Disjoint union-free designs with block size three

Peter Dukes
Mathematics and Statistics
University of Victoria
Victoria, BC
Canada V8W 3P4

Alan C.H. Ling
Computer Science
University of Vermont
Burlington, VT
USA 05405

December 6, 2004

Abstract

Let $n \geq k$ be positive integers. A famous question of Erdös asks for the largest size of a family \mathcal{F} of k-subsets of an n-set such that there are no distinct $A, B, C, D \in \mathcal{F}$ with $A \cap B=C \cap D=\emptyset$ and $A \cup B=C \cup D$. In the case $k=3$, Füredi has conjectured that for sufficiently large $n,|\mathcal{F}| \leq\binom{ n}{2}$ and has constructed a family of examples achieving equality in which \mathcal{F} is the block set of a design. Here, we characterize the designs meeting this conjectured bound.

1 Introduction

Let $n \geq k$ be positive integers, and let X be an n-set. Let $\binom{X}{k}$ denote the set of all $\binom{n}{k} k$-subsets of X. A set $\mathcal{F} \subset\binom{X}{k}$ is disjoint union-free (DUF) if all disjoint pairs of elements of \mathcal{F} have distinct unions; that is, if for every $A, B, C, D \in \mathcal{F}, A \cap B=C \cap D=\emptyset$ and $A \cup B=C \cup D$ implies $\{A, B\}=\{C, D\}$. For a given n, k, the maximum size of such a family \mathcal{F} is denoted $f_{k}(n)$. Erdös asked in [2] to determine the values of $f_{k}(n)$. Füredi [3] determined the exact value of $f_{2}(n)$ for infinitely many values of n. Füredi also conjectured in [4] that $f_{3}(n) \leq\binom{ n}{2}$ for sufficiently large n.

An (n, k, λ) design is a pair (X, \mathcal{B}) with $|X|=n$ and \mathcal{B} a collection of k-subsets, or blocks, of X such that every pair of distinct points in X is contained in exactly λ blocks. We call λ the index of the design. An (m, k, λ) design $\left(Y, \mathcal{B}^{\prime}\right)$ is a sub-design of (X, \mathcal{B}) if $Y \subset X$ and $\mathcal{B}^{\prime} \subset \mathcal{B}$ (counting multiplicities).

We will abuse terminology and say an $(n, 3, \lambda)$ design (X, \mathcal{B}) is DUF if \mathcal{B} is DUF. It is not hard to see that $\lambda \leq 3$ for a DUF $(n, 3, \lambda)$ design to exist (see the proof of Lemma 2.2). Any ($n, 3,1$) design is trivially DUF, and certain $(n, 3,2)$ designs with the DUF property are discussed in [1]. When $\lambda=3, n$ must be odd, and there are exactly $\binom{n}{2}$ blocks in an $(n, 3,3)$ design.

The following gives a family of examples of DUF ($n, 3,3$) designs. This was first shown in [4] and we recall the argument here for completeness.

Proposition 1.1. [4] $\operatorname{DUF}(n, 3,3)$ designs exist for $n \equiv 1,5(\bmod 20)$.

Proof: For $n \equiv 1,5(\bmod 20)$ there exists an $(n, 5,1)$ design [5]. Replace each block E of this design with $\binom{E}{3}$. Since each $\left(E,\binom{E}{3}\right)$ is a $(5,3,3)$ design, the result is an $(n, 3,3)$ design, say with blocks \mathcal{B}. We show \mathcal{B} is DUF. Suppose $A \cap B=C \cap D=\emptyset$ but $A \cup B=C \cup D$ for distinct $A, B, C, D \in \mathcal{B}$. Observe A and B must come from different blocks E, F of the underlying ($n, 5,1$) design, and $|E \cap F| \leq 1$. A similar statement is true for C and D. So we have, say, $A, C \subset E$ and $B, D \subset F$. But A and C are distinct, so $|A \cap D|=1$. Similarly $|B \cap C|=1$. So $|E \cap F| \geq 2$, a contradiction.

Perhaps surprisingly, our main theorem in this note (Theorem 2.6) characterizes DUF ($n, 3,3$) designs as only those coming from the construction in Proposition 1.1.

2 The main result

Suppose (X, \mathcal{B}) is a DUF $(n, 3,3)$ design. Define the mapping $\tau:\binom{X}{2} \rightarrow\binom{X}{3}$ by $\tau(\{a, b\})=\{x, y, z\}$ if and only if $\{a, b, x\},\{a, b, y\},\{a, b, z\} \in \mathcal{B}$. Let $\mathcal{A}=\tau\left(\binom{X}{2}\right)$ be the multiset whose $\binom{n}{2}$ elements are the images all pairs in X under τ. (It will turn out in fact that \mathcal{A} has no repeated elements, but a priori this may not be the case.) We now give a series of lemmas, the first of which is a restatement of the DUF property in terms of τ.

Lemma 2.1. $|\tau(\{u, v\}) \cap \tau(\{x, y\})| \geq 2$ implies $\{u, v\} \cap\{x, y\} \neq \emptyset$.
Lemma 2.2. (X, \mathcal{A}) is an $(n, 3,3)$ design.

Proof: Since \mathcal{A} consists of $\binom{n}{2} 3$-subsets of X, it suffices to show that every pair $\{x, y\}$ of distinct points appears in at most three elements of \mathcal{A} (counting multiplicities). Suppose for contradiction that $\{x, y\} \subset \tau\left(P_{i}\right)$, $i=1,2,3,4$, where $P_{i} \in\binom{X}{2}$ are distinct. By Lemma 2.1, we must have any two of the P_{i} intersecting pairwise. But four distinct pairs which intersect pairwise must all intersect in a point. So for some $a \in X, P_{i}=\left\{a, b_{i}\right\}$, $i=1,2,3,4$, with the b_{i} distinct. But then $\left\{a, x, b_{i}\right\} \in \mathcal{B}$ for $i=1,2,3,4$, a contradiction to (X, \mathcal{B}) having index 3 .

In light of Lemma 2.2, we may call the elements of \mathcal{A} blocks. We now claim that there are no blocks appearing exactly twice in \mathcal{A}.

Lemma 2.3. If $\{x, y, z\}$ appears twice in \mathcal{A} then it appears thrice in \mathcal{A}.

Proof: Suppose $\tau(\{a, b\})=\tau(\{a, c\})=\{x, y, z\}$. Now by Lemma 2.2, each of $\{x, y\},\{x, z\}$, and $\{y, z\}$ occur in a third block of \mathcal{A}, say $\left\{x, y, z^{\prime}\right\}$, $\left\{x, y^{\prime}, z\right\}$, and $\left\{x^{\prime}, y, z\right\}$, respectively. Either these three blocks all equal $\{x, y, z\}$ or they are all distinct. In the latter case, we suppose these blocks are $\tau\left(P_{1}\right), \tau\left(P_{2}\right)$, and $\tau\left(P_{3}\right)$, respectively, for $P_{i} \in\binom{X}{2}$. By Lemma 2.1, each of P_{1}, P_{2}, P_{3} must intersect both $\{a, b\}$ and $\{a, c\}$. But at most one P_{i} can equal $\{b, c\}$. So, say, $P_{1}=\{a, d\}$ and $P_{2}=\{a, e\}$ with b, c, d, e distinct. Observe now that $\{a, x\}$ occurs in \mathcal{B} with each of b, c, d, e, again contradicting index 3 .

Lemma 2.4. Every pair of points in X is either contained in a thrice repeated block of \mathcal{A}, or in a $(5,3,3)$ sub-design of $\mathcal{B}($ and hence of $\mathcal{A})$.

Proof: Let $\{x, y\} \in\binom{X}{2}$ and suppose $\tau(\{a, b\})=\{x, y, z\}$. Assume $\{x, y, z\}$ is not a thrice repeated block of \mathcal{A}. Then by Lemmas 2.2 and 2.3, we have blocks

$$
\left\{x, y, z^{\prime}\right\},\left\{x, y, z^{\prime \prime}\right\},\left\{x, y^{\prime}, z\right\},\left\{x, y^{\prime \prime}, z\right\},\left\{x^{\prime}, y, z\right\},\left\{x^{\prime \prime}, y, z\right\} \in \mathcal{A}
$$

with $x, x^{\prime}, x^{\prime \prime}$ distinct, $y, y^{\prime}, y^{\prime \prime}$ distinct, and $z, z^{\prime}, z^{\prime \prime}$ distinct. Suppose these blocks are $\tau\left(P_{1}\right), \ldots, \tau\left(P_{6}\right)$, respectively, for $P_{1}, \ldots, P_{6} \in\binom{X}{2}$. Now each of P_{1}, \ldots, P_{6} must intersect $\{a, b\}$ by Lemma 2.1 , and moreover $P_{1} \cap P_{2}$, $P_{3} \cap P_{4}, P_{5} \cap P_{6} \neq \emptyset$.

Case 1. $P_{i} \cap P_{i+1} \cap\{a, b\} \neq \emptyset$ for all $i=1,3,5$.

Assume (by relabeling if necessary) that $a \in P_{1}, P_{2}, P_{3}, P_{4}$. We have $\tau(\{a, c\})=\left\{x, y, z^{\prime}\right\}, \tau(\{a, d\})=\left\{x, y, z^{\prime \prime}\right\}, \tau\left(\left\{a, c^{\prime}\right\}\right)=\left\{x, y^{\prime}, z\right\}$, and $\tau\left(\left\{a, d^{\prime}\right\}\right)=\left\{x, y^{\prime \prime}, z\right\}$ for some distinct $c, d, c^{\prime}, d^{\prime}$. But then $\tau(\{a, x\})=$ $\{b, c, d\}=\left\{b, c^{\prime}, d^{\prime}\right\}$, a contradiction.

Case 2. $P_{i} \cap P_{i+1} \cap\{a, b\}=\emptyset$ for some $i=1,3$, or 5 .
Assume $P_{1}=\{a, c\}$ and $P_{2}=\{b, c\}$ for some $c \in X$. Then we have $\{b, c\} \subset \tau(\{a, x\}), \tau(\{a, y\})$. Suppose first that $\{b, c\} \subset \tau(\{a, w\})$ with w, x, y distinct. Then $\{a, b\}$ occurs with w, x, y, z. So we conclude that $w=z$. Also, $\{a, c\}$ occurs with w, x, y, z^{\prime}. So $z=w=z^{\prime}$, a contradiction to z, z^{\prime} being distinct. Otherwise, it must be that $\{b, c\} \subset \tau(\{x, y\})$. We apply a similar reasoning with $\{a, c\} \subset \tau(\{b, x\}), \tau(\{b, y\})$ to get either a contradiction to $z, z^{\prime \prime}$ being distinct, or $\{a, c\} \subset \tau(\{x, y\})$. Therefore, $\tau(\{x, y\})=\{a, b, c\}$. Then $\tau(\{b, y\})=\{a, x, c\}$, and $\tau(\{c, y\})=\{a, x, b\}$. Suppose $\{a, x, d\}$ is the third block in \mathcal{A} containing $\{a, x\}$. By Lemma 2.1, either $\tau(\{b, c\})=\{a, x, d\}$ or $\tau(\{t, y\})=\{a, x, d\}$ for some $t \neq b, c$. In the latter case, $\{a, y\}$ occurs with b, c, x, t in \mathcal{B}. So $x=t$, but this is impossible because $\{t, y, x\} \in \mathcal{B}$. Therefore, $\tau(\{b, c\})=\{a, x, d\}$, and in particular, $\{a, b, c\} \in \mathcal{B}$. Taking an inventory of triples in \mathcal{B}, we see that every $3-$ subset of $\{a, b, c, x, y\}$ is a block in \mathcal{B}, and hence in \mathcal{A}. This proves $\{x, y\}$ is in a $(5,3,3)$ sub-design of both \mathcal{A} and \mathcal{B}.

Observe now that the characterization is "close" to complete. It remains only to rule out the existence of thrice repeated blocks in \mathcal{A}. To this end, we present the following result.

Lemma 2.5. If $\{x, y, z\}$ is thrice repeated in \mathcal{A}, then for some distinct a, b, c, d we have $\tau(\{a, b\})=\tau(\{a, c\})=\tau(\{a, d\})=\{x, y, z\}$.

Proof: Suppose $\{x, y, z\}$ is thrice repeated in \mathcal{A}. By Lemma 2.1, the preimages of $\{x, y, z\}$ under τ must consist of three intersecting pairs. If the three pairs all intersect in a point, we are done. So suppose $\tau(\{a, b\})=$ $\tau(\{a, c\})=\tau(\{b, c\})=\{x, y, z\}$ for some distinct a, b, c.

Consider the pair $\{a, b\}$. By Lemma 2.4, it is either in a thrice repeated block of \mathcal{A}, or belongs to a $(5,3,3)$ sub-design in \mathcal{B}. But this latter case is impossible, since then $\{x, y, z\}$ also belongs to this sub-design and could not be thrice repeated. So for some $t,\{a, b, t\}$ is thrice repeated in \mathcal{A}. Since $\{a, b\} \subset \tau(\{c, x\}), \tau(\{c, y\}), \tau(\{c, z\})$, it follows from Lemma 2.2 that $\{a, b, t\}=\tau(\{c, x\}), \tau(\{c, y\}), \tau(\{c, z\})$. But then $\tau(\{t, c\})=\{x, y, z\}$. Using Lemma 2.2 again gives $t \in\{a, b\}$, and this is absurd.

We are now in a position to characterize the DUF ($n, 3,3$) designs.
Theorem 2.6. In a $\operatorname{DUF}(n, 3,3)$ design, every pair of points is contained in a unique ($5,3,3$) sub-design.

Proof: By Lemma 2.4, it suffices to show there are no thrice repeated blocks in \mathcal{A}. Suppose $\{x, y, z\}$ is thrice repeated in \mathcal{A}. By Lemma 2.5, we have $\{x, y, z\}=\tau(\{a, b\}), \tau(\{a, c\}), \tau(\{a, d\})$ for some distinct a, b, c, d. Then also $\tau(\{a, x\})=\tau(\{a, y\})=\tau(\{a, z\})=\{b, c, d\}$. We must have $\tau(\{b, x\})=\{a, r, s\}$ for some r, s. Consider the two cases from Lemma 2.4.

Case 1. $\{a, r, s\}$ is thrice repeated in \mathcal{A}.
Using Lemma 2.5, the three pre-images of $\{a, r, s\}$ under τ must all meet in either b or x. Suppose the former; that is, $\{a, r, s\}=\tau(\{b, x\}), \tau(\{b, t\})$, $\tau(\{b, u\})$, where t, u, x are distinct. Then dually we have $\tau(\{b, a\})=$ $\{t, u, x\}$. But from before, $\tau(\{b, a\})=\{x, y, z\}$. So $\{t, u\}=\{y, z\}$. Now $\tau(\{b, r\})=\{x, y, z\}$, so by Lemma 2.2 it must be that $\{b, r\}$ equals either $\{a, c\}$ or $\{a, d\}$. Either case is impossible as $a \neq b$. The case when the pre-images of $\{a, r, s\}$ all meet in x is similar.

Case 2. $\{a, r, s\}$ belongs to a $(5,3,3)$ sub-design of \mathcal{B}.
In particular, $\tau(\{a, x\})=\{b, r, s\}$. But we already have $\tau(\{a, x\})=$ $\{b, c, d\}$. So $\{r, s\}=\{c, d\}$ and $\{a, b, c, d, x\}$ are points of a (5, 3, 3) subdesign in \mathcal{A} and in \mathcal{B}. This contradicts $\{b, c, d\}$ being thrice repeated in \mathcal{A}.

References

[1] P. Dukes and E. Mendelsohn, Skew-orthogonal Steiner triple systems, J. Combin. Des. 7 (1999), 431-440.
[2] P. Erdös, Problems and results in combinatorial analysis, Proc. of the Eighth Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Baton Rouge 1977, Louisiana State Univ., Congr. Numerantium XIX, 3-12.
[3] Z. Füredi, Graphs without quadrilaterals, J. Combin. Theory B 34 (1983), 187-190.
[4] Z. Füredi, Hypergraphs in which all disjoint pairs have distinct unions, Combinatorica 4 (1984), 161-168.
[5] H. Hanani, On balanced incomplete block designs with blocks having five elements, J. Combin. Theory A 12 (1972), 184-201.

A few more ($K_{v}, K_{5}-e$)-designs

Qiang Li and Yanxun Chang ${ }^{1}$
Institute of Mathematics
Beijing Jiaotong University
Beijing 100044, P. R. China
yxchang@center.njtu.edu.cn

Abstract

Let G be a simple graph without isolated vertices. A $\left(K_{v}, G\right)$ design is a partition of the edges of K_{v} into subgraphs each of which is isomorphic to G. In this note, we remove all the left values v summarized in [5] for the existence of a ($K_{v}, K_{5}-e$)-design when $v \equiv 1(\bmod 18)$, and establish that a $\left(K_{v}, K_{5}-e\right)$-design exists for any integer $v \equiv 1(\bmod 18)$ and $v \geq 19$. We also construct a ($K_{v}, K_{5}-e$)-design for $v=28,46,82$.

1 Introduction

Let K_{v} be a complete graph on v vertices. Let $G=(V(G), E(G))$ be a simple graph without isolated vertices. A $\left(K_{v}, G\right)$-design is a partition of edges of K_{v} into subgraphs (G-blocks) each of which is isomorphic to G. When the graph G is itself a complete graph K_{k}, the (K_{v}, K_{k})-design is known as a $(v, k, 1)$-BIBD. If there exists a $\left(K_{v}, G\right)$-design, then
(1) $v(v-1) \equiv 0(\bmod 2|E(G)|)$, and
(2) $(v-1) \equiv 0(\bmod d)$, where d is the greatest common divisor of the degrees of the vertices of G.

It was proved in [11] that the necessary conditions (1) and (2) for the existence of a (K_{v}, G)-design are asymptotically sufficient, that is, there exists an integer $N(G)$ such that there is a (K_{v}, G)-design for any integer $v \geq N(G)$ satisfying the necessary conditions (1) and (2).

The existence of a ($\left.K_{v}, G\right)$-design for various graphs G has been studied in literatures (see, $[3,5,6,7,12]$). The case where G is a graph with at most four vertices has been solved completely in [2]. If G has no isolated vertices and $|V(G)|=5$, the existence problem of a $\left(K_{v}, G\right)$-design has been very nearly solved in $[1,4,8,9,10]$.

In what follows, we denote $K_{5}-e$ by $[a, b, c, d, e]$ with vertex set $V=$ $\{a, b, c, d, e\}$ and edge set $E=\{a b, a c, a d, b c, b d, b e, c d, c e, d e\}$.

[^0]

The necessary condition of the existence of a ($K_{v}, K_{5}-e$) -design is $v \equiv 0,1(\bmod 9)$ and $v \neq 9,10,18$. For the sufficiency we have the following result (see, for example, [5]).

Lemma 1.1 If $v \equiv 1(\bmod 18)$ and $v \neq 37,55,73,109,397,415,469$, $487,505,541,613,685$, then there exists a $\left(K_{v}, K_{5}-e\right)$-design.

In this note, we remove all the left cases in Lemma 1.1. We also construct ($K_{v}, K_{5}-e$)-design for $v=28,46,82$.

2 Working lemmas

Denote the $\left(K_{v}, G\right)$-design by $K_{v} \rightarrow G$ sometimes for convenience. Let $K_{m_{1}, m_{2}, \cdots, m_{n}}$ be the complete multipartite graph with vertex set $V=\bigcup_{i=1}^{n} V_{i}$, where $V_{i}(1 \leq i \leq n)$ are disjoint sets with $\left|V_{i}\right|=m_{i}(i=1,2, \cdots, n)$. We also denote the $\left(K_{m_{1}, m_{2}, \cdots, m_{n}}, G\right)$-design by $K_{m_{1}, m_{2}, \cdots, m_{n}} \rightarrow G$.

The following lemmas are well illustrated in [1].
Lemma 2.1 ([1]) If $K_{n_{1}, n_{2}, \cdots, n_{h}} \rightarrow G$ and $K_{n_{i}} \rightarrow G$ for $1 \leq i \leq h$, then $K_{n} \rightarrow G$ where $n=\sum_{i=1}^{h} n_{i}$.

Lemma 2.2 ([1]) If $K_{n_{1}, n_{2}, \cdots, n_{h}} \rightarrow G$ and $K_{n_{i}+1} \rightarrow G$ for $1 \leq i \leq h$, then $K_{n} \rightarrow G$ where $n=\sum_{i=1}^{h} n_{i}+1$.

Lemma 2.3 If $a\left(K_{r, r, r, r_{1}}, G\right)$-design and $a\left(K_{r, r, r, r_{2}}, G\right)$-design both exist, then so does a $\left(K_{p r, p r, p r,(p-q) r_{1}+q r_{2}}, G\right)$-design for $p \neq 2,6,0 \leq q \leq p$.

Proof The existence of a decomposition of $K_{p, p, p, p}$ into K_{4} is equivalent to that of a pair of orthogonal Latin square of order p; the latter one is known
to exist for $p \neq 2$ or 6 . Take such a $K_{p, p, p, p}$ on sets $X_{1} \cup X_{2} \bigcup X_{3} \cup X_{4}$ where $\left|X_{i}\right|=p$, and let X_{i}^{*} denote the sets obtained from X_{i} by replacing each $x_{i} \in X_{i}$ by its r copies, $x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}$, for $i=1,2,3$. To obtain the X_{4}^{*}, we replace each of q elements $x_{4} \in X_{4}$ by its r_{2} copies, $x_{4}^{1}, x_{4}^{2}, \ldots, x_{4}^{r_{2}}$, and the rest $p-q$ elements are respectively repeated r_{1} times. Let $V\left(K_{p r, p r, p r,(p-q) r_{1}+q r_{2}}\right)=X_{1}^{*} \bigcup X_{2}^{*} \bigcup X_{3}^{*} \bigcup X_{4}^{*}$, and then we can obtain $K_{p r, p r, p r,(p-q) r_{1}+q r_{2}} \rightarrow\left\{K_{r, r, r, r_{1}}, K_{r, r, r, r_{2}}\right\}$ by the existence of a decomposition of $K_{p, p, p, p}$ into K_{4}. By the assumption, we obtain that a $\left(K_{p r, p r, p r,(p-q) r_{1}+q r_{2}}, G\right)$-design exists for $p \neq 2,6,0 \leq q \leq p$.

3 The case $v \equiv 1(\bmod 18)$

In this section we first construct a ($\left.K_{v}, K_{5}-e\right)$-design where $v=37,55$, $73,109,397,415,469,487,505,541,613,685$.

Lemma 3.1 There exists a $\left(K_{v}, K_{5}-e\right)$-design for $v=37,55,73,109$.

Proof For $v=37,55,73,109$, a ($\left.K_{v}, K_{5}-e\right)$-design is constructed by listing its base ($K_{5}-e$)-blocks as follows (where $V\left(K_{v}\right)=Z_{v}$), respectively.

$$
\begin{array}{cl}
K_{37} \rightarrow K_{5}-e: & {[0,1,3,8,21], \quad[0,4,14,26,35]} \\
K_{55} \rightarrow K_{5}-e: & {[0,13,21,39,1], \quad[0,1,11,41,34]} \\
& {[0,2,6,52,33]} \\
K_{73} \rightarrow K_{5}-e: & {[0,4,11,5,51], \quad[0,12,30,22,54]} \\
& {[0,2,15,50,36], \quad[0,3,19,56,47]} \\
K_{109} \rightarrow K_{5}-e: & {[0,8,18,30,43],} \\
& {[0,16,33,70,101], \quad[0,14,29,52,96],} \\
& {[0,1,6,51,3]} \\
& {[0,11,77,57], \quad[0,9,69,90,43]}
\end{array}
$$

Lemma 3.2 There exists a $\left(K_{v}, K_{5}-e\right)$-design for $v=397,415,505,541$, 613, 685.

Proof Note that $K_{5}-e$ is isomorphic to $K_{1,1,1,2}$. By Lemma 2.3 with $p=18, r=1, r_{1}=r_{2}=2$ and $q=18$ there exists a ($\left.K_{18,18,18,36}, K_{5}-e\right)$ design. There exists a $\left(K_{6,6,6,6}, K_{5}-e\right)$-design from [1]. Applying Lemma 2.3 with $p=3$ and $r=r_{1}=r_{2}=6$ we get a $\left(K_{18,18,18,18}, K_{5}-e\right)$-design.

For $v=397,415,505,541,613,685$, we construct a $\left(K_{v}, K_{5}-e\right)$-design as follows.
$K_{397}, K_{415} \rightarrow K_{5}-e$: Applying Lemma 2.3 with $p=5, r=r_{1}=18$, $r_{2}=36$ and $q=2,3$, we get a $\left(K_{90,90,90, s}, K_{5}-e\right)$-design where $s=126,144$. By Lemma 1.1 there exists a ($K_{s+1}, K_{5}-e$)-design for $s=90,126,144$. By Lemma 2.2 there exists a ($K_{v}, K_{5}-e$)-design for $v=397,415$.
$K_{505}, K_{541} \rightarrow K_{5}-e$: Applying Lemma 2.3 with $p=7, r=r_{1}=$ $18, r_{2}=36$ and $q=0,2$, we get a ($\left.K_{126,126,126, s}, K_{5}-e\right)$-design where $s=126,162$. By Lemma 1.1 there exists a ($\left.K_{s+1}, K_{5}-e\right)$-design for $s=$ 126, 162. By Lemma 2.2 there exists a ($K_{v}, K_{5}-e$)-design for $v=505,541$.
$K_{613}, K_{685} \rightarrow K_{5}-e$: Applying Lemma 2.3 with $p=8, r=r_{1}=$ $18, r_{2}=36$ and $q=2,6$, we get a ($\left.K_{144,144,144, s}, K_{5}-e\right)$-design where $s=180,252$. By Lemma 1.1 there exists a $\left(K_{s+1}, K_{5}-e\right)$-design for $s=$ $144,180,252$. By Lemma 2.2 there exists a ($K_{v}, K_{5}-e$)-design for $v=$ 613,685.

Lemma 3.3 There exists a ($\left.K_{469}, K_{5}-e\right)$-design.
Proof Let $K_{m_{1}, m_{2}, \cdots, m_{25}}$ be the complete multipartite graph where $m_{1}=$ $\cdots=m_{24}=18$ and $m_{25}=36$. It is well known that there is a $(25,4,1)$ BIBD. From the existence of a (25, 4, 1)-BIBD, we know that $K_{m_{1}, m_{2}, \cdots, m_{25}}$ $\rightarrow\left\{K_{18,18,18,18}, K_{18,18,18,36}\right\}$. From the proof of Lemma 3.2 we have a ($K_{18,18,18,18}, K_{5}-e$)-design and a ($K_{18,18,18,36}, K_{5}-e$)-design. Hence, we have $K_{m_{1}, m_{2}, \cdots, m_{25}} \rightarrow K_{5}-e$. By Lemma 1.1 there exists a ($K_{s+1}, K_{5}-e$)design for $s=18,36$. Hence, we have a ($K_{469}, K_{5}-e$)-design by Lemma 2.2 .

Lemma 3.4 There exists a ($\left.K_{487}, K_{5}-e\right)$-design.

Proof It is checked that the multiplicative order of 301 is 27 in Z_{487}. Let $G=\langle 301\rangle$ denote the subgroup of order 27 generated by 301 in $Z_{487}^{*}=Z_{487} \backslash$ $\{0\}$. It is readily checked that all the differences from the initial ($K_{5}-e$)block $[7,0,1,3,140]$ form a representative system of the coset classes of G in Z_{487}^{*}. A $\left(K_{487}, K_{5}-e\right)$-design is thus constructed by developing the following base $\left(K_{5}-e\right)$-blocks $[7 x, 0, x, 3 x, 140 x](x \in G)$ in Z_{487}.

Theorem 3.5 If $v \equiv 1(\bmod 18)$, then there exists a $\left(K_{v}, K_{5}-e\right)$-design.
Proof It follows immediately by Lemma 1.1 and Lemmas 3.1-3.4.

4 Remarks

We finally remove all the left values in Lemma 1.1 and establish that a $\left(K_{v}, K_{5}-e\right)$-design exists for any integer $v \equiv 1(\bmod 18)$ and $v \geq 19$. But, for $v \equiv 0,9,10(\bmod 18)$, any example of a $\left(K_{v}, K_{5}-e\right)$-design is unknown previous. We provide three examples as below.

$$
K_{28} \rightarrow K_{5}-e: \text { Let } V\left(K_{28}\right)=Z_{7} \times I_{4} \text { where } I_{4}=\{0,1,2,3\} . \text { The base }
$$ blocks are developed in $\left(Z_{7},-\right)$:

$$
\begin{array}{ll}
{\left[0_{2}, 1_{2}, 0_{0}, 0_{3}, 4_{2}\right],} & {\left[0_{3}, 0_{1}, 3_{3}, 2_{1}, 5_{2}\right],} \\
{\left[0_{0}, 0_{1}, 2_{0}, 6_{0}, 4_{3}\right],} & {\left[0_{1}, 4_{0}, 1_{1}, 2_{2}, 0_{2}\right],} \\
{\left[0_{2}, 1_{0}, 0_{1}, 3_{1}, 2_{3}\right],} & {\left[0_{3}, 1_{0}, 3_{2}, 5_{3}, 4_{3}\right] .}
\end{array}
$$

$K_{46} \rightarrow K_{5}-e$: Let $V\left(K_{46}\right)=Z_{23} \times I_{2}$ where $I_{2}=\{0,1\}$. The base blocks are developed in $\left(Z_{23},-\right)$:

$$
\begin{array}{ll}
{\left[0_{0}, 1_{0}, 3_{0}, 7_{0}, 12_{0}\right],} & {\left[0_{0}, 0_{1}, 8_{0}, 1_{1}, 3_{1}\right],} \\
{\left[0_{0}, 2_{1}, 7_{1}, 11_{1}, 20_{0}\right],} & {\left[0_{0}, 3_{1}, 13_{1}, 20_{1}, 14_{0}\right]} \\
{\left[0_{1}, 2_{0}, 15_{0}, 11_{1}, 19_{1}\right] .} &
\end{array}
$$

$K_{82} \rightarrow K_{5}-e:$ Let $V\left(K_{82}\right)=Z_{41} \times I_{2}$ where $I_{2}=\{0,1\}$. The base blocks are developed in $\left(Z_{41},-\right)$:

$$
\begin{array}{ll}
{\left[0_{0}, 2_{1}, 12_{0}, 22_{0}, 37_{0}\right],} & {\left[0_{0}, 4_{1}, 8_{1}, 13_{1}, 19_{0}\right],} \\
{\left[0_{0}, 7_{1}, 24_{1}, 14_{1}, 38_{0}\right],} & {\left[0_{0}, 18_{1}, 38_{1}, 5_{1}, 26_{0}\right],} \\
{\left[0_{0}, 16_{1}, 0_{1}, 22_{1}, 38_{0}\right],} & {\left[0_{1}, 4_{0}, 15_{1}, 27_{1}, 38_{1}\right],} \\
{\left[0_{0}, 9_{1}, 14_{0}, 18_{0}, 35_{0}\right],} & {\left[0_{0}, 28_{1}, 30_{0}, 29_{1}, 31_{1}\right],} \\
{\left[0_{0}, 1_{0}, 3_{0}, 9_{0}, 37_{0}\right] .} &
\end{array}
$$

References

[1] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin., 10(1980), 211-254.
[2] J.C. Bermond and J. Schönheim, G-decomposition of K_{n}, where G has four vertices or less, Discrete Math., 19(1977), 113-120.
[3] J.C. Bermond and D. Sotteau, Graph decompositions and G-designs, Proc. 5th British Combinatorial Conf. 1975, Congressus Numerantium XV, Utilitas Math., Winnipeg 1976, 53-72.
[4] Y. Chang, The spectra for two classes of graph designs, Ars Combin, Vol.65(2002), 237-243.
[5] K. Heinrich, Graph decompositions and designs, in: The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz eds.), CRC Press, Boca Raton FL, 1996, 361-366.
[6] D.G. Hoffman and K.S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australasian J. Combin., 18(1998), 13-37.
[7] Q. Li and Y. Chang, Decomposition of λ-fold complete graphs into a certain five-vertex graph, Australasian J. Combin, Vol. 30(2004), 175182.
[8] M. Martinova, An isomorphic decomposition of K_{24}, Ars Combin., 52(1999), 251-252.
[9] C.A. Rodger, Graph-decompositions, Le Matematiche (Catania), XLV (1990), 119-140.
[10] C.A. Rodger, Self-complementary graph decompositions, J. Austral. Math. Soc. (A), 53(1992), 17-24.
[11] R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer., 15(1976), 647-659.
[12] J. Yin and B. Gong, Existence of G-designs with $|V(G)|=6$, in: W.D. Wallis et al.(eds), Combinatorial Designs and Applications (Marcel Dekker, New York, 1990), 201-218.

[^0]: ${ }^{1}$ Research supported by NSFC 10371002 and SRFDP under No. 20010004001

