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1 Introduct ion 

The fact that complex polynomials can be written in two forms , 

k 

ITC(+ Zi) = e + a1(k-l + ... + ak , 
i=l 

can be used to define a ma pping N(z) = a from C k to C k , known as the 
Newton mapping. It is clearly surjective and turns out to have particularly 
useful properties regarding its symmetry, for example the analytic theorem 
of Newton: Let f (z1 , ... , zk) be an analytic function which is symmetric in 
z1 , . . . , zk, then there exists a unique analytic function g(a1, ... , ak ) such 
t hat f = goN. It is used by Lojasiewicz [l , 2] to prove the division theorem 
for smooth functions and in general to study differentiable functions [3]. 

Finding a formula for the singulari t ies of N requires finding IDNI, t he 
determinant of the J acobian matrix of N . (By the inverse function theo­
rem. ) We discuss a combinatorial proof of this known result [4] to demon­
strate the close relationship between this determinant and another well 
known determinant , the Van der Monde determinant. The method demon­
strated might also be useful. 

2 Notation 

We define the Newton mapping by 

N: c k-+ c k 

N(z) = a 
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with 
0-1 Z 1 + Z2 + · · · + Z k L z• 
a 2 I: ZiZj L z; 

1 ::;i<j::;k 

ak Z1Z2·· · Zk L k z. 

where we use the notation I:; z~ to indicate the sum of all t he products 
consisting of p different variables Zi- We also use L zm = O z~ to indicate 
t hat all terms containing Z m are omitted; for example if k = 4 we have 
I:; z; = z 1z2z3 + Z1Z2Z4 + Z 1Z3Z4 + z2z3Z4 and I:;22=0 z: = z 1Z3Z4. 

Wit h this notation , the J acobian matrix of the Newton mapping can be 
written as 

1 1 1 

I: z . I: z . I: z . 

D N = 
z , =O z2 = 0 Zk=O 

L k - 1 z. L k - 1 z. L k - 1 z. 

z1=0 z2 =0 Zk=O 

3 The absolute value of IDNI is equal to that 
of the Van der Monde determinant 

In calculating t he determinant of a square matrix 

("" 
a12 

a,. ) a21 a22 a2k 
A = . 

akl ak2 a~k 

one is ult imately left with adding 2 x 2 matrixes . Consequent ly the effect 
of substit ut ing a row in the matrix by another row can be reduced to the 
effect t his has on 2 x 2 matrixes. T his observation leads to the following 
lemma. 

Le mma 1 R eplacing a row a n 1 , ... , ank of A by a new row b1 , ... , bk changes 
only the sign of the determinant if there exis ts another row am1 , . . . , amk 

47 



of A such that fo r all i -:/= j we have 

amj I b · . 
J 

We say in t his case that we use the row am1 , ... , amk as a hinge for the 
replacement . 

We are now ready to show that t he absolute value of IDNI is equal to 
that of the Van der Monde determinant ; that is 

1 1 1 1 1 1 

L z• L z. L z. Z1 Z2 Zk 
Z1=0 z2=0 z , = O 

± 

L k- 1 L k-1 L k-1 z. z. z. k-l k- l k-1 
z 1=0 z2=0 z ,=O Z1 Z2 Zk 

Our aim is to a lter t he left-hand side unt il it corresponds to the right­
hand side, by using induct ion on the indexes of the rows. We note t hat 
the first rows are already similar. Thus let us assume that the first p rows 
at the left can be replaced by rows t hat are similar to those at the right 
without changing the absolute value of the determinant. This means t hat 
we ha ve 

IDNI =± 

1 

p - 1 
zl 

I: zr 
Z1 =0 

~ k - 1 
L...., z. 
z 1=0 

1 

p-1 
Z2 

L zr 
z 2=0 

'""' k - 1 L...., z. 

We wa nt to show that in row p + 1 

L zf, ... , L zf 
z 1= 0 z k=O 
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p-1 
Z k 

L zr 
Zk= O 



can be replaced by 

t hen by 

and so on, unt il we have reached row p + I as 

zf , .. . ,zr 

T hus it would suffice to show t hat we can replace 

for any n < p , by 

We use Lemma 1 with row n + 1 as a hinge. This row is zf , .. . , z;: by our 
inductive hypothesis. For i I- j we obtain 

Zn Zn 

(.~:!-,; zi) • J 

Zn L zP Zn I: z~ = z;'zJ 
• * J 

Zi=O Zj= D 

O mitting terms which negate each other gives 

znzn ( z · ~ zP-1 - z . ~ zP-1) lJ l ~ * J ~ • 
CJ = 0 Ci = 0 
Zi = Q Zj = 0 

and then , allowing some terms which negate each other , gives 

n 
Z; zJ 
~ p - 1 
~ z. z;i+1 L z~- 1 

=;=O 

T his completes the proof. We can summarise it in algori thmic form as: 
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for j = 2 to k do 
begin 

for i = 1 to j-1 do 
begin 
replace row j by using row i as a h i nge 
end 

end 

4 A formula for IDNI 
T he Van der Monde determinant is given by t he well known formula 

IT (zj - zi )­
JSi<j S k 

Since we u ed Lemma 1 exactly 1 + 2 + ... + ( k - l ) t imes ( see the a lgori t hm) 
in the proof of the previous section, we have 

IDNI = (-1)1+2+ .. . +(k-l ) II (zj - zi) = II (zi - z1) . 

l Si<j S k 
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ABSTRACT 

Let G be a graph of order n and size m. A , -labeling of G is a 
one-to-one function f : V(G)--+ {O, 1, 2, . .. ,m} that induces a 
labeling f' : E(G) --+ {l, 2, ... , m} of the edges of G defined by 
J'(e) = lf(u) - f(v)I for each edge e = uv of G. The value of a 
,-labeling f is val(!) = LeEE(G) f' (e). The maximum value of 
a , -labeling of G is defined as 

valmax(G) '= max{val(f): f is a ,-labeling of G}, 

while the minimum value of a ,-labeling of G is 

valmin ( G) = min { val(!) : f is a ,-labeling of G}. 

The values valmax ( G) and valmin ( G) are determined for some 
well-known classes of graphs G. A sharp lower bound for the 
minimum value of a , -labeling of a connected graph is estab­
lished in terms of its order and size. 

Key Words: , -labeling, value of a , -l abeling. 

AMS Subject Classification: 05C78. 

1 Introduction 

For a graph G of order n and size m, a , -labeling of G is a one-to-one 
function f : V(G) --+ {O, 1, 2, . .. , m } that induces a labeling f' : E (G) --+ 
{l , 2, . .. , m } of t he edges of G defined by 

J' (e) = lf (u) - J (v) I for each edge e = uv of G. 

Therefore, a graph G of order n and size m has a ,-labeling if and only if 
m 2'. n - l. In particular, every connected graph has a ,-labeling. 
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If the induced edge-labeling /' of a , -labeling f of a graph is also one­
to-one, then f is a graceful labeling. Among all labelings of graphs , graceful 
labelings are probably the best known and most studied . Graceful labelings 
originated with a 1967 paper of Rosa [3], who used the term ,B-valuations . 
Five years later, Golomb [2] called these labelings "graceful" and this is the 
terminology that has been used since then. A graph that has a graceful 
labeling is called a graceful graph. One of the major conj ectures in graph 
theory concerns graceful graphs and is due to Kotzig (see Rosa [3]). 

The Graceful Thee Conjecture Every tree is graceful. 

Gallian [1] has written a survey on labelings of graphs that includes an 
extensive discussion of graceful labelings. 

Each -y-labeling f of a graph G of order n and size m is assigned a value 
denoted by val(!) and defined by 

val(!) = L J' (e ). 
eEE(G) 

Since f is a one-to-one func tion from V(G) to {O, 1, 2, ... , m}, it follows 
that f'( e) 2': 1 for each edge e in G and so 

val(!) 2': m. (1) 

Figure 1 shows nine -y-labelings Ji , fz , .. . , f 9 of the path Ps of order 5 
(where the vertex labels are shown above each vertex and the induced edge 
labels are shown below each edge) . The value of each , -labeling is shown 
in Figure 1 as well. 

0 l 2 3 4 0 1 2 4 3 
/ l : 0----0--0---0--

1 1 1 l h : ~ 

val(/i) = 4 val(h) = 5 

3 2 0 l 4 2 1 3 4 0 

/4 : ~ / 5 : ~ 

val(/s) = 8 

4 0 3 1 2 
h: ~ 

val (h) = 10 val(/a) = 10 

2 3 4 1 0 
/3 : ~ 

val(h) = 6 

0 3 2 4 1 

/ 6 : ~ 

/ g: 
3 0 4 1 2 
~ 

3 4 3 1 

val(/g) = 11 

Figure 1: Some 1-labelings of Ps 

The value of a graceful labeling of a graph G of order n and size m is 
necessarily (m;ti). For example, the , -labeling h of Ps shown in Figure 1 
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is graceful and consequently val(h ) = (; ) = 10. However , the labeling f s 
shows that it is not necessary for a ')'-labeling to be graceful in order to 
have a value of (m;t1). 

For a graph G of order n and size m, t he maximum value of a ')'-labeling 
of a graph G is defined as 

valmax(G) = max{val(f): J is a ')'-labeling of G}, 

while the minimum value of a ')'-labeling of G is 

valmin(G) = min{ val(J): f is a ')'-labeling of G}. 

A ')'-labeling g of G is a ')'-max labeling if 

val(g) = valmax(G) 

a nd a ')'-labeling h is a ')'-min labeling if 

val(h) = valmin(G) . 

Since val(fi) = 4 for t he ')'-labeling Ji of P5 shown in Figure 1 and the size 
of P5 is 4, it follows that Ji is a ')'-min labeling of P5 . Although less clear, 
the ')'-labeling / 9 shown in Figure 1 is a ')'-max labeling. 

For a ')'-labeling f of a graph G of size m, the complementary labeling 
f : V(G) -+ {O, 1, 2, .. . , m} off is defined by 

f (v) = m - f (v) for v E V(G). 

Not only is 7 a ')'-labeling of G as well but val(!) = val(!). This gives us 
the following. 

Observation 1.1 Let f be a ')' -labeling of a graph G . Then f is a ')'-max 
labeling (,' -min labeling) of G if and only if J is a ')' -max labeling (,'-min 
labeling). 

By the spectrum of a graph G , we mean the set 

spec(G) ={val(!): f is a ')'-labeling of G}. 

Consequently, ifG '=== Ps , then {4,5,6, 7,8,9, 10,11} ~ spec(G). IfG is 
a graceful graph of size m, then (mt) E spec(G). As an illustration, we 
d etermine the spectrum of stars. 

Proposition 1.2 For each integer t 2'. 2 , 

{ (
t + 1 - k) (k + 1) spec(K 1 ,i) = 

2 
+ 

2 
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Proof. Suppose that V(J{1 ,t) = { v, v1 , v2, ... , vt}, where degv = t . Let 
J be a ')'-labeling of K 1 ,t such that J(v) = k, where O :S k :S t . If k = 0, 
then we may assume that J(vi) = i for 1 :S i :S t. Then 

t t (t + 1) 
val(!)= ~ IJ(v.;) - f (v) I = ~ i = 2 · 

If k = t , then val(!) = (tt1
) by Observation 1. 1. If O < k < t, then we may 

assume that 

{ 
i - 1 

f (vi) = i 
if 1 :S i ~ k 
if k + l :S i :S t 

Therefore, 

as desired. ■ 

Corollary 1.3 For each integer n 2: 3, 

2 1-Labelings of Subgraphs 

We now describe the connection between the minimum and maximum val­
ues of a connected graph and that of a proper connected subgraph . For a 
graph G, let m(G) denote t he size of G. 

Proposition 2.1 If H is a proper connected subgraph of a connected graph 
G, then 

valmin(H) < valmin(G) and valmax(H) < valrnax(G) . 

Proof. Suppose that G has order n and J is a ')'-min labeling of G. Let 
f(V(H)) = {a1 , a 2, ... , ak}, where k :Sn a nd a 1 < a2 < ... < ak. Consider 
the function g : {a1 , a2, ... , ak} ➔ {0, 1, ... , k-1} defined by g(ai) = i -1. 
Consequently, go U lv(H)): V(H) ➔ {O, 1, · · ·, m(H)} is a ')'-labeling of H 
and val(g o Ulv (H))) :S val(fl v(H)) - Since H is a proper subgraph of G, 
there exists e E E (G) - E (H ). Thus 
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valmin(H) S val(JIH) S val(!) - f'( e) = valmin(G) - f' (e) 

and so valmin(H) < valmin(G) . 
Next, let f be a ')'-max labeling of H . If H is a spanning subgraph 

of G, then surely the value of f on H is less than valm ax ( G). Hence we 
can assume that H is not a spanning subgraph of G. We note that if H' 
is the subgraph of G induced by V(H), then the value of f on H' is at 
least as large as the value of f on H (and if H f; H' , then t he value of 
f on H' exceeds the value of f on H ). We thus assume, without loss of 
generality, that H is a proper induced subgraph of G. Since H and Gare 
both connected, there is a sequence H 0 , H 1 , . .. , H t of connected induced 
subgraphs of G with Ho =Hand H t = G such t hat for each integer i with 
1 S i St, jV(Hi)I = jV(H)I + i and Hi-1 C Hi . Let Jo = f , and for each 
integer i with 1 S i S t, define /i to be fi - 1 when restricted to V(Hi- i), 
and fi(x) = m(Hi) for that vertex x E V(Hi) - V(Hi - 1 ). Then, for each i 
with 1 Si St , the function Ji is a ')'-labeling and val(fi_i) < val(fi). ■ 

The span of a ')'-labeling f of a graph G is defined as 

span(!)= max{f(v): VE V(G) } - min{f(v): v E V(G)} . 

We now consider a lemma. 

Lemma 2.2 Let G be a connected graph of order n and f : V(G) -+ Z 
a one-to-one fu nction. Then there is a ')' -labeling g on G with val(g) S 
val(!). Furthermore, if span(!) ~ n, then there is a ')' -labeling g with 
val(g) < val(!). 

Proof. Let V(G) = {v1,v2, · ··,vn} and f(vi) = ai for 1 Si Sn, where 
a1 < a2 < · · · < an . Consider the function h : { a1, a2 , . .. , an} -+ 
{0, 1, . .. ,n - l} defined by h(ai) = i - 1 for 1 Si~ n. Certainly, 
g = ho f is a ')'-labeling of G. Furthermore, for every edge e of G, we 
have g'(e) S f' (e ) and so val (g) S val(!). Suppose now that span(!) ~ n. 
Since span(! ) = n - 1 if and only if a i+l - ai = 1 fo r every integer i with 
1 S i S n - 1, there is some integer j for which ai+ 1 - aj ~ 2. Since 
G is connected, t here is an edge e joining two ver tices x and y, where 
x E {v1,V2,··•,vj } and y E {Vj+1,Vj+2,·· ·,vn } - Thus f (x) = aj-o

2 
and 

f (y) = aj+I+o
11

, where Ox, Oy ~ 0 and so 

f' (e) ai+i+8
11 

- aj - 02 ~ (j + 1 + oy) - (j - Ox)+ 1 

> 1 +Ox+ Oy = g' (e), 

as desired. ■ 

We state two consequences of Lemma 2.2. 
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Corollary 2.3 If G is a connected graph of order n, then G has a ~r-min 
labeling whose vertices are labeled 0, 1, .. . , n - 1. 

Proposition 2.4 If H is a subdivision of a connected graph G, then 

valmin(C) < valmin(H) and valmax(G) < valmax(H) . 

Proof. It is sufficient to consider the case when H is obtained by subdi­
viding a single edge of G. Let uv be that edge of G that is subdivided to 
produce H, resulting in the edges ·uw and vw of H . We begin by verifying 
the first inequality. Let f be a ')'-min labeling of H . Then the restriction 
flv(G) satisfies fl~(ciCuv) ~ f'(uw) + f'( wv) on the graph G. The first 
inequality now follows from Lemma 2.2. \Ve now verify the second inequal­
ity. Let f be a ')'-ma..x labeling of G. \\Te can extend f to a ')'-labeling g of 
H by defining 

g(x) = { 
m (H) if x = w 
f(x) if X /. W. 

The result now follows from the triangle inequality. 

3 7-Labelings of Paths 

■ 

The ')'-labeling f of the path Pn : v1 , v2, · · · , Vn defined by f (vi) = i - 1 has 
val(!)= n - l. Thus, by (1) , we have the following observation . 

Observation 3.1 For each integer n 2:'. 2, valmin (Pn) = n - 1. 

Next, we determine valmax(Pn)- We begin by considering certa in ')'­
labelings of Pn. Suppose first that n = 2k + 1 2: 3 is odd . Consider the 
')'-labeling f of Pn defined by 

f (v;) 
{ 

k+~ 
2 

k 
i - 2 

2 

if i is odd and i < 2k + 1 

if i = 2k + 1 

if i is even. 

Then k edges of Pn are labeled k+l , one edge is labeled 1, and the rema ining 
k - 1 edges are labeled k + 2. Thus 

n 2 - 3 
val(!)= k(k + 1) + 1 + (k - l)(k + 2) = -

2
- . 

56 

(2) 



Next, suppose that n = 2k 2: 2 is even. Consider the , -labeling g of Pn 
defined by 

{ ~~:~] if i is odd 

if i is even. 

Here, k edges of Pn are labeled k and the remaining k - l edges are labeled 
k + l. Thus 

n2 - 2 
val(g) = k · k + ( k - l) ( k + 1) = -

2 
- · 

Combining (2) and (3), we have the following. 

Proposition 3.2 For every integer n 2: 2, 

valmax(Pn) 2: l 712

; 
2 J . 

(3) 

In order to show that the lower bound for valmax (Pn) given in Propo­
sition 3.2 is, in fact, the exact value of valmax(Pn) for all n ? 2, we first 
establish a lemma. 

Lemma 3.3 For every integer n ? 3, there exists a 1 -max labeling f 
of P n : V1, v2, ... , Vn having the property that for every integer i with 
1 ::; i ::; n - 2, the 3-term sequence 

is not monotone. 

Proof. For each -y-max labeling / of Pn, let 

Assume that the lemma is false . Consequently, for each -y-max lab eling f 
of Pn, some element of S(f) is monotone. Among all , -max labelings of 
Pn, let g be one for which t is the la rgest integer with 1 ::; t ::; n - 2 such 
that St(g) is monotone and s;(g) is not monotone for 1 ::; i < t. 

We define a new , -max labeling g' of Pn from g as fo llows: 

if i /. t + 1, t + 2 
if i = t + 1 
if i = t + 2. 

It is now stra ightforward to show that si(g' ) is not monotone fo r every 
integer i with 1 ::; i :S t and t hat val(g ' ) 2: val(g). Since g is a 1 -max 
labeling of Pn, it follows that val(g') = val(g) and g' is a lso a 1 -ma.,x labeling 
of Pn. This, however, contradicts the defin ing property of g. ■ 
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Proposition 3.4 For every integer n 2: 2 and every , -max labeling f of 
Pn, 

val(!) < l712 
_ 2J = { n:; 2 
2 n~ - 3 

2 

if n even , 

if n odd. 

Proof. A ,-max labeling f having the property introduced in Lemma 3.3 
induces a partition of V (P,1 ) into two independent sets , T(f) and B (f ) 
(the top and bottom of f, respectively), such that for every edge tb joining a 
vertex t E T(f ) to a vertex b E B(j), we have f (t) > f (b). It is immediate 
that 

val(!) = L f( v) deg v - L f( v) deg v. (4) 
vET(J} vE B ( f) 

Since the right hand side of (4) can be no larger than the quantity obtained 
by assigning the largest possible values to the vertices of T(f) and the 
smallest possible values to the vertices of B(f) , it follows that val(! ) is 
bounded above by 

if n is even, and by 

n 2 - 2 

2 

n 2 - 3 

2 

(5) 

(6) 

if n is odd. Simplifying (5) and (6) , we get the desired upper bound . ■ 

Combining Propositions 3.2 and 3.4, we have the following. 

Theorem 3.5 For every integer n 2: 2, 

ln
2 

- 2J valmax(Pn) = -
2
- . 

4 ,-Labelings of Cycles 

Next, we establish a formula for valmin ( C11 ) for all n 2: 3. 

Theorem 4.1 For every integer n 2: 3, 
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Proof. Let Cn : v1, v2, .. . , Vn, v1 • Consider the , -labeling h of Cn defined 
by h( vi) = i - 1 for 1 ~ i ~ n . Then 

n-1 

val(h) = L lh(vi+1) - h(vi)I + lh(v1) - h(vn)I 
i=l 

= (n - 1) · 1 + (n - 1) = 2(n - 1). 

Therefore, valmin ( C11 ) ~ 2(n- l ). Hence it remains to show that valmin (C,,) 2 
2(n - 1). 

Let f be a , -min labeling of Cn. By Corollary 2.3 , we may assume that 
t he vertices of Cn are labeled with t he elements of t he set { 0, 1, .. . , n - 1} . 
We may fur ther assume that f (vi) = 0. Suppose that f (vL) = n - 1, where 
2 ~ t ~ n . The cycle Cn contains two edge-disjoint v1 - Vt paths, namely 

Let f p be the restriction of f to P and f P' be t he restriction of f to 
P' . Then fp and fp , are 1 -labelings of P and P' , respectively, and 

val(!)= val(fp) + val(fp,). (7) 

We show that val(f p) 2 n - 1 and val(f p,) 2 n - l . 
Consider t he path P . If f (vi), f ( v2), .•. , f (vt) is an increas ing sequence, 

then 
t - 1 

val(f p) = L[f (vi+i) - f (v.,)] = j (vt) - f (vi) = n - l. 
i=l 

If f (vi) , f (v2), .. . , f(vt) is not increasing, t hen this sequence can be divided 
into an odd number of subsequences t ha t are alternately increasing a nd 
decreasing. Therefore , t here exists an odd integer s 2 3 such t hat 

a nd 

Then 

1 = io < i1 < . . . < is = t 

f (v1), f (v2), ... , f (vi1 ) is increasing, 

f (vi1 ), f ( Vi1 +1), . .. , f (vi2 ) is decreasing, and so on, up to 

f (vi,_i), f (vi, - i+d, ... , f (vi.) is increasing. 

val(fp) [f (vi1 ) - f (vio)l + [f (vi1 ) -f(v; 2 )] + [f (v;a) - f(vi2)] + 
... + [! (vi,) - f (vi,_ 1 )] 

[f (vt) - f (v1)] + 2{[J (vi 1 ) - f(vi2)] + [f(Vi3 ) - f( vi4 ) ] + 
... + [f(vi, _2 ) - f (vi,_ 1 )]} 

2 (n - 1) + (s - 1) > n - l. 
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In general then, val(! p) 2'. n - l. Simila rly, val(! p,) 2'. n - 1. It follows by 
(7) that val(!) 2: 2(n - 1). Therefore, va.lmin(Cn) = 2(n - 1) . ■ 

Since every edge labeling induced by a , -labeling of a graph containing 
a vertex v with deg v 2: 3 assigns a label of 2 or more to at least one edge 
incident with v, the following is a consequence of Theorem 4.1. 

Corollary 4.2 L et G be a connected graph of order n and size m. Then 

valmin(G) = m if and only if G 3=' Pn. 

In order to discuss val max ( Cn), we first esta blish the fo llowing result. 

Proposition 4.3 If G is a connected r -regular bipartite graph of order n 
and size m, where r 2'. 2, then 

(G) 
_ rn(2m - n + 2) 

valmax -
4 

. 

Proof. Let n = 2k and let Vi = {u1, U,2, . . . , u.k} and V2 = {v1 , v2, . .. , 
vd be partite sets of G. Define a , -labeling g of G by 

g(ui ) = i - 1 and g(vi) = m - (i - 1) for 1 ::; i::; k. 

Since m. = rk 2'. 2k , it follows that g(u ) < y(v) if u E Vi and v E Vi - Thus 

val(g) r [tg (vi) - tg(u;)l 

r{[rn + (m - 1) + .. . + (m - k + l)] 

-[l + 2 + ... + (k - l)]} 

r { [mk - G)] - C)} = r[mk - k(k - 1)) 

rn(2m - n + 2) 

4 

. , rn(2m. - n + 2) 
Therefore , val max ( G) 2: val(g) = 

4 
· 

rn(2m - n + 2) 
To show that valmax ( G) ::; 

4 
, let f be a 1 -max labeling 

of G. Suppose that E(G) = {e 1 , e2, ... , em }, where ei = Xi Yi and f( xi) < 
f (Yi) for 1 ::; i ::; m. Then 

m m 1n 

val(!) = L)f(Yi) - J (xi)] = L f (yi) - L f( xi)- (8) 
i =l i=l i=l 
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Let X = {xi : 1 :::; i:::; m } and Y ={Yi: 1 :Si :S ni}. Then IXI = IYI = 
m = rk. Since at m ost r vertices in X can be labeled by each of the labels 
0, 1, ... , k - l and at most r vertices in Y can be labeled by each of the 
labels m, m - 1, ... , m - (k - 1) , it fo llows t hat 

m 

i=l 
m 

> r[l + 2 + ... + (k - l )] = r G) 
L f (y;.) < r[m + (rn - 1) + .. . + (rn - k + l )] 

r [mk - C)] 
It then follows by ( 8) that 

rn(2m - n + 2) 

4 

rn(2m - n + 2) 
Therefore, val max ( G) = val (!) :S 

4 
· 

There is now a n immediate corollary. 

Corollary 4.4 For an even integer n 2'. 4, 

n (n + 2) 
val max ( Cn) = 

2 
. 

■ 

vVe now d etermine valmax ( Cn) where n is odd. A -y+ -labeling of a con­
nected graph G of order n and size m is a one-t o-one function f : V ( G) -+ 
{0, 1, 2,·· · ,rn + l} , where -y+ -max labeling and val!ax(G) are defined as 
expected. 

Lemma 4.5 For every -integer k 2'. 2, 

Proof. Let f be a , ,+ -ma.x labeling of C2k . Then there are two numbers 
a, b E {O, 1, 2, · · ·, m + 1} that a re assigned to no vertex of C2k by f . Con­
sequent ly, f can be extended to a -y-labeling h of Cn+1 by viewing C'..lk+t 
as a subdivis ion of C2k and then assigning either of the numbers a, b to the 
unique vertex in V(C2k+i) - V(C2 1.-)- From the tria ngle inequali ty, t he value 
of h is at least as la rge as t hat of f. T hus valmax ( C2k+1) 2'. val,~;ax ( C2k). 

We now establish the reverse inequali ty. Let g be a -y-max labeling of 
C2k+i . vVe construct an oriented graph D from C2k+ I by assigning to each 
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edge uv the orientation (·u,v) if g(v) > g(u). Necessarily, D contains a 
directed path x, y, z of order 3. If we delete the vertex y from C2k+l and 
join the vertices x and z, the result ing graph G is isomorphic to C2 k and 
the restriction g' of g to V (C2 k+1) - {y} has the same value on Gas g 
does on Czk+i. The function g' is thus a --y+ -labeling of C2k, and the result 
follows . ■ 

Theorem 4.6 For every odd integer n 2: 3, 

valmax(Cn) = (n - l )(n+ 3)_ 
2 

Proof. The result is clear for n = 3, so we may assume that n = 2k+ 1 2: 5. 
From Lemma 4.5, it is sufficient to show that val~ax(Cn- i ) = (n - l )(n + 
3)/2. Let Cn- 1 : X1,Y1,X2,Y2,· ··,xk ,Yk,x1. Define a --y+-labeling of Cn- 1 
by 

f(xi) = i - 1 and f(Yi) = 2k - i + 2 for 1 :Si :S k . 

Then val(!) = (n - l)(n + 3)/2 and so val~ax(Cn- d 2: (n - l)(n + 3)/2. 
It remains to verify that val;ax(Cn-i) :S (n - l)(n + 3)/2. Let g be 

a --y+-max labeling of Cn- 1, where E (Cn - 1) = { ei ,ez, ... ,en- d - For 
each integer i with 1 :S i :S n - l, let ei = 'UiVi, where g(ui) < g(vi)­

Then val(g) = I:~/ g(vi ) - I:~/ g(ui)- Since at most two vertices in 
{u1 , u2, ... , Un - d can be assigned each of the labels 0, 1, ... , k - l and at 
most two vertices in { v1 , v2, ... , Vn - i } can be assigned each of the labels 
k + 2, k + 3, . . . , 2k + 1, it follows that 

n- l n- 1 

E g(ui) 2: k2 
- k and E g(vi) :S 3k2 + 3k 

i=l i=l 

and so val(g) :S (3k2 + 3k) - (k2 - k) = (n - l)(n + 3)/2, producing the 
desired result. ■ 

5 ,-Labelings of Complete Graphs 

First , we establish the minimum value of complete graphs. In order to 
do this, we recall a well-known combinatorial identity (which is sometimes 
called the hockey st-ick property of the Pascal triangle): For every two inte­
gers r and s with O :S r :S s, 

(9) 
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Proposition 5.1 For each integer n ~ 3, 

(
71 + 1) valmin(Kn) = 

3 
. 

Proof. Let V (I( n) = { v1 , V3 , ... , Vn }. B y Corollary 2.3, the , -labeling f 
of K n defined by 

f (vi) = i - l for 1 :::; i :::; 11 

is a , -min labeling. Since 

val(!) ~ ~ (i'.; ,icj -1) - (i - l )j) 

~ (~ k) ( 71

; 1) , 
where the last equali~y follows from the combinatorial identity in (9), it 
follows that valmin(Kn) = (nt)- ■ 

Next, we determine the maximum value of complete graphs. 

Proposition 5 .2 For every pos-itive integer n , 

{ 

11 (3n3 - 5n2 + 6n - 4) 

valmax (J<n) = 24 

(n2 - 1)(3112 - 511 + 6) 
24 

if n even 

(10) 

if n odd. 

Proof. If f is a , -labeling of K n and J(V (Kn)) = { a1, a2, . .. , an}, where 
a1 < a2 < .. . < an, then 

n 

val (!) = 2)2-i - 1 - n )ai . 
; =l 

For N = (~), the number val(!) is m~-...: imized by ass igning the la bels 

{O, 1, .. . , fn/ 21 - 1, N - ln/2J + 1, N - ln/2J + 2, ... , N } 

to the ver t ices of K n, thereby ob taining the resul t. ■ 
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6 A Bound on the Minimum Value of a Graph 
in Terms of Its Order and Size 

For integers n and m with 1 :Sn - l :Sm::; (;), let S = {l , 2, · · · ,n - l} 
and 

k 

a(n, 'm) = max{k E S : I )n - i) :S m}. 
i=J 

There is a n algebraic expression for a (n, m) in terms of n a nd m. 

Lemma 6.1 For integers n and m with l ::; n -1 :Sm :S (;), 

Proof. Since a(n,m) = n - l if m = (;), we may assume t hat m < (;). 
Let a(n,m) = k. Then k < n -1 a nd 

k k + l 

I)n - i) :S -m < I)n - ·i) . 
i=l 

Therefore, G) :S m + (n ; k). Solving G) = m + ("; "' ) for x, we obtain two 
solut ions : 

1 
2 [ (;) - m] + ~; X 1 n- - -

2 

1 
2 [ ( ; ) - m] + i-X2 n- - + 

2 

Since k is the largest integer less than n - l fo r which (; ) :S m + (" ; k) , it 
follows that 

as des ired. ■ 

vVe can now provide a lower bound for the minimum value of a connected 
graph in t erms of its order and size. 

Proposition 6.2 If G is a connected graph of order n and size m with 
a(n, m) = k , then 

(k + 1) ( k + 2) valmin(G) 2'. 
2 

n + -
3

- + (m - nk)(k + l ). (11) 
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Proof. First, consid er t he function g: E(G)-, {1 , 2, ... , n- 1} defined as 
follows. Choose n - l edges of G and assign 1 to each of t hese edges. From 
the rema ining m - (n - 1) edges, choose another min{n - 2, m - (n - 1)} 
edges of G and ass ign 2 to each of these edges. At each step, if some edges 
of G have not been assigned a number, choose the smallest positive integer 
s not ass igned to any edge of G, and assign s to min { n - s, m- I:;,:; (n - i)} 
of t he remain ing edges of G. 

Next, let f be a ,'-min labeling of G. By Corollary 2.3, we may assume 
that f (V(G)) = {O, 1, . .. , n - 1}. Not ice that , for each integers with 1 :S 
s ~ n - l , there are exactly n - s pairs i, j of in tegers with O :S ·i < j '.S n -1 
and j - i = s. Consequently, for each such s, at most n - s edges e of G 
have value f'( e) = s. From the way in which the function g i constructed, 
it follows that 

val(!) ~ L g(e). 
eEE(G) 

We can now express LeEE(G) g(e) in terms of n, m and k. In particular , 

I: g(e) 
eEE(G) 

k ( k ) ~ i(n - ·i)+ ·m-~(n-i) (k+ l ) 

(
k + 1) k n 

2 
- 6 (k+ l )(2k+ l ) 

+ (m -nk + C; 1
)) (k + 1) 

(
k + 1) ( k + 2) 

2 
n + -

3
- + ( m - nk) ( k + l), 

as des ired. • 
'Vle now consider the sharpness a nd some consequences of Proposi­

t ion 6.2. When G = P11 , the right ha nd s ide of (11 ) is n - l ; while if 
G = K n, the right hand side of (11 ) is (nj l ). Consequent ly, by Observa­
tion 3.1 and P roposit ion 5.1 , the bound is sharp for paths and complete 
graphs . 

For a connected graph G of order n and a positive integer k, the kth 
power Gk o[ G is tha t graph with V(Gk) = V(G) such that ·uv E E(Gk ) if 
dc(u, v) '.S k. Now let Pn : v1, v::i, · · · , Vn. Defiue the ,'-labeling f of p;_ by 

f (vi) = i - 1 for 1 :S i :S n . Then P/'; has order n and size I:7=1 (n - i), 

and val(!) = I:7=1 i (n - i). Since 

k: 

val111 ; 11 (P,: ) ~ L i(n - i) 
i= l 
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by Proposition 6.2, it follows that valmi n (P,~) = L'.'=1 i(n - ·i). Thus the 
bound in Proposit ion 6.2 is sharp for P,~ for a ll integers k and n with 
1 ~ k ~ n - 1, including P~ = Pa and p~i- l = I<n. 

Let 's now consider connected graphs G of order n and size 

2 

I)n - i) = (n - 1) + (n - 2) = 2n - 3. 
i =l 

By Proposition 6.2, any such graph G' satisfies 

2 

valmi n (G) 2:: L i(n - i) = 3n - 5. 
i=l 

We have already noted that P;, is a graph of order n and size 2n - 3 having 
minimum value 3n - 5. Actually P,~ is a maximal outerplanar graph for 
every positive integer n. (See Figure 2 for Pi .) Since every ma..ximal outer­
planar graph of order n has size 2n - 3, we have the following observation. 

Figure 2: A m axima l outerplanar graph 

Proposition 6.3 If G' is a maximal outerplanar graph of order n > 2, 
then 

valmi n(G) 2:: 3n - 5. 

Furthermore, this bound is obtained if and only if G' = P~ . 

Next we turn to connected graphs G of order n and size 

3 

2)n - i) = (n - 1) + (n - 2) + (n - 3) = 3n - 6. 
i=l 

By Proposition 6.2, any such graph G satisfies 

3 

valmin(G) 2:: L 'i(n - i) = 6n - 14. 
i =l 

As mentioned before, P~ is a graph of order n a nd size 3n - 6 having 
minimum value 6n - 14. Of course, every maximal planar graph of order 
n 2 3 has size 3n - 6. Indeed, P~ is maximal planar . 
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Proposition 6.4 For every posit·ive integer n, the graph P~ ·is max·imal 
planar. 

Proof. Let P,. : v1 , v2 , · · · , Vn- The result is true for n = l and n = 2. For 
n 2: 3, we show by induction that there is a planar embedding of P~ in which 
there is a (triangular) region whose boundary vertices are Vn - 2 , Vn- I , and 
Vn . Clearly, this holds for n = 3. Assume, for an integer k 2: 3, that there 
is a planar embedding of Pf in which there is a region R whose boundary 
vertices are Vk- 2 , Vk - l, and vk . Vve now place a new vertex vk+ I in R and 
joining vk+1 to vk-2, Vk-I, and Vk- This produces a planar embedding of 
the graph P f+ 1 containing a t riangular region whose boundary vertices are 
Vk-1,vk, and Vk+l· Since the size of Pf+i is 3(k + 1) - 6, it follows that 
Pf+i is ma.ximal planar . ■ 

Corollary 6.5 If G is a maximal planar graph of order n 2 3, then 
val min ( G) 2: 6n - 14. Furthermore, this bound is attained if and only if 
G=P,~. 

Figure 3 shows the ma.ximal planar graphs Pf, Pf, and Pf and a -y-min 
labeling of each . Indeed, there are only two maximal planar graphs of order 
6, where valmin(PJ) = 22 and valminU<2,2,2 ) = 26. 

4 1 

2 

P 3. 
7 . 

4 

4 

Figure 3: Three ma.ximal plana r graphs 

3 

2 

Proposition 6.3 and Corollary 6.5 illustrate a more general result. Por 
a connected graph G of order n and size m with a(n, m,) = k , let L(n, m) 
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denote the lower bound for valmin(G') given in Proposition 6.2, that is, 

(k + 1) ( k + 2) L (n, m) = 
2 

n + -
3

- + (m - nk)(k + 1). 

For 1::; k < n -1 and an integer t with 1::; t < n-(k+ 1) , let P,~k ,t) denote 
the class of graphs obtained by adding t edges to P,~, where each such edge 

joins two vertices of P./'; whose distance is k + 1 in Pn - Thus p ~k,O) = {?~} ­
Consequently, if FE P ~k, t) ' then valmin(F) = L (n,m) . Moreover, if H 

is a graph of order n having the same size as F but H (/:. P,~k,t), then 
valmin (H) > valmin (F). These observations give us the fo llowing res ult . 

Proposition 6.6 Let G' be a connected graph of order n and size m with 
a(n, m) = k. Then 

valmin(G') = L (n,m) 

if and only if (i) k = n-1 and G = K n or (ii) 1 ::; k ::; n- 2 and GE P~k ,t) 
fo r some integer t with O::; t < n - (k + 1). 
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