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1 Introduction

The fact that complex polynomials can be written in two forms,

k
H(£+zi) =& +o e+ +on,

=1

can be used to define a mapping N(z) = o from C* to C*, known as the
Newton mapping. It is clearly surjective and turns out to have particularly
useful properties regarding its symmetry, for example the analytic theorem
of Newton: Let f(z1,...,2x) be an analytic function which is symmetric in
21,-..., 2k, then there exists a unique analytic function g(oq,...,0k) such
that f = goN. It is used by Lojasiewicz (1, 2] to prove the division theorem
for smooth functions and in general to study differentiable functions [3].

Finding a formula for the singularities of N requires finding |[DN|, the
determinant of the Jacobian matrix of N. (By the inverse function theo-
rem.) We discuss a combinatorial proof of this known result [4] to demon-
strate the close relationship between this determinant and another well
known determinant, the Van der Monde determinant. The method demon-
strated might also be useful.

2 Notation

We define the Newton mapping by

N:CtaC*
N(z)=o0
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with

1

5 Zx
= E P § : 2
gy = Z2i%j = A

1<i<j<k

1 = zZ1+29+---+ 2

Tk 2129 "2k = sz

where we use the notation Y 2% to indicate the sum of all the products
consisting of p different variables z;. We also use ). _,2¥ to indicate
that all terms containing z,, are omitted; for example if ¥ = 4 we have
E Zf = 212023 + 212924 + 212324 + 222324 and Z:gzo Z,"z = Z12324.

With this notation, the Jacobian matrix of the Newton mapping can be
written as

1 1 1
E Zx E Zx E Zx
21=0 Zo= zk=:0
DN =
k=1 21 ) Z k-1
Z1=0 z2=0 z=0

3 The absolute value of |[DN| is equal to that
of the Van der Monde determinant

In calculating the determinant of a square matrix

aypp ai2 - Ark

a1 Q22 - Q2
A=

A1 Qg2 - Ak

one is ultimately left with adding 2 x 2 matrixes. Consequently the effect
of substituting a row in the matrix by another row can be reduced to the
effect this has on 2 x 2 matrixes. This observation leads to the following
lemma.

Lemma 1 Replacing a row any, ... ,ani of A by a new row by, ..., by changes
only the sign of the determinant if there exists another Tow amy, ..., Qmk

47



of A such that for all i # j we have

| Qmi Qmj | _ | Q@mi Qmj
Gni  Gnj bi  b;
We say in this case that we use the row a;,;,...,amr as a hinge for the

replacement.

We are now ready to show that the absolute value of |[DN| is equal to
that of the Van der Monde determinant; that is

1 1 e 1 1 1 S35 1
E Zx E Zx R E Zx 21 2 L) Zi
z1=0 22=0 zp=0
= e
k—1 k-1 k—1
¥4 E z E z
Z if o 4 k—1 k—1 k-1
z1=0 Za= z=0 21 22 zk

Our aim is to alter the left-hand side until it corresponds to the right-
hand side, by using induction on the indexes of the rows. We note that
the first rows are already similar. Thus let us assume that the first p rows
at the left can be replaced by rows that are similar to those at the right
without changing the absolute value of the determinant. This means that
we have

1 1 1
-1 =1 -1
o 25 4
= p
|DN| =+ sz 2:25 E:z*
2120 22=0 ZkZO
§ val § zf—l -l § Zf—l
z21=0 2z2=0 zp=0

We want to show that in row p + 1

E zf,...,z e

2120 ZkZO
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can be replaced by

§ -1 E -1
21 Zf yeees 2k Zf )

z1=0 23 =0
then by
2 —2 2 —2
2g E - T E 2P7%,
:120 szO
and so on, until we have reached row p+ 1 as
P P
2w g P

Thus it would suffice to show that we can replace
27 Z - AR BRI Z Rt
z1=0 z2r=0
for any n < p, by

n+1 —n—1 n+1 p—n—1
2y E 2P s § B E zF ;

21=0 2 =0

We use Lemma 1 with row n 4+ 1 as a hinge. This row is z7,..

inductive hypothesis. For i # j we obtain

n n
2] z]
2 E 2 E 2P | TEE Zz, Zz,
220 2;=0 z;=0 2;=0

Omitting terms which negate each other gives

and then, allowing some terms which negate each other, gives

n

“1

2

J
22 z-_;_ z”_l—z-g P = — 71+IZ = n—+-IZ 1
~q i 1 * o) * 21 Z* zj Zf

zi=0

., 2 by our

n

z;=0

This completes the proof. We can summarise it in algorithmic form as:
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for j =2 to k do

begin
for i = 1 to j-1 do
begin
replace row j by using row i as a hinge
end
end

4 A formula for |[DN]|

The Van der Monde determinant is given by the well known formula
H (z5 = z1).
1<i<j<k

Since we used Lemma 1 exactly 1+2+. ..+ (k—1) times (see the algorithm)
in the proof of the previous section, we have

IDNl L. (_1)1+2+...+(k—1) H (Zj o Zi) - H (Zi £ Z]').

1<i<j<k 1<i<j<k
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ABSTRACT

Let G be a graph of order n and size m. A ~-labeling of G is a
one-to-one function f : V(G) — {0,1,2,...,m} that induces a
labeling f' : E(G) — {1,2,...,m} of the edges of G defined by
f'(e) =|f(u) — f(v)| for each edge e = uv of G. The value of a
v-labeling f is val(f) = ZCGE(G) f'(e). The maximum value of
a v-labeling of G is defined as

valmax (G) = max{val(f) : f is a y-labeling of G},
while the minimum value of a y-labeling of G is
valmin(G) = min{val(f) : f is a y-labeling of G}.

The values valpax(G) and valy, (G) are determined for some
well-known classes of graphs G'. A sharp lower bound for the
minimum value of a v-labeling of a connected graph is estab-
lished in terms of its order and size.

Key Words: y-labeling, value of a «y-labeling.
AMS Subject Classification: 05C78.

1 Introduction

For a graph G of order n and size m, a ~y-labeling of G is a one-to-one
function f : V(G) — {0,1,2,...,m} that induces a labeling f' : E(G) —
{1,2,...,m} of the edges of G defined by

f'(e) = |f(u) = f(v)] for each edge e = uv of G.

Therefore, a graph G of order n and size m has a +y-labeling if and only if
m > n — 1. In particular, every connected graph has a -labeling.
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If the induced edge-labeling f' of a y-labeling f of a graph is also one-
to-one, then f is a graceful labeling. Among all labelings of graphs, graceful
labelings are probably the best known and most studied. Graceful labelings
originated with a 1967 paper of Rosa [3], who used the term [S-valuations.
Five years later, Golomb [2] called these labelings “graceful” and this is the
terminology that has been used since then. A graph that has a graceful
labeling is called a graceful graph. One of the major conjectures in graph
theory concerns graceful graphs and is due to Kotzig (see Rosa [3]).

The Graceful Tree Conjecture FEvery tree is graceful.

Gallian [1] has written a survey on labelings of graphs that includes an
extensive discussion of graceful labelings.

Each y-labeling f of a graph G of order n and size m is assigned a value
denoted by val(f) and defined by

val(f) = > f'e).
e€E(G)

Since f is a one-to-one function from V(G) to {0,1,2,...,m}, it follows
that f’(e) > 1 for each edge e in G and so

val(f) > m. (1)

Figure 1 shows nine vy-labelings fi, fa,..., f9 of the path Ps of order 5
(where the vertex labels are shown above each vertex and the induced edge
labels are shown below each edge). The value of each v-labeling is shown
in Figure 1 as well.

3 6 1 2 3 4 o0 1 2 4 A4 2 3 4 41 ©

: O—O0—O0—0—0 : O—0—O0—0—0 : 0—0—0—0—0
' IR Tl TR 1 fa el T Tl I3 Dl
val(f1) =4 val(f2) =5 val(f3) =6

@ 5 4 i 4 5 1 @ 4 0 g @ 2 4 12

o—o—0—0——0 5: O—O0—O0—0—0 o—0—0—0—>0
fs i 2 1 3 fs i NE Js g8 A 2 @&
val(fa) =7 val(fs) =8 val(fe) =9

4 4 ol B2 g @ 3% i 4 8 o 4 1 32

o0—0—0—0—90 0—0—0—0—0 o—0—0—0—=0

7 Rl Sl Gl fs 7 3" 4" 8 fo s k& 4
val(fz7) =10 val(fg) = 10 val(fo) = 11

Figure 1: Some 7-labelings of Ps

The value of a graceful labeling of a graph G of order n and size m is
necessarily (™}'). For example, the y-labeling f7 of Ps shown in Figure 1
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is graceful and consequently val(f7) = (5) = 10. However, the labeling fs
shows that it is not necessary for a vy-labeling to be graceful in order to

have a value of (’";1).

For a graph G of order n and size m, the mazimum value of a y-labeling
of a graph G is defined as

valmax (G) = max{val(f) : f is a y-labeling of G},
while the minimum value of a y-labeling of G is
valmin (G) = min{val(f) : f is a y-labeling of G'}.
A v-labeling g of G is a y-max labeling if
val(g) = valmax(G)
and a v-labeling h is a y-min labeling if
val(h) = val,in(G).

Since val(f;) = 4 for the y-labeling f; of P; shown in Figure 1 and the size
of Ps is 4, it follows that f, is a y-min labeling of Ps. Although less clear,
the y-labeling fy shown in Figure 1 is a y-max labeling.
_ For a y-labeling f of a graph G of size m, the complementary labeling
f:V(G) = {0,1,2,...,m} of f is defined by

f(v) =m — f(v) for v € V(G).
Not only is f a v-labeling of G as well but val(f) = val(f). This gives us
the following.

Observation 1.1 Let f be a y-labeling of a_graph G. Then f is a y-max
labeling (y-min labeling) of G if and only if f is a y-max labeling (y-min
labeling).

By the spectrum of a graph G, we mean the set
spec(G) = {val(f) : f is a y-labeling of G'}.

Consequently, if G = Ps, then {4,5,6,7,8,9,10,11} C spec(G). If G is

a graceful graph of size m, then ("‘;1) € spec(G). As an illustration, we

determine the spectrum of stars.

Proposition 1.2 For each integer t > 2,

spec(I\’L,)z{(t_{-;_k) + <kj1> nggt}.
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Proof. Suppose that V(K ;) = {v,v1,v2,...,v:}, where degv = t. Let
f be a y-labeling of K ; such that f(v) = k, where 0 < k <t. If k =0,
then we may assume that f(v;) =7 for 1 <i <t¢. Then

t t
al(f)= Yliw) - sl =Yi= (3.
=1 =1

If k = ¢, then val(f) = (*}!) by Observation 1.1. If 0 < k < ¢, then we may
assume that

i-1 if1<i<k
f(“")‘{i ifk+1<i<t
Therefore,
val(f) = [k+(k—-1)+...+1]+[1+2+...4+(t — k)]
k+1 t—k+1
( 2 )+( 2 )
as desired. [ ]

Corollary 1.3 For each integer n > 3,

ntl ntl
valmax(Kl,n_l) = (g) and Valmin(I\,l,n—l) = (L ; J) + <[ ; ~l)

2 ~-Labelings of Subgraphs

We now describe the connection between the minimum and maximum val-
ues of a connected graph and that of a proper connected subgraph. For a
graph G, let m(G) denote the size of G.

Proposition 2.1 If H is a proper connected subgraph of a connected graph
G, then

valmin(H) < valnin(G) and valpax(H) < valpax(G)-

Proof. Suppose that G has order n and f is a y-min labeling of G. Let
f(V(H)) = {a1,a2,...,a}, where k <nand a; < az < ... < a;. Consider
the function g : {a1,a2,...,ax} = {0,1,...,k—1} defined by g(a;) =i—1.
Consequently, g o (flv(m)) : V(H) = {0,1,---,m(H)} is a y-labeling of H
and val(g o (f|lv(s)) < val(flv(m))- Since H is a proper subgraph of G,
there exists e € E(G) — E(H). Thus
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valmin(H) < val(f|n) < val(f) — f'(e) = valmin(G) — f'(e)

and so valpin (H) < valmin(G).

Next, let f be a y-max labeling of H. If H is a spanning subgraph
of G, then surely the value of f on H is less than valy,.x(G). Hence we
can assume that H is not a spanning subgraph of G. We note that if H’
is the subgraph of G induced by V(H), then the value of f on H' is at
least as large as the value of f on H (and if H # H', then the value of
f on H' exceeds the value of f on H). We thus assume, without loss of
generality, that H is a proper induced subgraph of G. Since H and G are
both connected, there is a sequence Hg, Hy,..., H; of connected induced
subgraphs of G with Hy = H and H; = G such that for each integer 7 with
1<i<t, |V(H;)| =|V(H)| +1iand H;—y C H;. Let fo = f, and for each
integer 7 with 1 < ¢ < ¢, define f; to be f;—; when restricted to V(H;-1),
and f;i(z) = m(H;) for that vertex z € V(H;) — V(H;—1). Then, for each 4
with 1 <i < t, the function f; is a y-labeling and val(f;—1) < val(f;). =

The span of a y-labeling f of a graph G is defined as
span(f) = max{f(v) : V € V(G)} — min{f(v) : v € V(G)}.
We now consider a lemma.

Lemma 2.2 Let G be a connected graph of order n and f : V(G) — Z
a one-to-one function. Then there is a ~y-labeling g on G with val(g) <
val(f). Furthermore, if span(f) > n, then there is a y-labeling g with
val(g) < val(f).

Proof. Let V(G) = {v1,v2,---,vn} and f(v;) = a; for 1 < i < n, where
a; < a3 < -+ < an. Consider the function h : {a1,as,...,a,} —
{0,1,...,n — 1} defined by h(a;) = i — 1 for 1 < i < n. Certainly,
g = ho fis a vy-labeling of G. Furthermore, for every edge e of G, we
have g'(e) < f'(e) and so val(g) < val(f). Suppose now that span(f) > n.
Since span(f) = n — 1 if and only if a;y1 — a; = 1 for every integer i with
1 <4 < n—1, there is some integer j for which aj4; — a; > 2. Since
G is connected, there is an edge e joining two vertices z and y, where
z € {v1,va,---,v;} and y € {vj41,Vj42, - -,Vn}. Thus f(z) = a;_s, and
f(y) = ajs144,, where 8,6, > 0 and so

flle) = ajp146, —aj-5, 2 (G+1+6y) —(H—6;)+1
> 148 +d,=4(e),

as desired. =

We state two consequences of Lemma 2.2.
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Corollary 2.3 If G is a connected graph of order n, then G has a v-min
labeling whose vertices are labeled 0,1,...,n — 1.

Proposition 2.4 If H is a subdivision of a connected graph G, then
valmin (G) < valnin(H) and valgax(G) < valgax(H).

Proof. It is sufficient to consider the case when H is obtained by subdi-
viding a single edge of G. Let uv be that edge of G that is subdivided to
produce H, resulting in the edges uw and vw of H. We begin by verifying
the first inequality. Let f be a «y-min labeling of H. Then the restriction
flv(a) satisfies f|§,(G)(uv) < f'(vw) + f'(wv) on the graph G. The first
inequality now follows from Lemma 2.2. We now verify the second inequal-
ity. Let f be a y-max labeling of G. We can extend f to a y-labeling g of
H by defining

G = m(H) ifz=w
g - f(z) ifz# w.
The result now follows from the triangle inequality. =

3 ~v-Labelings of Paths

The v-labeling f of the path P, : v, vs,---, v, defined by f(v;) =4—1 has
val(f) =n — 1. Thus, by (1), we have the following observation.

Observation 3.1  For each integer n > 2, valyin(Py) = n — 1.

Next, we determine valyax(Pn). We begin by considering certain -
labelings of P,. Suppose first that n = 2k +1 > 3 is odd. Consider the
v-labeling f of P, defined by

k+1+1 ifiis odd and i < 2k +1
flvy;) = k ifi=2k+1
 Su if 7 is even
if 7 is even.
2

Then k edges of P, are labeled k+1, one edge is labeled 1, and the remaining
k — 1 edges are labeled k + 2. Thus

n®> -3
=

val(f) =k(k+ 1)+ 1+ (k- 1)(k+2) = (2)
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Next, suppose that n = 2k > 2 is even. Consider the ~-labeling g of P,
defined by
k+2== ifiisodd
gvi) = i—2
2

Here, k edges of P, are labeled k and the remaining k — 1 edges are labeled
k + 1. Thus

if 7 is even.

val(g) = k -k + (k- 1)(k+1) = B~

(3)
Combining (2) and (3), we have the following.

Proposition 3.2  For every integer n > 2,

2
Valmax(Pn) > {n 2 zj .

In order to show that the lower bound for valy,ax(P,) given in Propo-
sition 3.2 is, in fact, the exact value of valy.x(Py) for all n > 2, we first
establish a lemma.

Lemma 3.3  For every integer n > 3, there exists a y-mazx labeling f
of P, : v, va, ..., vn having the property that for every integer i with
1 <i<n-—2, the 3-term sequence

8i(f) = (f(vi), f(vig1), f(vig2))

is not monotone.

Proof. For each y-max labeling f of P,, let
S(f) = {s1(f),s2(f),-- > sn-2()}-

Assume that the lemma is false. Consequently, for each y-max labeling f
of P,, some element of S(f) is monotone. Among all y-max labelings of
P, let g be one for which ¢ is the largest integer with 1 <¢ < n — 2 such
that s;(g) is monotone and s;(g) is not monotone for 1 < i < ¢.

We define a new y-max labeling ¢’ of P,, from g as follows:

g(v;) ifi#t+1,t+2
g'(vi) = glvesn) ifi=t+1
‘(}(’L-’g+1) ifi=t+2.
It is now straightforward to show that s;(¢') is not monotone for every
integer ¢ with 1 < 4 < ¢ and that val(g') > val(g). Since g is a y-max
labeling of P,, it follows that val(g') = val(g) and ¢’ is also a y-max labeling
of P,,. This, however, contradicts the defining property of g. B
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Proposition 3.4 For every integer n > 2 and every y-max labeling f of
P,

5 n? —2
n® — 2 :

— 2
vallf) - < [ 2 J - n®—3

2

Proof. A y-max labeling f having the property introduced in Lemma 3.3
induces a partition of V(P,) into two independent sets, T'(f) and B(f)
(the top and bottom of f, respectively), such that for every edge tb joining a
vertex t € T'(f) to a vertex b € B(f), we have f(t) > f(b). It is immediate

that
val(f) = D f(v)deg v— 3 f(v)deg v. (4)

veT(f) vEB(f)

if n even,

if n odd.

Since the right hand side of (4) can be no larger than the quantity obtained
by assigning the largest possible values to the vertices of T'(f) and the
smallest possible values to the vertices of B(f), it follows that val(f) is
bounded above by

n/2-1

n/2—1 .
lzz (n —1) } [22@—1”(——1) =”22 (5)

if n is even, and by

(n=3)/2 (n=1)/2 _3
2 Z (i-1) (6)

i=1
if n is odd. Simplifying (5) and (6), we get the desired upper bound. u
Combining Propositions 3.2 and 3.4, we have the following.

Theorem 3.5  For every integer n > 2,

valmax (Pn) = [”2_ 2J .

4 ~-Labelings of Cycles

Next, we establish a formula for val,i, (C},) for all n > 3.

Theorem 4.1  For every integer n > 3,

valmin(Cr) = 2(n — 1).
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Proof. Let C, : v1,vs,...,0n,v;. Consider the y-labeling h of C,, defined
by h(v;) =i —1for 1 <i <n. Then

n—1
val(h) = ) |A(vig1) — h(vi)| + [h(v1) — h(vn)]

=1

(n—1)-1+(n—-1)=2n-1).

I

Therefore, val i (Cr) < 2(n—1). Hence it remains to show that valy,;, (Cy) >
2(n —1).

Let f be a y-min labeling of C),. By Corollary 2.3, we may assume that
the vertices of C), are labeled with the elements of the set {0,1,...,n—1}.
We may further assume that f(v;) = 0. Suppose that f(v;) = n— 1, where
2 <t < n. The cycle C,, contains two edge-disjoint v; — v; paths, namely

. 1S
Py, Vo o Ui 180, Pl 3 U100, Dna1ys ey Vb

Let fp be the restriction of f to P and fp: be the restriction of f to
P'. Then fp and fp: are y-labelings of P and P’', respectively, and

val(f) = val(fp) + val(fp). (7)
We show that val(fp) > n— 1 and val(fp/) > n — 1.
Consider the path P. If f(v,), f(va), ..., f(vy) is an increasing sequence,

then 4
val(fp) = D _[f(vit1) = f(vi)] = f(ve) — f(v) =n—1.
=1

If f(v1), f(v2),..., f(v) is not increasing, then this sequence can be divided
into an odd number of subsequences that are alternately increasing and
decreasing. Therefore, there exists an odd integer s > 3 such that

T=itg = 41, <5 200 4 =0
and
f(v1), f(v2),..., f(v;,) is increasing,
fviy), f(viy41),- -, f(viy) is decreasing, and so on, up to
fvi,22), f(vi,_y41),-- -, f(vi,) is increasing.
Then
val(fp) = [f(o) = F@io)] + [f(0ia) — F(via)] + [f (via) = F(viz)] +
ot [fv,) = flui, )
[f(ve) = fo)] + 2{[f(vi,) = flvir)] + [f(vig) — f(vi)] +

N S F{CTIER E T
mM=1)4+(s—1)>n-1.

v
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In general then, val(fp) > n — 1. Similarly, val(fp/) > n — 1. It follows by
(7) that val(f) > 2(n — 1). Therefore, valyi,(Cn) = 2(n — 1). u

Since every edge labeling induced by a ~v-labeling of a graph containing
a vertex v with degv > 3 assigns a label of 2 or more to at least one edge
incident with v, the following is a consequence of Theorem 4.1.

Corollary 4.2 Let G be a connected graph of order n and size m. Then
valmin (G) = m if and only if G = P,,.
In order to discuss valy.x(Cy), we first establish the following result.

Proposition 4.3 If G is a connected r-reqular bipartite graph of order n
and size m, where r > 2, then
rn(2m —n + 2)

1 .

Proof. Let n = 2k and let V] = {uy, ua, ..., ux} and Vo = {vy, v, ..
vx } be partite sets of G. Define a y-labeling g of G by

val max (G) =

]

g(u;) =i—land g(v;) =m—(i—1)for 1 <i< k.

Since m = rk > 2k, it follows that g(u) < g(v) if w € V; and v € V5. Thus

k k
val(g) = [ng Z u,>}

= r{lm+(m- 1) +...+(m—-k+1)]
=1 + 24 ... k—l)]}

- o{fr- (] O} son -0

rn(2m —n + 2)
2 ;

Therefore, valpnax(G) > val(g) = M

4
To show that valyax(G) < w, let f be a y-max labeling

of G. Suppose that E(G) = {ey, €a, ..., em}, where e; = z;y; and f(z;) <
f(ys) for 1 <i <m. Then

m

val(f) = Z[fy»— Efyl)—Zf %4). (8)



Let X ={z;:1<i<m}and Y ={y; : 1 <i <m}. Then |X| =1|Y| =
m = rk. Since at most r vertices in X can be labeled by each of the labels
0,1,...,k—1 and at most r vertices in Y can be labeled by each of the
labels m,m — 1,...,m — (k — 1), it follows that

Zf(l'i) > r[l4+2+...4(k-1)] :7-<_§>

Zf(yi) < rim+(m=1)+...+(m—-Fk+1)
i=1
k
r [mk - (2>]
It then follows by (8) that

e - (] -o(2) - 2enge2

rn(2m —n + 2)
S E—

Il

Therefore, valpmax (G) = val(f) <

There is now an immediate corollary.
Corollary 4.4 For an cven integer n > 4,

n(n + 2)

valmax (Cn ) = 2

We now determine val,.x (Cy) where n is odd. A vt -labeling of a con-
nected graph G of order n and size m is a one-to-one function f: V(G) —
{0,1,2,---,m + 1}, where y*-max labeling and val}_ (G) are defined as
expected.

Lemma 4.5 For every integer k > 2,

valmax(Car41) = ‘valnﬁnx(c‘_’k)-

Proof. Let f be a y'-max labeling of Cy;. Then there are two numbers
a,b € {0,1,2,---,m + 1} that are assigned to no vertex of Co by f. Con-
sequently, f can be extended to a vy-labeling h of Caryy by viewing Cory
as a subdivision of Cs, and then assigning either of the numbers a,b to the
unique vertex in V' (Cog41) =V (Car). From the triangle inequality, the value
of h is at least as large as that of f. Thus valyay(Cary1) > val! . (Cox).

We now establish the reverse inequality. Let g be a y-max labeling of
Cory1.- We construct an oriented graph D from Csy4q by assigning to each
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edge wv the orientation (u,v) if g(v) > g(u). Necessarily, D contains a
directed path z,y, z of order 3. If we delete the vertex y from Csx4; and
join the vertices z and z, the resulting graph G is isomorphic to Csy and
the restriction ¢’ of g to V(C2x41) — {y} has the same value on G as g
does on Cyxy1. The function ¢’ is thus a y*-labeling of Cay, and the result
follows. B

Theorem 4.6 For every odd integer n > 3,

_ (n—1)(n+3)

Valmax (Cn) 2

Proof. The result is clear for n = 3, so we may assume that n = 2k+1 > 5.
From Lemma 4.5, it is sufficient to show that val}, (Cn_1) = (n — 1)(n +
3)/2. Let Cp—1 : Z1,Y1,22,Y2, **» Tk, Yk, 1. Define a y*-labeling of C,,_;
by

flz;))=i—1and f(y;) =2k—i+2forl1 <i<k.

Then val(f) = (n — 1)(n + 3)/2 and so valt, (Cn_1) > (n — 1)(n + 3)/2.

It remains to verify that vall, (Cn_1) < (n — 1)(n + 3)/2. Let g be
a y*T-max labeling of C,_1, where E(Cr_-1) = {e1,€s,...,en—1}. For
each integer ¢ with 1 < ¢ < n — 1, let e; = wu;v;, where g(u;) < g(v;)-
Then val(g) = Z;:llg(v,—) - Z?____ll g(u;). Since at most two vertices in
{uy, ua,...,un—1} can be assigned each of the labels 0,1,...,k — 1 and at
most two vertices in {vy,va,...,vn—1} can be assigned each of the labels
k+2,k+3,...,2k+ 1, it follows that

n—1 n—1
> g(uw) >k —k and Y g(vi) < 3k% + 3k
i=1 i=1

and so val(g) < (3% + 3k) — (k* — k) = (n — 1)(n + 3)/2, producing the
desired result. ]

5 ~-Labelings of Complete Graphs

First, we establish the minimum value of complete graphs. In order to
do this, we recall a well-known combinatorial identity (which is sometimes
called the hockey stick property of the Pascal triangle): For every two inte-
gers 7 and s with 0 < r < s,

E)=0( 1))
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Proposition 5.1 For each integer n > 3,

) n+1
valmin(Kn) = ( 3 )

Proof. Let V(K,) = {v1,vs,...,v,}. By Corollary 2.3, the v-labeling f
of K,, defined by
fwi)=i—-1for1<i<n

is a y-min labeling. Since

S

-
|

-

S IG -1 - (-1)

j:‘i+1

= Z(EH=0)

(2

val(f) =

1

._

where the last equality follows from the combinatorial identity in (9), it

follows that valy,i, (K,) = (n?;l)' 1

Next, we determine the maximuin value of complete graphs.
Proposition 5.2 For every positive integer n,

n(3n3 — 5n% + 6n — 4)

if n even
valmax (Kn) = i 23 (10)
(n —-1)(3;1-4—571+6) ¥ odd

Proof. If f is a y-labeling of K, and f(V(K,)) = {a1,as,...,a,}, where
a; < as < ...< ap, then

val(f) = (2i — 1= n)a;.
1=1

For N = (;‘), the number val(f) is maximized by assigning the labels
{0,1,...,[n/2] =1,N - [n/2] + 1,N - |n/2] +2,...,N}

to the vertices of K,,, thereby obtaining the result. (]
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6 A Bound on the Minimum Value of a Graph
in Terms of Its Order and Size

For integers n and m with 1 <n—-1<m < (3),let S ={1,2,---,n — 1}
and
k
a(n,m) =max{k € S : Z(n —1) <m}.
i=1
There is an algebraic expression for a(n,m) in terms of n and m.

n
2

Lemma 6.1 For integers n and m with 1 <n —1<m < (}),

a(n,m) = [71 - % - \/2 [(g) — m] e %J .

Proof. Since a(n,m) = n —1if m = (}), we may assume that m < (3).
Let a(n,m) = k. Then k < n —1 and

k k41

Z(n —i)<m< Z(n —1).
=1

i=1

Therefore, (7) < m+ (";*). Solving (3) = m+ (";*) for z, we obtain two

solutions:
1 n
1 ' 5 \/2 [(2) —m] +
z n——l+ 2|(") - m +—1-
) ) 2 m 4.

Since k is the largest integer less than n — 1 for which (7) <m + (",%), it
follows that

retei= 3 PG 1+

as desired. =

Il
S
-
|
|
|

7

| =

Il

We can now provide a lower bound for the minimum value of a connected
graph in terms of its order and size.

Proposition 6.2 If G is a connected graph of order n and size m with

a(n,m) = k, then

valpmin (G) > <k j 1) (n + k—;—%> + (m — nk)(k +1). (11)



Proof. First, consider the function g : E(G) — {1,2,...,n—1} defined as
follows. Choose n — 1 edges of G' and assign 1 to each of these edges. From
the remaining m — (n — 1) edges, choose another min{n —2,m — (n — 1)}
edges of G and assign 2 to each of these edges. At each step, if some edges
of G have not been assigned a number, choose the smallest positive integer
s not assigned to any edge of G, and assign s to min{n—s, m—73 ;_ f(n—z)}
of the remaining edges of G.

Next, let f be a y-min labeling of G'. By Corollary 2.3, we may assume
that f(V(G)) = {0,1,...,n — 1}. Notice that, for each integer s with 1 <
s < n—1, there are exactly n— s pairs 7, j of integers with 0 <i < j<n-1
and j — i = s. Consequently, for each such s, at most n — s edges e of G
have value f'(e) = s. From the way in which the function g is constructed,

it follows that
wl(f)> S gle).
e€EE(G)

We can now express ZGEE(G) g(e) in terms of n,m and k. In particular,

&
> ogle) = D i( 1-L)+(/71—-Z(n—-7>(k+1)

eCE(G) i=1

k+1 k .
= n( 9 >~6(k+1)(2k+1)

+<m—nk+<k;1>>(k+1)

(k+1) ( k;2)+(m—nk)(k+1),

as desired. u

We now consider the sharpness and some consequences of Proposi-
tion 6.2. When G = P,, the right hand side of (11) is n — 1; while if
G = K,, the right hand side of (11) is ("}'). Consequently, by Observa-
tion 3.1 and Proposition 5.1, the bound is sharp for paths and complete
graphs.

For a connected graph G of order n and a positive integer k, the kth
power G* of G is that graph with V(G*) = V(G) such that uwv € E(G*) if
da(u,v) < k. Now let Py : v1,v2,- -+, v,. Define the y-labeling f of P¥ by
f(vi) =i—1for 1 <i < n. Then P* has order n and size Zle(n — 1),
and val(f) = Zle i(n — ). Since

mm ) 2> Zl(” “‘7
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by Proposition 6.2, it follows that valy,(P¥) = Z:zl t(n — 4). Thus the

bound in Proposition 6.2 is sharp for P} for all integers k¥ and n with
1<k <n-—1,including P} = P, and P! = K,.
Let’s now consider connected graphs G' of order n and size

i:(n—i): (n=1)4+(n-2)=2n-3.
=1

By Proposition 6.2, any such graph G satisfies
valmin(G) 2 ) _i(n — i) = 3n — 5.
=1

We have already noted that P2 is a graph of order n and size 2n — 3 having
minimum value 3n — 5. Actually P? is a maximal outerplanar graph for
every positive integer n. (See Figure 2 for P?.) Since every maximal outer-
planar graph of order n has size 2n — 3, we have the following observation.

P?: N\ i z i \_\ 7

Figure 2: A maximal outerplanar graph

Proposition 6.3 If G is a mazimal outerplanar graph of order n > 2,
then
valmin(G) > 3n — 5.

Furthermore, this bound is obtained if and only if G = P2.

Next we turn to connected graphs G of order n and size

3
Y (n—i)=(n-1)+(n—-2)+(n—-3)=3n—6.

p=1

By Proposition 6.2, any such graph G satisfies

3
Valmin(G) 2 Ei(?l e Z) = 6n — 14.

i=l1

As mentioned before, P2 is a graph of order n and size 3n — 6 having
minimum value 6n — 14. Of course, every maximal planar graph of order
n > 3 has size 3n — 6. Indeed, P2 is maximal planar.



Proposition 6.4 For every positive integer n, the graph P2 is mazimal
planar.

Proof. Let P, : v1,vs2,--,v,. The result is true for n = 1 and n = 2. For
n > 3, we show by induction that there is a planar embedding of P3 in which
there is a (triangular) region whose boundary vertices are v, _2,v,_1, and
vp. Clearly, this holds for n = 3. Assume, for an integer k > 3, that there
is a planar embedding of P? in which there is a region R whose boundary
vertices are vg_o,vg—1, and vy. We now place a new vertex vi4; in R and
joining vg41 to vg—2,vk—1, and vg. This produces a planar embedding of
the graph P2, containing a triangular region whose boundary vertices are
Uk—1, Uk, and vg41. Since the size of PE_H is 3(k + 1) — 6, it follows that
P2, is maximal planar. ®

Corollary 6.5 If G is a maximal planar graph of order n > 3, then
valmin(G) > 6n — 14. Furthermore, this bound is attained if and only if
G = PS.

Figure 3 shows the maximal planar graphs P, P3, and P} and a y-min
labeling of each. Indeed, there are only two maximal planar graphs of order
6, where valyin(Pg) = 22 and valpin(K22.2) = 26.

Yy

Figure 3: Three maximal planar graphs

Proposition 6.3 and Corollary 6.5 illustrate a more general result. For
a connected graph G of order n and size m with «(n,m) = k, let L(n,m)
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denote the lower bound for valyi, (&) given in Proposition 6.2, that is,

L(n,m) = (k ;— 1) <n -+ %) + (m —nk)(k+1).

Forl < k<n-—1andanintegert withl <t <n-—(k+1), let P denote
the class of graphs obtained by adding ¢ edges to PX, where each such edge

joins two vertices of P} whose distance is k+1 in P,. Thus K:0) = {P¥}.
Consequently, if F € ’Pﬁ.,k’t), then valyin(F) = L(n,m). Moreover, if H
is a graph of order n having the same size as F but H ¢ ’P,(Ik’t), then
valmin (H) > valmin (F'). These observations give us the following result.

Proposition 6.6 Let G be a connected graph of order n and size m with
a(n,m) = k. Then
valmin(G) = L(n,m)

ifand only if (i) k=n—1andG = K, or (ii) 1 < k < n—2 and G € PL""
for some integer t with 0 <t <n — (k+1).
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