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introduced his friend, LAS, to Leech trees. 

Abstract 

More than 25 years ago John Leech [2] posed the following beauti­
ful problem: find, whenever possible, trees on n vertices with positive 
weights on the edges, such that the (;) weighted distances among the 
n vertices are exactly the numbers 1, 2, 3, ... , (;) . This paper makes 
a modest progress on this problem . 

1 Examples for Leech trees 

A tree is called Leech tree if one can assign positive edge weights to its 
edges, such that the (;) path weights, i.e. the sums of weights along the 
(;) distinct paths connecting the pairs of the n vertices of the tree, yield 
exactly the numbers 1, 2, 3, ... , G) . Since edges of the tree are also paths, the 
edge weights have to be positive integers as well. John Leech introduced 
these trees in [2]. Believe it or not , he was motivated by a problem of 
electrical engineering, where edge weights represented electrical resistances. 
He gave a list of small Leech trees (see Fig. 1) and posed the problem of 
their existence in general. The difficulty of the existence problem lies in 
the unusual way of mixing additive number theory with combinatorics , in 
particular in the exponential growth of the number of candidates for Leech 
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trees. Leech wrote "I expect the resolution of this question to be very 
difficult" . 

1 1 2 1 3 2 

1 2 I • 5 

Figure 1: The known Leech trees. 

Note that there are similar problems around that are notoriously hard. 
The Graceful Tree Conjecture of Ringel [3] states that for every tree with n 
vertices, there is a bijection f between the vertex set and {1,2, ... ,n} such 
that {IJ(v) - J(u)I: uv edge}= {1, 2, ... , n - 1}. The seventeen years old 
Prime Labeling Conjecture of Entringer states that for every tree with n 
vertices, there is a bijection f between the vertex set and { 1, 2, ... , n} such 
that gcd(f(v), f(u)) = 1 whenever uv is an edge [4]. 

2 Results for the shape of Leech trees 

Herbert Taylor [7] gave a beautiful proof restricting the number of vertices 
on which Leech trees can exist. For completeness we also show his proof. 

Theorem 1. (H. Taylor) If there is a Leech tree on n vertices, then n = k2 

orn = k2 +2. 

Proof Let d(x, y) denote the sum of weights on the path connecting vertices 
x and y . The crucial observation is the fact that for any 3 vertices x, y, z 
in a tree, one has 

d(x,y) =d(x,z)+d(y,z) (mod 2). 
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Fix a vertex v and let A denote the set of vertices lying at an even distance 
from v (v is included), and let B denote the set of vertices lying at an odd 
distance from v . Now we have jAj + jBj = n . According to (1), two vertices 
define an odd-length path if and only if one of them belongs to A, and the 
other to B . Therefore the number of paths with odd weight is jAj • jBj. If 
(;) is even, there must be exactly ½ (;) paths with odd weights. Hence 

(jAj - IBl)2 = (IAI + IBl) 2 
- 4jAj · IBI = n 2 

- 2 (;) = n . 

If (;) is odd, there must be exactly ½ ( (;) + 1) paths with odd weights . 

Hence (IAI -IBl) 2 = (IAI+ IBl)2 -4IAI · IBI = n 2 -2( G) + 1 )= n-2. D 

Note that the proof gave seemingly more than the theorem: If there is 
a Leech tree on n vertices, then n = k2 if G) is even, and n = k2 + 2 if G) 
is odd. In fact , this more precise statement gives no more restriction . We 
leave this as an exercise to the readers . 

Since no examples of Leech trees for n > 6 are known, and in this paper 
we show further non-existence results, one may arrive to the conjecture 
that 

Conjecture 1. There are only finitely many Leech trees. 

We give further support to this conjecture in the next section, showing 
that there are no Leech trees on n = 9 and 11 vertices. In the rest of this 
section we prove this conjecture for particular tree shapes. 

Leech noted (without proof) that a path can be a Leech t ree only for 
n s; 4. Indeed, since (;) must be among the path weights, it has to be 
the weight of t he full tree . All n - l edges of the tree must have distinct 
positive integer weights, and the i th smallest of them is at least i. Since 
1 + 2 + ... + (n - 1) = G), it fo llows t hat the n - 1 edge weights must 
be the numbers 1, 2, ... , ( n - l ). Weight 1 must be adjacent to ( n - l ) and 
nothing else, otherwise weight 1 and t he edge adjacent to it would yield 
a path o f weight < n, whi ch is already present as an edge. Since 1 and 
(n - 1) already give a path of length n, 2 can be adjacent only to (n - 1), 
otherwise a path with weight s; n would be found . Now we cannot put a ny 
weighted edge to the other side of 2. 

We can generalize this observation by proving that. Leech trees cannot 
have very long paths: 

39 



Theorem 2. If there is a Leech tree on n vertices, then it contains no 
paths of length larger than 72(1 + o(l)) . 

Proof. Assume that a 1,a2, . .. ,ai are the weights along a path in a Leech 
tree on n vertices in this order. Observe the following inequalities: 

t 

(;) 2)ai) ~ (2) 
i = l 

t - 1 

2(;) L)ai + ai+t) < (3) 
i = l 

t- j 

(j + 1) (;)-2)ai + ~ + l··· + ai+j) < ( 4) 
i = l 

Summing up these inequalities for j = 0, 1, 2, ... , k - 1, we obtain that some 
t + (t - 1) + .. . + (t - k + 1) = tk - (;) distinct integers sum up to at most 

(kf) G). Since the i th smallest among these distinct integers is, again, at 
least i, we obtain that 

(5) 

Setting k = l foJ in (5), we obtain the theorem. □ 

We prove that largest Leech star consists of edges with weights 1,2, and 
4. Indeed, it is easy to see that any Leech star with at least 3 leaves must 
contain these edge weights. Assume that there is a fourth leaf. Its edge 
must have weight 7. However, the star with edge weights 1,2,4, and 7 is 
not a Leech star, since 10 does not occur as a distance. If a Leech star with 
at least 5 leaves has edge weights 1,2,4,7, and 10, then 11 is represented 
twice as a distance, a contradiction . The theorem below shows that Leech 
trees cannot even go close to the star shape. 

Theorem 3. In a Leech tree on n vertices, the maximum degree is at most 

(-~ + o(l))n. 

Proof Let us be given a Leech tree on n vertices, which has a vertex v 
of degree d. Let W denote the set of d distinct integers, which are the 
weights of edges adjacent to v. Let D denote the set of d neighbors of v, 
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and let N denote the set of (~) distinct distances among pairs of vertices in 

D. We will consider the intervals 11 = [1 ,½ G)] h = (½G),½G)], and 

/3 = [ jG), (;)] . Let i1 denote IW n Id, for l = 1, 2, 3. Let Z denote the 

set of G) - (~) djstances which do not have both endpoints in D . Let j, 
denote IZ n Id, for l = l, 2, 3. We have the following inequalities: 

Cl) . 2 + JI > l½(;)J , (6) 

C2) . 2 + ]3 > l½(;) l (7) 

Jl + ]2 + ]3 < (;) - (~)- (8) 

Formula (6) follows from the fact that the elements of Ii are represented 
as distances. Formula (7) follows from the fact that the elements of [3 are 
represented as djstances . Formulae (6), (7), and (8) immediately imply 
that for l = 1, 2 

i2 a2 n2 
.J.. > - - - + O(n) . 
2 - 2 3 

(9) 

Taking the square root of (9) for l = l, 2, and summing it up, one obtains 

(10) 

Solving the inequality (10) ford, we obtain the required d :=:; ( '{! + o( l ))n. 
D 

3 Computational results 

Note that t he smallest orders of a tree, where Theorem 1 leaves open the 
existence of Leech t rees, is n = 9 and 11 ver tices. 

Theorem 4. There are no Leech trees on n = 9 and 11 vertices. 
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We will give the outline of the algorithm that we use to check the exis­
tence of Leech tree on 9 vertices . (The one for 11 is similar.) A backtrack 
algorithm is used to find whether there exists a Leech tree of 9 nodes. The 
weighted tree of 9 nodes will be represented as a 9 x 9 adjacency matrix. 
There are eight edges for a weighted tree of 9 nodes, which can be labeled 
as edge 1 through edge 8 such that their weights are in increasing order. 
Obviously the weight of edge 1 has to be one. And we can fix the position 
of edge 1 to be the (1,2) entry of the matrix. The algorithm will do as 
follows: 

Initial step: 
set matrix m 1 to be the adjancency matrix with edge 1 assigned 

Step i (2 ~ i ~ 8) ( handle edge i ): 
weight+-- Find-Next-Weight(m); 

for all possible positions do: 
if (Check-Validity(position,m)==FALSE), try next position; 
copy( mi, mi- l); Assign-Value( mi, weight,position); 
if (Is-Valid(mi)==FALSE), try next position ; 

Do step i + 1; 

Find-Next-Weight: find out the weights of all the existing paths, then 
take the smallest weight from {1, 2, ... , 36} that is not in there, this has to 
be the weight of the next edge. 

Check-Validity: since we are looking for a tree, we do not want cycles, 
so check the current graph for all possible paths, the new edge can not be 
in a position to connect two end vertices of an existing path (which will 
result in a cycle). 

Is-Valid: check if any two paths of the existing graph has the same 
weight . Note that at step 8 when all the eight edges are assigned, we just 
need to check if it represents a valid Leech tree. 

To find out the weights of all paths, we need to calculate the distance 
matrix of the graph. This was done using the classical all-pair shortest 
path algorithm. If all 8 edges are assigned and the matrix is still valid, the 
program ends with a Leech tree found. The code can be downloaded from 
[6]. 

We note that Wayne Goddard has independently arrived to the same 
computational results . 
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4 Buneman's 4-point condition 

Consider some n vertices of a tree with positive edge weights. Define the 
distance of two vertices by the weight of the path connecting the vertices. It 
is well-known and easy to verify that these distances define a metric space 
on the vertex set. This metric space has a peculiar property, the so-called 
Buneman's 4-point condition: for any 4 vertices x,y,u,v, two out of the 
following three distance sums 

d(x,y)+d(u,v), d(x,u)+d(y,v), d(x,v)+d(u,y) 

are equal, and the third is not greater than the other two. A glimpse on 
the figure below shows why this holds. 

In Figure 2, a, b, c, d, e 2'.: 0 are the lengths of the corresponding paths, 
and we have 

d(x, y) + d(u, v) =a+ b + d + e :s; 

:s; a+ b + 2c + d + e = d(x, u) + d(y, v) = d(x, v) + d(y, u) . 

X u 

a e 
C 

b 

y V 

Figure 2: Buneman's 4-point condition. 

Consider now the following problem: which finite metric spaces can 
be represented in the way described above? Buneman 's theorem asserts 
that exactly those finite metric spaces have such a tree representation, for 
which Buneman's 4-point condition holds. It is worth noting that the tri­
angle inequality of the metric space also follows from Buneman's 4-point 
condition, if it is extended to any four not necessarily distinct points. (Al­
though Buneman's 4-point condition was actually discovered twice before 
Buneman did, see [5, 8], the result is still little known among those who do 
not work on phylogenetic tree reconstruction.) 

One might pose the following conjecture, strengthening Conjecture 1: 
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C o nj ecture 2. For any finite m etric space on n > no vertices with dis­
tances 1, 2, 3, .. . , G) , Buneman's 4-point condition fail s. 

This conjecture would say that 1, 2, 3, ... , (;) cannot be the distance 
set of n vertices in an edge-weighted tree that may have more than n 
vertices and not necessarily edge weighted with integers! Note, however , 
that Taylor's proof to Theorem 1 still works if we allow new vertices in 
the tree but require that all new vertices have integer distances to a ll old 
vertices. 

We show an example that Conjecture 2 is false for any order. For any n, 
the following is an example of a tree T whose edge weights are half integers. 
There are n vertices in V (T) such that pairwise distance among these n 
vertices are 1, 2, 3, . . . , G). 

2 7 
2 

1 1 1 2 = 
v2 V1 U1 

V5 
► 

11 
2 

u2 

3 
2 

8 11 

2 

U 3 U4 

Figure 3: Example 

Vn - 1 

{n;2) +l {n;'}+l 
2 2 

n - 4 

Un - 5 Un - 4 Vn 

In Figure 3, we assign half-integer weights to the edges as follows : 
(v1,v2) = 1, (v1,v3) = 2, (v1,u1) = ½,(un - 4,vn) = (;) - (un - 4,Vn - 1); 

ITl±..:. (ui - 1, u;) =½for i = 2, 3, ... , n-4 ; (1.L., vi+3) = 2 
2 +l for i = 1, 2, . .. , n-

4. Then, if we consider the distance matrix for vertex vi, i = 1, 2, ... , n, we 
have 

Vn Vn - 1 

Vn 0 n 
2 

Vn - 1 0 

Vn - 2 

V2 

V1 

Vn - 2 

n -1 2 (n21) 

0 

44 

3 
0 

2 
1 
0 



References 

[1] P. Buneman, The recovery of trees from measures of dissimilarity, in 
Mathematics in the Archaeological and Historical Sciences, Proceed­
ings of the Anglo-Romanian Conference, Mamaia, 1970, F. R. Hodson, 
D. G . Kendall, P. Tautu, eds.; Edinburgh University Press, Edinburgh, 
1971, 387- 395. 

[2] J . Leech, Another tree labeling problem, Amer. Math. Monthly 82 
(1975), 923- 925. 

[3] G . Ringel, Problem 25, Theory of graphs and its applications (Proc. 
Sympos., Smolenice , 1963) 25 , Pub!. House of Czech. Acad. Sci., 
Prague, 1964, p . 162. 

[4] H. Salmasian, A result on the prime labelings of t rees, Bull. Inst. 
Comb. Appl. 28 (2000), 36- 38. 

[5] Y. A. Smolensky: A method for linear recording of graphs, USSR 
Comput. Math. Phys. , 2 (1969), 396- 397. 

[6] L. A. Szekely's webpage 
http://www.math . sc.edu/-szekely/leechtree/index.htm 

[7] H . Taylor, Odd path sums in an edge-labeled tree, Math. Magazine 50 
(1977) (5) 258- 259. 

[8] K. A. Zaretsky, Reconstruction of a tree from the distances between 
its pendant vertices, Uspekhi Math. Nauk (Russian Mathematical Sur­
veys), 20 (1965) , 90- 92 (in Russian) . 

45 


