a collection T of 3-
subsets of X (triples) such that any pair of distinct elements from X occur 
together in at most one triple, and such that T admits a partition into ¥ - 1 
parallel classes. Thus an N KTS(v) is both a resolvable packing with.>..= 1. 
It is well known that an N KTS(v) exists if and only if v = 0 (mod 6) and 
v 2:'.: 18 (see, for example, [9]). 

Cerny, Horak and Wallis [3] introduced a particular generalization of 
Kirkman Triple System and Nearly Kirkman Triple System to the case 
where v is not a multiple of 3. They require all blocks to be of size three 
except that, each resolution class should contain either one block of size 
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two (when v = 2 (mod 3)) or one block of size four (when v = 1 (mod 3)). 
They define a Kirkman packing design KP D( v) to be a resolvable packing 
of a v-set by the maximum possible number of resolution classes of this 
type. 

Some simple computation shows: 

• a KP D(v) contains at most~ resolution classes (when v = 2 (mod 6) ) 
or v21 resolution classes (when v = 5 (mod 6)). 

• a KP D(v) contains at most 9 resolution classes (when v = 1 (mod 6)) 
or~ - 2 resolution classes (when v = 4 (mod 6)). 

Kirkman packing design have been studied by many researchers (see, 
for example, [3], [5] and [7]), the result was updated by Cao and the author 
recent ly. 

Theorem 1.1 ([2]) Th ere is a KP D ( v) for the following cases: 

1. v = 2 (mod 6), 

2. v:=5 (mod6) withv2'.'.17 , 

3. v = 4 (mod 6) with v 2'.'. 16, and 

4. v = 1 (mod 6) with v 2'.'. 19. 

In this article, we shall be restricting our attention to the case >. = 2. A 
two-fold Kirkman Triple System KTS2(v) is a collection T of 3-subsets of 
X (triples) such that any pair of distinct elements from X occur together 
in exactly two t riple, and such that T admits a partition into v - 1 paral
lel classes. Thus, a KTS2 (v) is both a resolvable packing with >. = 2. It 
is well known that a KTS2 (v) exists if and only if v = 0 (mod 3) and v =f 6. 

Theorem 1.2 ([6]) There is a KTS2 (v) if and only if v = 0 (mod 3) and 
V /6. 

The problem we now study in this ar t icle is t he two-fold Kirkman Pack
ing Designs analogous of t he Cerny, Horak and Wallis [3]. We introduced 
the two-fold resolvable packing which requires all blocks to be of size t hree 
except that, each resolution class should contain either one block of size 
two (when v = 2 (mod 3)) or one block of size four (when v = 1 (mod 3)) . 
W e define a two-fold Kirkman packing design KPD2 (v) to be a resolvable 
packing of av-set by the maximum possible number of resolution classes of 
this type. 

Some simple computation shows: 

• a KP D2(v) contains at most v resolution classes (when v = 2 (mod 3)). 
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• a KPD2(v) contains at most v - 3 resolution classes (when v = l 
(mod 3)) . 

Take a two-fold Kirkman Triple System on v+l points KTS2(v+l) and 
delete one point, we can dispense with the case v = 2 (mod 3) relatively 
quickly. 

Theorem 1.3 There is a KPD2(v) for every v = 2 (mod 3) except for 
V = 5. 

Proof. We only need prove there is no KP D2 (5). Suppose there exists a 
KP .Di(5), then there exists a parallel class of blocks, say {1, 3}, {O, 2, 4}. 
The total number of parallel classes is 5, and accordingly, there are 4 parallel 
classes in addition to the mentioned parallel class. Each such parallel class 
contains one block of size two and one block of size three. If the pair of 
elements 1 and 3 is a leave or in a block of size two. Notice that each 
block of size three in the remaining 4 parallel classes must contain a pair 
of even elements, but there are only 3 such pairs remained. Consequently 
the construction is impossible. If the pair of elements 1 and 3 be in a 
block of size three. Notice that the block of size two in the parallel class 
must contain a pair of even elements and then each block of size three in 
the remaining 3 parallel classes must contain a pair of even elements, but 
there are only 2 such pairs remained. Consequently the construction is 
impossible . 

In the remainder of this article we shall investigate the existence of 
KPD2(v) for every v = l (mod 3), and it is found that it contains all pos
itive integers v = 1 (mod 3). That is, we will prove 

Theorem 1.4 There is a KPD2(v) for every v = l (mod 3). 

2 Preliminaries 

In this section we shall define some of the auxiliary designs and some of the 
fundamental results which will be used later. The reader is refered to [4] 
for more information on designs, and, in particular, group divisible designs 
and frames. 

Let K and M be sets of positive integers. A group divisible design 
(GDD) GD(K,>.. , M;v) is a triple (X,9,B) where 

1. X is a v-set ( of po in Ls), 

2. 9 is a collection of nonempty subsets of X (called groups) with car
dinality in M and which partition X , 
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3. B is a collection of subsets of X ( called blocks) with cardinality at 
least two in K, 

4. no block intersects any group in more than one point, 

5. each pair set { x, y} of points not contained in a group is contained in 
exactly >. blocks. 

The group-type (or type) of the GDD (X, Q, B) is the multiset of sizes 
IGI of the G E g and we usually use the "exponential" notation for its 
description: group-type 1i2j3k •• • denotes i occurences of groups of size 1, 
j occurences of groups of size 2, and so on. 

A GDD (K, >., M; v) is resolvable if the blocks of B can be partitioned 
into parallel classes. 

We need to establish some more notations . We shall denote by GD(k, A, 
m;v) a GD( {k}, A, {m}; v). If m </. M, the GD(K, A, MU {m* }; v) denotes 
a GD(K, A, MU{m}; v) which contains a unique group of size m and if m E 
M, then a GD(K, A, MU {m* }; v) is a GD(K, A, M; v) containing at least 
one group of size m. We shall sometimes refer to a GDD GD(K, 1, M;v), 
(X,Q,B) as a K-GDD . A transversal design TD(k,n) is a {k}-GDD of 
type nk. It is well known that a T D(k, n) is equivalent to k - 2 mutually 
orthogonal Latin squares of order n. 

A GDD (X, Q, B) is called frame resolvable if its block set B admits 
a partition into holey parallel classes, each holey parallel class being a 
partition of X -Gj for some Gj E Q. A Kirkman Frame is a frame resolvable 
GDD in which all the blocks have size three. It is a simple consequence 
of the define that to each group G j in a Kirkman Frame ( X, g, B) there 

correspond exactly >- i~; I holey parallel classes of triples that partition X -
Gj . The groups in a Kirman Frame are often referred to as holes . 

For the two-fold Kirkman Frame we have 

Theorem 2.1 ([1]) A two-fold Kirkman Frame of type gu exists if and only 
if v 2: 4 and g(u - l) = 0 (mod 3). 

We now illustrate the main technique that we will be using throughout 
the remainder of the article, which is a variant of Stinson 's "Filling in Holes" 
construction. In applying the "Filling in Holes" construction, we will re
quire two-fold Kirkman Frames in which the blocks are not necessarily all of 
the same size. To get these, we use the following "Weighting Construction" . 

Theorem 2.2 ([10]) Suppose that there is a K-GDD of type 9~1 g~2 
• • • g~ 

and that for each k E K there is a two-fold Kirkman Frame of type hk. 
Then there is a two-fold Kirkman Frame of type (hg 1 )t1 (hg2 )t2 • • • (hgm)t,... 
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Finally, as the "Filling in Holes" construction will generally involve ad
joining more than one infinite point to a Kirkman Frame, we will require the 
notation of an incomplete two-fold Kirkman Packing Design. Let v = w = l 
(mod 3), an incomplete two-fold Kirkman Packing Design, IKPD2(v,w), 
is a triple (X, Y, B) where X is a set of v elements, Y is a subset of X of 
size w (Y is called the hole) and l3 is a collection of subsets of X (blocks), 
each of size 3 or 4, such that 

1. I Y n B, I $ 1 for all b, E l3, 

2. any pair of distinct elements in X occur together either in Y or in at 
most two blocks, 

3. l3 admits a partition v-w parallel classes on X, each of which contains 
one block of size four, and a further w - 3 holey parallel classes of 
triple on X \ Y . 

4. each element of X \ Y is contained in exactly four blocks of size four. 

Example 2.3 There is an IK P D2(v, 4) for v E {16, 19, 22} . 

Point Set: X = Z,,_4 UY, Y = {a,x1,x2,x3}. 
Parallel Classes: Develop the following class mod ( v - 4): 

V = 16: 

V = 19: 

V = 22: 

{0,1,2,6},{a,3,5},{x1,4,9},{x2,7,10},{x3,8, 11}. 
Holey Parallel Class: {i, i + 4, i + 8}(0 $ i $ 3). 

{0, 1,4,11},{3,6,12},{a,2,9}, 
{x1,5,7},{x2,8,l0},{x3,l3,14}. 
Holey Parallel Class: {i,i + 5,i + 10}(0 $ i $ 4). 

{0,l,2,4},{3,6,13},{7,11,16}, {a,5,12}, 
{x1,8,14},{x2,9,17},{x3,l0,l5}. 
Holey Parallel Class: {i,i + 6,i + 12}(0 $ i $ 5) . 

3 The main result 

Lemma 3.1 There exists a KPD2(v) for every v = 1 (mod 3) with v $ 49, 
and for v E {6t + 1 : t ~ 9}. 

Proof. We construct directly KP D2 (7) as follows : 

{0,1,2,3},{4,5,6};{0, 1,4,5},{2,3,6}; 
{0, 2,4,6},{1,3, 5};{0,3,5,6},{1,2,4}. 
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For the case v E {6t + 1 : t ~ 3}, we start with the design KPD(v) and 
take two copies of each block to obtain the desired design. For the cases 
v = 16 and 22, we start with the design I KP D(v, 4) and fill the hole with 
a block of size 4 to obtain the desired design. For the case v = 10, see [11). 
For the others see Appendix. 

Lemma 3.2 Suppose 

l. there is a two-fold Kirkman Frame of type 9192 · · · 9m, 

2. there is an IK P D2(9i + w, w) for every i < m, 

3. there is a KP D2(9m + w). 

Then there is a KPD2C£ 1s_i5_m 9i + w) . 

Proof. We start with a two-fold Kirkman Frame of type 9 192 · · · 9m (X, Q, B), 
where g = {G1, G2, · ··,Gm} and IGil = 9i (l ~ i ~ m) . For i < m, there 
are 9i frame parallel classes missing the group Ci, and the same number of 
parallel classes in the I KP D2 (9i + w, w) which contain a block of size four; 
match these arbitrarily, placing the 9i points of the I KP D2(9i + w, w) on 
the i-th group of the frame and thew points in its hole on w new points. 

Next, each IKPD2(9i +w,w) contains w - 3 parallel classes of triple. 
From union of this with w - 3 holey parallel classes of the KP D 2(gm +w), 
to form w - 3 additional parallel classes. There remain 9,,,,. parallel classes 
of the KP D2(9m +w), which can be matched arbitrarily with the 9m frame 
parallel classess of the m-th group to complete the construction. 

It is easy to check that this construction gives a Kirkman Packing De
sign with E 1s_i5_m 9i + w - 3 resolution classes. The proof is completed. 

Lemma 3.3 If t ~ 5 and t (/. {6, 10, 14, 18, 22}, then there is a KP D2(12t+ 
3k + 4) for 4 ~ k ~ t . 

Proof. We start with the resolvable T D(5, t) (which existence see [4)) and 
give the t - k points in one group weight O and the remaining points weight 
1 to obtain a {4,5,k,t}-GDD of type 5k4t - k_ And then give the points of 
the GOD weight 3 to obtain a two-fold Kirkman Frame of type 15k12t-k by 
Theorem 2.2. The result then follows from Lemma 3.2, the input designs 
IKPD2(16,4) and IKPD2(19,4) come from Example 2.3. 

Lemma 3.4 There exists a KPD2(v) for every v E {6t + 4 8 ~ t ~ 
15} U {142}. 

Proof. For v = 52, we start with the TD( 4, 4) and give the points weight 
3 to obtain a Kirkman Frame of type 124 by Theorem 2.2. The result then 
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follows from Lemma 3.2, the input design KP D(l6) comes from Lemma 
3.1. 

For v = 58, we start with the T D(5, 4) and give the 2 points in one 
group weight 0 and the remaining points weight 1 to obtain a {4, 5}-GDD 
of type 44 21 . And then give the points of the GDD weight 3 to obtain 
a Kirkman Frame of type 124 61 by Theorem 2.2. The result then follows 
from Lemma 3.2, the input design KP D(l0) comes from Lemma 3.1. 

For v = 64, 70 and 76, we start with the T D(5, 5) and give the s points 
in one group weight 0 and the remaining points weight 1, s = 5, 3 and 1, 
to obtain a {4,5}-GDD of type 54 (5 - s) 1 . And then give the points of 
the GDD weight 3 to obtain a Kirkman Frame of type 154 (15 - 3s) 1 by 
Theorem 2.2. The result then follows from Lemma 3.2, the input design 
KP D(l9) comes from Lemma 3.1. 

For v = 82, 88 and 94, we start with t he T D (6, 5) and give the s points 
in one group weight 0 and the remaining points weight 1, s = 4, 2 and 0, 
to obtain a {5, 6}-GDD of type 55 (5 - s) 1 . And then give t he points of 
the GDD weight 3 to obtain a Kirkman Frame of type 155 (15 - 3s)1 by 
Theorem 2.2. The result then follows from Lemma 3.2, the input designs 
KPD(7) and KPD(l3 ) come from Lemma 3.1. 

For v = 142, we start wi th the T D (8, 7) and give t he 3 point in one 
group and 1 point in each of the other groups weight 0 and the remaining 
points weight 1 to obtain a {6, 7, 8}-GDD of type 67 41 . And then give the 
points of the GDD weight 3 to obtain a Kirkman Frame of type 187 121 by 
Theorem 2.2. The result t hen follows from Lemma 3.2, the input design 
I KP D(22, 4) comes from Example 2.3. 

The Proof of Theorem 1.4: From Lemma 3.3 we know that the result 
is true for v ~ 100 and v -=I= 142 or 145. For the cases v < 100 and v = 142 
and 145, we know that the result is t rue from Lemmas 3.1 and 3.4. 

References 

[1] A.M. Assaf and A. Hartman, Resolvable group divisible designs with 
block size three, Discrete Math., 77 (1989), 5-20. 

[2] H. Cao and B. Du, Kirkman packing designs KPD ({w,s*},v) and 
related threshold schemes, Discrete Math., to appear. 

[3] A. Cerny, P. Horak and W .D. Wallis, Kirkman's school projects, Dis
crete Math., 167 /168 (1997), 189-196. 

[4] C .J . Colbourn and J .H. Dinitz, The CRC handbook of combinatorial 
designs, CRC Press, Inc., Boca Raton, 1996. 

25 



[5] C.J . Colbourn and A.C .H. Ling, Kirkman school project designs, Dis
crete Math., 203 (1999), 49- 56. 

[6] H. Hanani, On resolvable balanced incomplet e block designs, J. Com
bin. Theory, 17 A (1974), 275- 289. 

[7] N.C.K. Phillips, W .D. Wallis and R.S . Rees, Kirkman packing and 
covering designs, JCMCC, 28 (1998), 299-325. 

[8] DR.R . Ray-Chaudhuri and R.M. Wilson , Solut ion of Kirkman 's school
girl problem, Amer. Math. Soc. Symp . Pure Math., 19 (1971 ), 187- 204 . 

[9] R. Rees and D. Stinson, On resolvable group-divisible designs with 
block size 3, Ars Combin., 23 (1987) , 107- 120. 

[10] D.R. Stinson, Frames for Kirkman t riple systems, Discrete Math. , 65 
(1987), 289-300. 

[11] Y. Zhang, Private communications. 

Appendix 

Point Set: Z v-3 U {xi, x2 , X3} 
Parallel Classes: Develop the following class mod ( v - 3) : 

V = 13: 
V = 28 : 

V = 34: 

V = 40 : 

V =46 : 

{0,1,3,5},{x1,2,6},{x2,4, 7}, {x3,8,9} . 
{0,1,9,20},{2, 12,23},{4, 16,19}, 
{5,11, 13},{6,15,18},{7,22,24}, 

{x1 , 3, 21},{x2,7, 8},{x3 , lO, 14} . 
{0,1,15,28},{2, 17,29}, {3,12, 26},{4,5,7}, 
{6,8,30},{9, 19,27},{13,18,24},{14,20, 25}, 
{x1, 10,22} , {x2,ll,21} , {x3, 16,23} . 

{0,19,29,36},{1,4, 7},{2,6, 11},{8,10, 21} , 
{12,30, 35},{13,23,25},{15,28,32}, 
{16,30,31},{17,22, 33},{18,27,34} , 

{x1,3,9},{x2,5,24}, {x3,l4,26} . 
{0,1,3,7},{2,10,15},{4, 13,23},{5,16,28}, 
{6,20,35},{8,24,41},{9,27,29},{11,32,33}, 
{12,36,39},{18,22,31},{19,30,37},{21,26,38}, 

{x1,14,42} , {x2,17,25},{x3,34,40} . 
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