Two-fold Kirkman Packing Designs

Beiliang Du

Department of Mathematics Suzhou University Suzhou 215006 P.R. China

Abstract

This article investigates the spectrum of two-fold Kirkman Packing Designs and it is found that it contains all positive integers $v \ge 3$ except 5,6.

1 Introduction

Let X be a set of v points. A packing of X is a collection of subsets of X (called blocks) such that any pair of distinct points from X occur together in most λ block in the collection. A packing is called resolvable if its block set admits a partition into parallel classes, each parallel class being a partition of the point set X.

A Kirkman Triple System KTS(v) is a collection \mathcal{T} of 3-subsets of X (triples) such that any pair of distinct elements from X occur together in exactly one triple, and such that \mathcal{T} admits a partition into $\frac{v-1}{2}$ parallel classes. Thus, a KTS(v) is both a resolvable packing with $\lambda = 1$. It is well known that a KTS(v) exists if and only if $v \equiv 3 \pmod{6}$ (see, for example, [8]).

A Nearly Kirkman Triple System NKTS(v) is a collection \mathcal{T} of 3subsets of X (triples) such that any pair of distinct elements from X occur together in at most one triple, and such that \mathcal{T} admits a partition into $\frac{v}{2}-1$ parallel classes. Thus an NKTS(v) is both a resolvable packing with $\lambda = 1$. It is well known that an NKTS(v) exists if and only if $v \equiv 0 \pmod{6}$ and $v \geq 18$ (see, for example, [9]).

Čerńy, Horák and Wallis [3] introduced a particular generalization of Kirkman Triple System and Nearly Kirkman Triple System to the case where v is not a multiple of 3. They require all blocks to be of size three except that, each resolution class should contain either one block of size

Bulletin of the ICA, Volume 43 (2005), 19-26

two (when $v \equiv 2 \pmod{3}$) or one block of size four (when $v \equiv 1 \pmod{3}$). They define a Kirkman packing design KPD(v) to be a resolvable packing of a *v*-set by the maximum possible number of resolution classes of this type.

Some simple computation shows:

- a KPD(v) contains at most $\frac{v}{2}$ resolution classes (when $v \equiv 2 \pmod{6}$) or $\frac{v-1}{2}$ resolution classes (when $v \equiv 5 \pmod{6}$).
- a KPD(v) contains at most $\frac{v-3}{2}$ resolution classes (when $v \equiv 1 \pmod{6}$) or $\frac{v}{2} 2$ resolution classes (when $v \equiv 4 \pmod{6}$).

Kirkman packing design have been studied by many researchers (see, for example, [3], [5] and [7]), the result was updated by Cao and the author recently.

Theorem 1.1 ([2]) There is a KPD(v) for the following cases:

1. $v \equiv 2 \pmod{6}$,

2. $v \equiv 5 \pmod{6}$ with $v \ge 17$,

3. $v \equiv 4 \pmod{6}$ with $v \ge 16$, and

4. $v \equiv 1 \pmod{6}$ with $v \geq 19$.

In this article, we shall be restricting our attention to the case $\lambda = 2$. A two-fold Kirkman Triple System $KTS_2(v)$ is a collection \mathcal{T} of 3-subsets of X (triples) such that any pair of distinct elements from X occur together in exactly two triple, and such that \mathcal{T} admits a partition into v - 1 parallel classes. Thus, a $KTS_2(v)$ is both a resolvable packing with $\lambda = 2$. It is well known that a $KTS_2(v)$ exists if and only if $v \equiv 0 \pmod{3}$ and $v \neq 6$.

Theorem 1.2 ([6]) There is a $KTS_2(v)$ if and only if $v \equiv 0 \pmod{3}$ and $v \neq 6$.

The problem we now study in this article is the two-fold Kirkman Packing Designs analogous of the Čerńy, Horák and Wallis [3]. We introduced the two-fold resolvable packing which requires all blocks to be of size three except that, each resolution class should contain either one block of size two (when $v \equiv 2 \pmod{3}$) or one block of size four (when $v \equiv 1 \pmod{3}$). We define a two-fold Kirkman packing design $KPD_2(v)$ to be a resolvable packing of a v-set by the maximum possible number of resolution classes of this type.

Some simple computation shows:

• a $KPD_2(v)$ contains at most v resolution classes (when $v \equiv 2 \pmod{3}$).

• a $KPD_2(v)$ contains at most v - 3 resolution classes (when $v \equiv 1 \pmod{3}$).

Take a two-fold Kirkman Triple System on v+1 points $KTS_2(v+1)$ and delete one point, we can dispense with the case $v \equiv 2 \pmod{3}$ relatively quickly.

Theorem 1.3 There is a $KPD_2(v)$ for every $v \equiv 2 \pmod{3}$ except for v = 5.

Proof. We only need prove there is no $KPD_2(5)$. Suppose there exists a $KPD_2(5)$, then there exists a parallel class of blocks, say $\{1,3\}$, $\{0,2,4\}$. The total number of parallel classes is 5, and accordingly, there are 4 parallel classes in addition to the mentioned parallel class. Each such parallel class contains one block of size two and one block of size three. If the pair of elements 1 and 3 is a leave or in a block of size two. Notice that each block of size three in the remaining 4 parallel classes must contain a pair of even elements, but there are only 3 such pairs remained. Consequently the construction is impossible. If the pair of elements 1 and 3 be in a block of size three. Notice that the block of size two in the parallel class must contain a pair of even elements and then each block of size three in the remaining 3 parallel classes must contain a pair of even elements, but there are only 2 such pairs remained. Consequently the construction is impossible.

In the remainder of this article we shall investigate the existence of $KPD_2(v)$ for every $v \equiv 1 \pmod{3}$, and it is found that it contains all positive integers $v \equiv 1 \pmod{3}$. That is, we will prove

Theorem 1.4 There is a $KPD_2(v)$ for every $v \equiv 1 \pmod{3}$.

2 Preliminaries

In this section we shall define some of the auxiliary designs and some of the fundamental results which will be used later. The reader is referred to [4] for more information on designs, and, in particular, group divisible designs and frames.

Let K and M be sets of positive integers. A group divisible design (GDD) $GD(K, \lambda, M; v)$ is a triple $(X, \mathcal{G}, \mathcal{B})$ where

- 1. X is a v-set (of points),
- 2. G is a collection of nonempty subsets of X (called groups) with cardinality in M and which partition X,

- 3. \mathcal{B} is a collection of subsets of X (called blocks) with cardinality at least two in K,
- 4. no block intersects any group in more than one point,
- 5. each pair set $\{x, y\}$ of points not contained in a group is contained in exactly λ blocks.

The group-type (or type) of the GDD $(X, \mathcal{G}, \mathcal{B})$ is the multiset of sizes |G| of the $G \in \mathcal{G}$ and we usually use the "exponential" notation for its description: group-type $1^{i}2^{j}3^{k}\cdots$ denotes *i* occurences of groups of size 1, *j* occurences of groups of size 2, and so on.

A GDD $(K, \lambda, M; v)$ is resolvable if the blocks of \mathcal{B} can be partitioned into parallel classes.

We need to establish some more notations. We shall denote by $GD(k, \lambda, m; v) \ge GD(\{k\}, \lambda, \{m\}; v)$. If $m \notin M$, the $GD(K, \lambda, M \cup \{m*\}; v)$ denotes a $GD(K, \lambda, M \cup \{m\}; v)$ which contains a unique group of size m and if $m \in M$, then a $GD(K, \lambda, M \cup \{m*\}; v)$ is a $GD(K, \lambda, M; v)$ containing at least one group of size m. We shall sometimes refer to a GDD GD(K, 1, M; v), $(X, \mathcal{G}, \mathcal{B})$ as a K-GDD. A transversal design TD(k, n) is a $\{k\}$ -GDD of type n^k . It is well known that a TD(k, n) is equivalent to k - 2 mutually orthogonal Latin squares of order n.

A GDD $(X, \mathcal{G}, \mathcal{B})$ is called frame resolvable if its block set \mathcal{B} admits a partition into holey parallel classes, each holey parallel class being a partition of $X-G_j$ for some $G_j \in \mathcal{G}$. A Kirkman Frame is a frame resolvable GDD in which all the blocks have size three. It is a simple consequence of the define that to each group G_j in a Kirkman Frame $(X, \mathcal{G}, \mathcal{B})$ there correspond exactly $\frac{\lambda |G_j|}{2}$ holey parallel classes of triples that partition $X - G_j$. The groups in a Kirman Frame are often referred to as holes.

For the two-fold Kirkman Frame we have

Theorem 2.1 ([1]) A two-fold Kirkman Frame of type g^u exists if and only if $v \ge 4$ and $g(u-1) \equiv 0 \pmod{3}$.

We now illustrate the main technique that we will be using throughout the remainder of the article, which is a variant of Stinson's "Filling in Holes" construction. In applying the "Filling in Holes" construction, we will require two-fold Kirkman Frames in which the blocks are not necessarily all of the same size. To get these, we use the following "Weighting Construction".

Theorem 2.2 ([10]) Suppose that there is a K-GDD of type $g_1^{t_1}g_2^{t_2}\cdots g_m^{t_m}$ and that for each $k \in K$ there is a two-fold Kirkman Frame of type h^k . Then there is a two-fold Kirkman Frame of type $(hg_1)^{t_1}(hg_2)^{t_2}\cdots (hg_m)^{t_m}$. Finally, as the "Filling in Holes" construction will generally involve adjoining more than one infinite point to a Kirkman Frame, we will require the notation of an incomplete two-fold Kirkman Packing Design. Let $v \equiv w \equiv 1$ (mod 3), an incomplete two-fold Kirkman Packing Design, $IKPD_2(v, w)$, is a triple (X, Y, \mathcal{B}) where X is a set of v elements, Y is a subset of X of size w (Y is called the hole) and \mathcal{B} is a collection of subsets of X (blocks), each of size 3 or 4, such that

- 1. $|Y \cap B_i| \leq 1$ for all $b_i \in \mathcal{B}$,
- 2. any pair of distinct elements in X occur together either in Y or in at most two blocks,
- 3. B admits a partition v-w parallel classes on X, each of which contains one block of size four, and a further w-3 holey parallel classes of triple on $X \setminus Y$.
- 4. each element of $X \setminus Y$ is contained in exactly four blocks of size four.

Example 2.3 There is an $IKPD_2(v, 4)$ for $v \in \{16, 19, 22\}$.

Point Set: $X = Z_{v-4} \cup Y$, $Y = \{a, x_1, x_2, x_3\}$. Parallel Classes: Develop the following class mod (v-4):

v = 16:	$\{0, 1, 2, 6\}, \{a, 3, 5\}, \{x_1, 4, 9\}, \{x_2, 7, 10\}, \{x_3, 8, 11\}.$
	Holey Parallel Class: $\{i, i+4, i+8\}(0 \le i \le 3)$.
v = 19:	$\{0, 1, 4, 11\}, \{3, 6, 12\}, \{a, 2, 9\},\$
	${x_1, 5, 7}, {x_2, 8, 10}, {x_3, 13, 14}.$
	Holey Parallel Class: $\{i, i+5, i+10\}(0 \le i \le 4)$.
v = 22:	$\{0, 1, 2, 4\}, \{3, 6, 13\}, \{7, 11, 16\}, \{a, 5, 12\},$
	$\{x_1, 8, 14\}, \{x_2, 9, 17\}, \{x_3, 10, 15\}.$
	Holey Parallel Class: $\{i, i+6, i+12\}(0 \le i \le 5)$.

3 The main result

Lemma 3.1 There exists a $KPD_2(v)$ for every $v \equiv 1 \pmod{3}$ with $v \leq 49$, and for $v \in \{6t + 1 : t \geq 9\}$.

Proof. We construct directly $KPD_2(7)$ as follows:

 $\{0, 1, 2, 3\}, \{4, 5, 6\}; \{0, 1, 4, 5\}, \{2, 3, 6\};$ $\{0, 2, 4, 6\}, \{1, 3, 5\}; \{0, 3, 5, 6\}, \{1, 2, 4\}.$ For the case $v \in \{6t + 1 : t \geq 3\}$, we start with the design KPD(v) and take two copies of each block to obtain the desired design. For the cases v = 16 and 22, we start with the design IKPD(v, 4) and fill the hole with a block of size 4 to obtain the desired design. For the case v = 10, see [11]. For the others see Appendix.

Lemma 3.2 Suppose

- 1. there is a two-fold Kirkman Frame of type $g_1g_2\cdots g_m$,
- 2. there is an $IKPD_2(g_i + w, w)$ for every i < m,
- 3. there is a $KPD_2(g_m + w)$.

Then there is a $KPD_2(\sum_{1 \le i \le m} g_i + w)$.

Proof. We start with a two-fold Kirkman Frame of type $g_1g_2 \cdots g_m(X, \mathcal{G}, \mathcal{B})$, where $\mathcal{G} = \{G_1, G_2, \cdots, G_m\}$ and $|G_i| = g_i \ (1 \le i \le m)$. For i < m, there are g_i frame parallel classes missing the group G_i , and the same number of parallel classes in the $IKPD_2(g_i + w, w)$ which contain a block of size four; match these arbitrarily, placing the g_i points of the $IKPD_2(g_i + w, w)$ on the *i*-th group of the frame and the w points in its hole on w new points.

Next, each $IKPD_2(g_i + w, w)$ contains w - 3 parallel classes of triple. From union of this with w - 3 holey parallel classes of the $KPD_2(g_m + w)$, to form w - 3 additional parallel classes. There remain g_m parallel classes of the $KPD_2(g_m + w)$, which can be matched arbitrarily with the g_m frame parallel classes of the *m*-th group to complete the construction.

It is easy to check that this construction gives a Kirkman Packing Design with $\sum_{1 \le i \le m} g_i + w - 3$ resolution classes. The proof is completed.

Lemma 3.3 If $t \ge 5$ and $t \notin \{6, 10, 14, 18, 22\}$, then there is a $KPD_2(12t + 3k + 4)$ for $4 \le k \le t$.

Proof. We start with the resolvable TD(5, t) (which existence see [4]) and give the t-k points in one group weight 0 and the remaining points weight 1 to obtain a $\{4, 5, k, t\}$ -GDD of type $5^k 4^{t-k}$. And then give the points of the GDD weight 3 to obtain a two-fold Kirkman Frame of type $15^k 12^{t-k}$ by Theorem 2.2. The result then follows from Lemma 3.2, the input designs $IKPD_2(16, 4)$ and $IKPD_2(19, 4)$ come from Example 2.3.

Lemma 3.4 There exists a $KPD_2(v)$ for every $v \in \{6t + 4 : 8 \le t \le 15\} \cup \{142\}$.

Proof. For v = 52, we start with the TD(4, 4) and give the points weight 3 to obtain a Kirkman Frame of type 12^4 by Theorem 2.2. The result then

follows from Lemma 3.2, the input design KPD(16) comes from Lemma 3.1.

For v = 58, we start with the TD(5,4) and give the 2 points in one group weight 0 and the remaining points weight 1 to obtain a $\{4,5\}$ -GDD of type 4^42^1 . And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type 12^46^1 by Theorem 2.2. The result then follows from Lemma 3.2, the input design KPD(10) comes from Lemma 3.1.

For v = 64, 70 and 76, we start with the TD(5,5) and give the *s* points in one group weight 0 and the remaining points weight 1, s = 5, 3 and 1, to obtain a $\{4,5\}$ -GDD of type $5^4(5-s)^1$. And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type $15^4(15-3s)^1$ by Theorem 2.2. The result then follows from Lemma 3.2, the input design KPD(19) comes from Lemma 3.1.

For v = 82, 88 and 94, we start with the TD(6, 5) and give the *s* points in one group weight 0 and the remaining points weight 1, s = 4, 2 and 0, to obtain a $\{5, 6\}$ -GDD of type $5^5(5 - s)^1$. And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type $15^5(15 - 3s)^1$ by Theorem 2.2. The result then follows from Lemma 3.2, the input designs KPD(7) and KPD(13) come from Lemma 3.1.

For v = 142, we start with the TD(8,7) and give the 3 point in one group and 1 point in each of the other groups weight 0 and the remaining points weight 1 to obtain a $\{6, 7, 8\}$ -GDD of type 6^74^1 . And then give the points of the GDD weight 3 to obtain a Kirkman Frame of type 18^712^1 by Theorem 2.2. The result then follows from Lemma 3.2, the input design IKPD(22, 4) comes from Example 2.3.

The Proof of Theorem 1.4: From Lemma 3.3 we know that the result is true for $v \ge 100$ and $v \ne 142$ or 145. For the cases v < 100 and v = 142 and 145, we know that the result is true from Lemmas 3.1 and 3.4.

References

- A.M. Assaf and A. Hartman, Resolvable group divisible designs with block size three, *Discrete Math.*, 77 (1989), 5-20.
- [2] H. Cao and B. Du, Kirkman packing designs $KPD(\{w, s^*\}, v)$ and related threshold schemes, *Discrete Math.*, to appear.
- [3] A. Čerńy, P. Horák and W.D. Wallis, Kirkman's school projects, Discrete Math., 167/168 (1997), 189–196.
- [4] C.J. Colbourn and J.H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, Inc., Boca Raton, 1996.

- [5] C.J. Colbourn and A.C.H. Ling, Kirkman school project designs, *Discrete Math.*, 203 (1999), 49–56.
- [6] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory, 17A (1974), 275-289.
- [7] N.C.K. Phillips, W.D. Wallis and R.S. Rees, Kirkman packing and covering designs, JCMCC, 28 (1998), 299–325.
- [8] DR.R. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl problem, Amer. Math. Soc. Symp. Pure Math., 19 (1971), 187–204.
- [9] R. Rees and D. Stinson, On resolvable group-divisible designs with block size 3, Ars Combin., 23 (1987), 107-120.
- [10] D.R. Stinson, Frames for Kirkman triple systems, Discrete Math., 65 (1987), 289–300.
- [11] Y. Zhang, Private communications.

Appendix

Point Set: $Z_{v-3} \cup \{x_1, x_2, x_3\}$ Parallel Classes: Develop the following class mod (v-3):

v = 13:	$\{0, 1, 3, 5\}, \{x_1, 2, 6\}, \{x_2, 4, 7\}, \{x_3, 8, 9\}.$
v = 28:	$\{0, 1, 9, 20\}, \{2, 12, 23\}, \{4, 16, 19\},$
	$\{5, 11, 13\}, \{6, 15, 18\}, \{7, 22, 24\},$
	${x_1, 3, 21}, {x_2, 7, 8}, {x_3, 10, 14}.$
v = 34:	$\{0, 1, 15, 28\}, \{2, 17, 29\}, \{3, 12, 26\}, \{4, 5, 7\},$
	$\{6, 8, 30\}, \{9, 19, 27\}, \{13, 18, 24\}, \{14, 20, 25\},$
	$\{x_1, 10, 22\}, \{x_2, 11, 21\}, \{x_3, 16, 23\}.$
v = 40:	$\{0, 19, 29, 36\}, \{1, 4, 7\}, \{2, 6, 11\}, \{8, 10, 21\},$
	$\{12, 30, 35\}, \{13, 23, 25\}, \{15, 28, 32\},$
	$\{16, 30, 31\}, \{17, 22, 33\}, \{18, 27, 34\},\$
	${x_1, 3, 9}, {x_2, 5, 24}, {x_3, 14, 26}.$
v = 46:	$\{0, 1, 3, 7\}, \{2, 10, 15\}, \{4, 13, 23\}, \{5, 16, 28\},$
	$\{6, 20, 35\}, \{8, 24, 41\}, \{9, 27, 29\}, \{11, 32, 33\},$
	$\{12, 36, 39\}, \{18, 22, 31\}, \{19, 30, 37\}, \{21, 26, 38\},\$
	$\{x_1, 14, 42\}, \{x_2, 17, 25\}, \{x_3, 34, 40\}.$