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The knight’s tour problem goes back at least to Euler[4]. It is a standard
problem in the recreational mathematics books like Ball and Coxeter[2]. In
computer science courses, it is often used as an example of a problem which can
be solved by backtracking(l, 9. We will not give a history here. It scems to
be well known that certain rectangular boards have knight’s tours. Theorem 1
gives this result. It also seems to be well known that knight’s tours can be
calculated quickly. Cull and De Curtins[3] give a method which runs in time
linear in the number of squares on the board. Parberry[7] gives a neal recursive
method for boards whose side lengths are a power ol 2. We state these results
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Similar results hold for the knight's circuit problem where the last square of
its path is required to be one knight’s move from the first square. The status of
other problems like the number of knight’s tours on a board is still open.

Since knight’s tour is a special case of the well known NP-complete Hamilto-
nian path problemn, one could wonder what about the knight and the chessboard
make this problem casy. An interesting observation is that the (4n+1) x (4n+1)
board has a very special tour. In this tour, the knight starts in one of the corners,
progresses around a width 2 border and then spirals inward towards the center
square. This means that if we remove the central [4(n — 1) + 1] x [4(n — 1) + 1]
board, the knight will still have a tour of the remaining border squares. There-
fore, we surmised that allowing the chessboard to have holes (i.e. removed
squares) might make an interesting and possibly NP-Complete problem. (Even
if we didn’t have the results in Theorems 1 and 2, it would be unlikely that
the existence of a knight’s tour on n x m rectangular boards could be NP-
complete because there is only one instance for each problem size, and all known
NP-complete sets have exponentially many elements. If the problem size were
log n + log m, then this arguinent against NP-completeness would fail.)

We begin by recalling some known facts about knight’s tour, and then we
show that knight’s tour on boards with holes in NP-complete. The proof is by
reduction from the Hamiltonian path problem for grid graphs. (It may be worth
noting that a grid graph can be viewed as a chessboard as seen by a rook. That
is, the rook can move one square in any one of the four cardinal directions. For
any rectangular board, there is a rook’s tour. To make the rook’s problem hard,
barriers are erected to prevent the rook from moving in certain directions from
certain squares.)

Here is a known theorem regarding the existence of a knight’s tour on rect-
angular chessboards. (See Schwenk|[8].)

Theorem 1 There is a knight’s tour of an n x m rectangular chessboard where
n <m unless:

en=1andm>1
on=2
en=3andm=3,5,6
en=4andm=414

Theorem 1 says that it is casy to tell which rectangular boards have a knight’s
tour. The following theoremn says that constructing such a knight’s tour is also
casy.

Theorem 2 If a knighl's Lour of a recltangular chessboard exists, then we can
construclt one in polynomial lime.

Constructions of these rectangular boards can be seen in Cull and De Curtins(3).
Theorems 1 and 2 tell us that the decision problem and the construction problem
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for knight’s tour on rectangular chessboards can both be solved in polynomial
time. Now we wish to consider the knight’s tour problem on chesshoards where
an arbitrary number of squares have been removed.

Definition 1 A chessboard with holes, or simply, a board with holes, is a chess-
board where any number of individual squares have been removed.

We aim to prove that the decision problem for knight’s tour on boards with
holes is NP-complete. We will do this via a reduction from the Hamiltonian
path problem for grid graphs. Thus we need the following definition.

Definition 2 A grid graph is a graph in the plane where all vertices have integer
coordinates. An edge can only connect two vertices if the Euclidean distance
between them equals 1.

The following theorein regarding grid graphs is due to Itai, Papadimitriou,
and Swarcfiter.[6]

Theorem 3 The Hamiltonian path problem on grid graphs is NP-complete.

2 Reduction from Grid Graph

Given any grid graph, the following construction will show how we construct our
chessboard. We will follow an example grid graph through this construction.

Construction 1 First we take an arbitrary grid graph G and rotate it 45 de-
grees clockwise. (See Figure 1.)

Figure 1: Rotate the grid graph 45 degrees clockwise

We now replace each grid node with a 5 x 5 chessboard, leaving one space
vertically and zero spaces horizontally. This will form the board with holes as
shown in Figure 2 below. The rotalion performed in Figure 1 makes il casier Lo
see this correspondence.

We have a set {vg,...,vn} of verlices on our grid graph in Figure 1 and
a corresponding sel {Dy, ..., By} of sub-boards seen in Figurc 2. Assume that
these sels are ordered in such a way that v; corresponds lo B; for each i.
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Figure 2: Sub-boards placed onto a larger grid

We “trim” these sub-boards so that the knight may travel from B; to Bj if
and only if v; and vj are adjacent vertices. Up to rotations there are 6 patterns
of edges on any vertez v;. We trim the corresponding B; for the appropriate
connection pattern following Figure 3.

Figure 3: Transform cach sub-board.

Applying the mapping defined in Figure 3 above, we oblain the chessboard
with holes seen below in Figure 4.
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Figure 4: The resulting chessboard with holes.

Definition 3 For any grid graph G, we will denote the chessboard constructed
in Construction 1 above by C(G). For example, if we denote the example grid
graph in Figure 1 by G, then C(G) is the constructed chessboard seen in Figure 4.

Proposition 1 If there is a Hamiltonian path on the grid graph G, then there
is a knight’s tour on the chessboard C(G).

Proof. In Figure 5 below, we exhibit a tour of each of the possible sub-
boards given in Figure 3. The in-arrow indicates where our tour will enter a
sub-board, and the out-arrow indicates where the tour will exit. The numbers
in the squares indicate the order in which the squares are visited.

The tours above account for every possible way to enter and exit a sub-board,
up to symmetry (rotation, reflection, and path reversal).

Now we can ecasily {ind a tour of C(G). We just travel from sub-board to
sub-board following the Hamiltouian path on the grid graplh G, and we tour
cach individual sub-board as shown in Figure 5. O
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The tour of C((:') in this manner is shown below in Figure 6.

Figure 6: Touring the constructed chessboard.
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The next three lemnmas give limnitations on knight’s tours for C(G). We will
use these lemnmas to prove the converse of Proposition 1. These limitations come
from parity properties of chessboards.

Traditionally, a chessboard is colored with two colors, say black and white.
It is casy to check that the knight may only travel from a black square to a
white square and vice versa. (That is, the knight’s moves must alternate black,
white, black, etc.) Let’s assume that the 5 x § sub-board is colored so that the
corner squares are black. Notice that there will be 13 black squares and only
12 white squares.

Lemma 1 No sub-board in C(G) may be entered twice and exited twice in a
knight’s tour.

Proof. Suppose that a sub-board B is entered and exited twice. This sub-
board must have four corners, and is therefore the 5 x 5 sub-board. Now by
parity, two more black squares than white squares are used. Hence there must
be an unvisited white square. O

Lemma 2 If in a knight’s tour of C(G), a sub-board B is exiled and then entered
again, B must be the starting sub-board or the ending sub-board.

This is clear from the previous lemma.

Definition 4 We call a touwr of C(G) repeat-free if the knight never visits any
sub-board twice.

Lemma 3 If there exists a knight’s tour of C(G), then there exists a knight’s
tour of C(G) that is repeat free.

Proof. Suppose there is a knight's tour on C(G). Let By,,..., B, be the
sequence of sub-boards visited by the knight. Each sub-board in C(G) is listed
at least once, and the knight can legally move from By, to By,,, for each i.
Lemma 2 tells us that the only repeats can be By, or By,. If B;, = B,, then
remove By,. Otherwise, if either of By, or By, is a repeat, remove it. We may
now use this repeat-free sequence and the sub-board tours shown in Figure 5 to
construct a knight’s tour of C(G). O

Proposition 2 Let G be any grid graph. If there is a knight’s tour on C(G),
then there is a Hamiltonian path on G.

Proof. Suppose there is a knight's tour of C(G'). Then, by Lemma 3, there
exists a knight’s tour of C(G) that is repeat-free.  Consider the sequence of
sub-boards By,, ..., By, visited by the knight on this repeat-free tour. This cor-
responds to a sequence of vertices vy, ..., v, on the grid graph G. Since the
knight was able to travel from sub-board By, to By, for cach i, the mapping
in Figure 3 ensures the there is an edge between vy, and vy, for cach i. Fur-
thermore, our sequence of sub-boards By, , .. ., B, lists cach sub-board of C(G)
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exactly once and hence our sequence of vertices vy,, ..., v, lists each vertex in
G exactly once. Therefore this sequence of vertices is a Hamiltonian path of G.

O

So we have:

Theorem 4 The knighl’s tour problem with holes is NP-Complete.

3 Conclusion

Although both the knight’s tour decision problem and construction problemn
on rectangular boards are computationally easy, the knight’s tour problems on
boards with holes are NP-complete.
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Abstract

The eccentricity e(u) of vertex u is the maximum distance of u
to any other vertex of G. A vertex v is an eccentric vertex of vertex
u if the distance from u to v is equal to e(u). The eccentric digraph
ED(G) of a digraph G is the digraph that has the same vertex set as
G and the arc set defined by: there is an arc from u to v if and only if
v is an eccentric vertex of u. In this paper we consider the behaviour
of an iterated sequence of eccentric graphs or digraphs of a graph or
a digraph. The paper concludes with several open problems.

Keywords: Eccentricity, eccentric vertex, distance, eccentric graph, eccen-
tric digraph.
1 Introduction and definitions

The study of distance properties of graphs is a classic area of graph theory;
see, for example, the books of Buckley and Harary [5] and Brouwer, Cohen,

*Research supported in part by a NSERC Discovery Grant.
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Neumaier [3]. We study here an iterated version of a distance dependent
mapping introduced by Buckley [4] and refined by others, including Boland
and Miller [1]. The mapping is very simple but leads naturally to rather
subtle questions. The questions posed are of the type studied by extremal
graph theorists, but even they may consider our problems rather extreme!
A directed graph G = G(V, E) consists of a vertex set V(G) and an
arc set E(G). For the purposes of this paper, a graph is a digraph for
which (u,v) € E implies (v,u) € E. The least number of arcs in a directed
path from u to v is the distance from u to v, denoted d(u,v). If there is no
directed path from u to v in G then we define d(u,v) = oo. The eccentricity,
e(u), of u is the maximum distance from u to any other vertex in G. The
radius is the minimum eccentricity of the vertices in G; the diameter is the
maximum eccentricity of the vertices in G. Vertex v is an eccentric vertex
of u if d(u,v) = e(u). Note that if a vertex has out-degree zero, that vertex
has all the other vertices of the given digraph as its eccentric vertices.
The eccentric digraph of a digraph G, denoted ED(G), is the digraph
on the same vertex set as G, but with an arc from vertex u to vertex v in
ED(G) if and only if v is an eccentric vertex of u. The eccentric digraph of
a graph was introduced by Buckley [4] and Boland and Miller [1] introduced
the concept of the eccentric digraph of a digraph. An example of a graph
and its eccentric digraph is given in Figure 1. Note that arcs of graphs are
drawn not as a pair of directed edges with arrows, but in the usual form.

a b c a b
°
d e d e
G ED(G)

Figure 1: A graph and its eccentric digraph.

Given a positive integer k > 2, the k' iterated eccentric digraph of G
is written as ED*(G) = ED(ED*~'(G)) where ED°(G) = G. Figure 2
illustrates these definitions showing digraph G and its iterated eccentric
digraphs ED(G), ED?*(G), ED3*(G), and ED*(G). Note that in this case
ED?(G) = ED3(G).

An interesting line of investigation concerns the iterated sequence of ec-
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°
d ¢ - d
G ED(G)
a b a b
P . o mm— e
d c e d c
ED (G) ED (G)

4
ED (G)

Figure 2: An eccentric digraph iteration sequence.
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centric digraphs. For every digraph G there exist smallest integer numbers
p > 0 and ¢t > 0 such that ED*(G) = EDP**(G). For example, in Figure 2,
t(G) = 3 and p(G) = 2. We call p the period of G and t the tail of G; these
quantities are denoted p(G) and t(G) respectively. We say that a graph is
periodic if it has no tail; i.e., if ¢(G) = 0. In the definitions just given, we
assumed that the vertices of the graphs are labelled. It is also natural to
consider the corresponding unlabelled version.

For every digraph G there exist smallest integer numbersp > 0andt > 0
such that ED!(G) = EDP*Y(G), where = denotes graph isomorphism. We
call p the iso-period of G and t the iso-tail of G; these quantities are denoted
P’ (G) and t'(G) respectively. We say that a graph is iso-periodic if it has
no iso-tail; i.e., if #/(G) = 0. Clearly p'(G) | p(G).

2 Previous results

The following observations, theorems, and open problems first appeared in
(1] or [2].

Observation 2.1 If a digraph G is the union of £ > 1 vertex disjoint
strongly connected digraphs of orders n;,ns,...,ng, for m > 0, where each
n; > 2, then

m - Knl,ng,...,nk lf m Odd
aa e { K, UK,,U---UK,, ifm even.

Observation 2.2 The eccentric digraph of a directed cycle is a directed
cycle, ED(C',,) & C',,. However, note that the direction of the arcs in
ED(C',,) is opposite to the direction of the arcs in the given cycle rp 0

Observation 2.3 A nontrivial eccentric digraph has no vertex of out-
degree zero. However, the converse is not true: there exist digraphs with
the out-degree of every vertex non-zero which are, nevertheless, not the
eccentric digraphs of any graph or digraph. An example of such a digraph
is the graph Pj, the path of four vertices.

It seems likely that a classification of all digraphs as to whether or not
they are an eccentric digraph is not a trivial problem.

Question 2.1 Find necessary and sufficient conditions for a digraph to be
an eccentric digraph.

The fact that there exist digraphs which are not eccentric digraphs
of any graph or digraph leads to the question: “If a digraph G is not an
eccentric digraph, can G be always embedded in an eccentric digraph?” This
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question was considered in [2]. The eccentric digraph appendage number of
G is the minimum number of vertices that must be added to a digraph G
so that there exists a digraph G  which is the eccentric digraph of some
digraph and G is an induced subgraph of G.

Theorem 2.1 If G is not the eccentric digraph of some graph H, then the
eccentric digraph appendage number of G equals one.

Question 2.2 Find the period and the tail of various classes of graphs and
digraphs.

Observation 2.4 The only digraph G with p(G) = 1 and ¢(G) = 0 is the
complete digraph K,,.

Observation 2.5 For p = 2, t = 0 examples include the complete multi-
partite digraph Ky, n,,... n,, the disjoint union of complete digraphs K,, U
Kn, U...UK,, and the directed cycle C,.

Question 2.3 Characterize periodic digraphs with period two.

Observation 2.6 For p = 2, t = 1 examples include the (disjoint) union
of strongly connected digraphs H,, U H,, U...U H,,, where at least one
of them is not a complete digraph.

3 Examples, open problems, and conjectures

In this section we present some examples and new open problems and
questions, all designed to stimulate further interest in the iterated eccentric
mapping. Many examples of digraphs G with p(G) = 2 have been found.
In fact, if you pick a digraph at random on a computer then it usually
occurs that p(G) = 2 and you have to work quite hard to find one of larger
period. This observation leads to our first conjecture.

Conjecture 3.1 In the standard model of n-vertex random digraphs where
arcs are chosen at random with probability ¢, if 0 < ¢ < 1, then

lim Proby(p(G) =2) = 1.

Here we present for the first time examples of eccentric digraph iteration
cycles of length more than 2. The following three examples give eccentric
digraph iteration cycles of lengths 4 and 8.

Example 3.1 Let R be the (undirected) cubic Cayley graph with the two
generators (01)(23)(4567) and (56)(78). The directed version is shown in
Figure 3. The graph R has 20 vertices and is periodic with p(R) = 4.
However, the graphs ED¥*(R) are all isomorphic to R and so p’(R) = 1.
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Figure 3: The Cayley graph with generators (01)(23)(4567) and (56)(78).

Example 3.2 Let R be as in Example 1. The conjunction (or tensor
product) G = G A Ga of two digraphs G; = (V1, E;) and Gy = (Va, E»)
has V = V] x V, as its vertex set, and u = (u, u2) is adjacent to v = (v, v2)
in G iff (u1,v1) € Ey and (usz,v2) € Fs. For this graph, p(RA R) = 8.

Example 3.3 The smallest digraph G found so far with p’(G) > 2 has 10
vertices and iso-period 4. Such a digraph G is shown in Figure 4.1

Example 3.4 Let C,, denote the cyclic graph of n vertices. Consider the
odd cycles, Cy,,,1. Figure 5 illustrates that p(Cg) = 3. Below we show a
table of p(Com+1). This is sequence A003558 in Sloane’s Encyclopedia of
Integer Sequences.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PCami) |1 2 3 3 5 6 4 4 9 6 11 10 9 14
m 15 16 17 18 19 20 21 22 23 24 25 26
p(Coams1) | 5 5 12 18 12 10 7 12 23 21 8 26

It is not difficult to determine that

p(Coms1) =min{k > 1| m(m+1)* "1 =41 (mod 2m +1)}.

!Note added in press: Brendan McKay reports that the 9 is the small-
est order of a graph with p/(G) > 2. As an example he gives E(G) =
{{0,5}, 10,6}, {1,6}, {1,8}, {2, 6}, {2,8}, {3,7}, {3,8}, {4,7}, {4,8}, {5, 7} }; here p(G) =
p'(G) = 3 and t(G) = t'(G) = 0.
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Figure 4: A digraph G with of order 10 such that p(G) = p/(G) = 4 and
HG) =t'(G) =1.

ED(G)

ED(ED(G))

Figure 5: The graph Cy and its iterated eccentric digraphs.
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In particular, if m = 2%, then p(C2m+1) = k + 1, showing that the period
may take on any value. The numbers m for which m = p(Cs,4+1) have
been called the “Queneau numbers” (e.g. Sloane’s A054639). Note that if
m is a Queneau number, then the sequence of iterated eccentric digraphs
gives a very pretty Hamilton decomposition of Ky, 1.

Example 3.5 The circulant graph of order 23 with steps {1, 1,2, 2,3, -3}
has period 33.

This example shows that the constant in the following conjecture is at
least 33/23.

Conjecture 3.2 There is a constant ¢ such that, for any digraph G of n
vertices

p(G) < cn.
Conjecture 3.3 We have observed, but not proven, that

P(Com+1 X Comt1) = P(Com+1) + P(Come1),
where x denotes the usual Cartesian product of graphs.

Example 3.6 The 336 vertex cubic Cayley graph with the two generators
(23)(45)(67) and (025)(146) leads to a period 4 sequence Gy, G1, G2, G3,
where Gy = G, is an 8-regular graph, and G; = G3 is a 14-regular graph.
Thus, for this example, p(G) = 4 and p'(G) = 2.

Observation 3.1 A digraph G of order n satisfies that p(G) = t(G) =1
if and only if G has k > 1 vertices with out-degree 0 and n — k vertices
with out-degree n — 1.

Observation 3.2 Clearly, the eccentric digraph of a vertex transitive di-
graph is a vertex transitive digraph. A little thought reveals that the eccen-
tric digraph of a vertex transitive graph is a vertex transitive graph. Simi-
larly, the eccentric digraph of a Cayley (di)graph also a Cayley (di)graph.
The generators of ED(G) are the products of the generators along the
longest paths in G.

Clearly ED induces a partition of the set of all graphs (and on the set
of all unlabelled graphs). Let (G) denote the equivalence class of (labelled)
graphs induced by ED; and let [G] represent the corresponding unlabelled
equivalence class.

What are the properties of that partition? In Figure 6 we show the
partitions of labelled graphs (on the left) and unlabelled graphs (on the
right) induced by ED for n = 3. Note that there are 2"("~1) = 64 graphs
represented on the left and 16 on the right.
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Question 3.1 Among all digraphs G on n vertices, what is the minimum
size of (G)? The maximum size? The average size? What about [G]?

Question 3.2 Let us say that a class is periodic if every graph in the class
is periodic. For general n, identify some periodic classes. Can the periodic
classes be characterized?

Question 3.3 Which unlabelled graphs are fixed points; i.e., such that
ED(G) = G? For example, for n = 3 there are five such graphs. As
observed earlier, for labelled graphs, only the complete graph is a fixed
point.

Question 3.4 For every digraph G, is it true that t(G) = t/(G)?
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Abstract

Given a positive rational number —:1;(0 <a <b), we identify families of

connected graphs G, such that the ratio of the number of matchable edges to the

total number of edges in G -denoted by ©t(G), is %. We call ©(G), the

matchable ratio of G. For certain kinds of rational numbers, we identify the
smallest connected graphs with the property. This problem was initially
discussed in [1].

1. Introduction

The graphs considered here are finite, and contain neither loops
nor multiple edges. Let G be a graph. An edge of G is called matchable, if and
only if it belongs to a perfect matching in G. This paper continues the
investigation into matchable edges started in [1], where we focused on totally
matchable graphs, that is, graphs in which every edge is matchable. We now
turn our attention to graphs which are not totally matchable. These are graphs
which contain non-matchable edges.

Definition
Let G be a graph with b edges; i.e. of size b, and with @ matchable

edges. Then the ratio ©(G) = % is called the matchable ratio of G.

The following are additional definitions, which will apply to the
material that follows.
(i) A 1-cycle and a 2-cycle is a vertex and an edge respectively. A
cycle with more than two vertices is called a proper cycle.
In the material that follows, "cycle" will mean "proper cycle", unless
otherwise specified.
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(i) A graph G is non-matchable (matchable) saturated if and

only if no more non-matchable (matchable)edges can be added to it.

(iii) An edge joining two non-adjacent vertices of a cycle is a chord

(The 3-cycle has no chords).

(iv) An even n-cycle is canonically labeled, if an only if its
vertices are labeled in some agreed order, with the consecutive
integers from 1 to n. For purposes of this paper. we will take the
order to be a clockwise,

(v) In a canonically labeled cycle, a chord joining two odd (even)
labeled vertices is called odd (even); otherwise it is mixed.

(vi) A graph, consisting of a canonically labeled r-cycle Cr, with s odd
chords and no even chords added, will be denoted by Gy, 5. The
subgraph Cr, is called its boundary.

(vii) A chain is a tree with nodes of valency 1 and 2 only. A
boundary chain of Gy, is any connected subgraph of its

boundary.

From the definition, the graph Gy s contains r > 4 vertices and
r+s edges. The graph Gr,( is the cycle Cr.

In [1] we identified graphs with certain matchable ratios. We
also established the existence of a graph for any given matchable ratio (Theorem
3.3). The proof of this result also provides an algorithm for the construction of
such graphs. The graphs obtained from this theorem, may be disconnected. It is
therefore interesting to be able to construct connected graphs with a given

: . a y —_— :
matching ratio g Even more interesting, is the construction of a connected

graph having precisely size b and with a matchable edges. In this paper, we give

constructions for such graphs. Moreover, we identify the smallest order graphs

with this property.

2. Graphs with matchable ratio a/b, where a = 2n (n > 1),
0<a<b and b-a < (:j

Lemma 1
In the graph Gy s, every chord is non-matchable.

Proof
Figure 1 shows a canonical drawing of Gry,s.
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1-1

Figure 1
All chains referred to, will be boundary chains. It can be easily seen that a chain
has odd order, if and only if the labels of its end-vertices have the same parity.
Let us assume that there exists a perfect matching M containing the (odd) chord
xy Now, remove vertices x and y from Gy, 5 . Since x and y are odd and there are
no even or mixed chords in Gy, 5, we have in G, s-x-y vertices x-1, x +1, y -1
and y+1 each having valency 1 (see Figure 2) and all other even vertices have
valency 2. In particular, the edges ( x-1, x-2), (x+1, x+2),(y -1, y -2) and
(y+1, y+2) must all be in M.

Figure 2
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The edge joining x+1 to x+2 must belong to M. This forces the edge joining
x+3 to x+4 to be in M. By continuing in this manner, we get that the edge
joining y-3 and y-2 must belong to M. But the edge (y-1, y-2) is in M. This is
a contradiction; since(by assumption) M is a perfect matching. Thus our
assumption is false. The chord xy is non-matchable. Hence the result follows.

Theorem 1
Letr=2n(n21). Ifs= (;], then the graph Gr, 5 is non-matchable

saturated.
Proof
From the lemma, all the chords of Gy, 5 are non-matchable.

There are n odd labelled vertices in Gy, 5. Any pair of these can be joined to form

an odd chord. The number of such pairs is [;] Therefore, when s takes this

value, every pair of odd labelled vertices are joined by an edge, so that all odd
chords are included.

We must now show that no more non-matchable chords can be
added to Gy, 5, that is, every new chord is matchable. Let us add a new chord xy.
Then xy must either be (i) even or (ii) mixed. Call the resulting graph G.

Cone () Cxv :

Let us remove vertices x and y from G. In the resulting graph
G/, vertices x-1 and x+1, being odd vertices, will be joined by an edge (being
odd labelled vertices); and so too will be vertices y-1 and y+1. Thus, the
resulting graph will contain a new boundary cycle Cr-2. Since r is even, r-2 is
even. Thus, G' has a perfect matching; and the chord xy is matchable in Gy 5.
Cuse Gl € i is mited

Without loss in generality, we will assume that x is odd and
that y is even. Again, let us remove vertices x and y from G to obtain a graph
G'. Then, G’ will contain two boundary chains-one chain connecting vertex
x+1 (even) to vertex y-1 (odd); the other, connecting vertex x-1 to vertex y+1.
Since the chains have endnodes with different parities. They will be even chains;
and consequently, have perfect matchings. Hence G’ has a perfect matching.
Adding the chord xy to this matching, yields a perfect matching in Gy 5.

‘We conclude therefore, that no more non-matchable edges can
be added to Gy 5. Hence Gy, is saturated.

Corollary 1.1
Leta = 2n (n = 2) and b be positive integers, witha <b and 0< b-a < (;J

Then the graph Gy, p-4 is a connected graph such that ©(Gg p-q) =

o | »
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Proof
Let the number of added (odd) chords be €. Then (from Theorem 1) we get

0<e< n.
2

Since Cg has a edges, total number of edges in G is a+€ .

= n(G) = =

ate .
But € = b-a. Therefore, the result follows. D

3. Graphs with matchable ratio a/b, with a = 2n+1 ( n >1),

0< a< b and b-a < i
400

Definiti

The graph Hp is a canonically labeled r-cycle, with a chain of length 2,
attached to one of its vertices; and with the vertex of valency 2 and 1, labeled
r+2 and r+1 respectively. The graph Hy,s is the labeled graph Hy, with s odd
chords added ( See Figure 3).

+1 +2

10

-1

Figure 3
This graph is essentially the graph Gy 5, with a chain of length 2 attached to one
of its boundary vertices., By definition, the graph Hy, s contains r+2 vertices and
r+2+s edges.
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The following lemma is analogous to Lemma 1.
Lemma 2
In the graph Hy g, every chord is non-matchable.

Proof
In Figure 3, we show a canonical drawing of a labeled graph Hy g.

The attached chain does not affect the arguments given in the proof of Lemma 1,
since the edge joining r+1 to r+2 must be used in every perfect matching. Hence

the result follows.
This lemma implies that we can still add non-matchable odd (or even)
chords to the subgraph Gy s of Hy 5. Also, it is clear that the edge joining the

vertex r+1 to the boundary is non -matchable. Therefore, Hy g will have r+1
matchable edges and s+1 non-matchable edges. In Hy s new kinds of edges can
join the" external” vertices r+1 and r+2 to vertices on the boundary of Gy 5. It is

difficult to tell which ones are non-matchable, since the presence of these edges
could even spoil the non-matchability of chords. We can however saturate the
Gr, s subgraph of Hy g, so that the resulting graph is saturated with non-

matchable chords. This yields the following analogy to Theorem 1.

Theorem 2
Letn be an integer greater than 2, and let a = 2n+1 . Then the graph

Hg.] s is saturated with non-matchable chords , when s = (:)

The following result is immediate from Theorem 2; and is analogous to
Corollary 1.1.
Corollary 2.1

Leta =2n+1 (n > 2) and b be positive integers, with a < b and

0<ba< (;) Then the graph Hy.7 p-q+1 is a connected graph such that
a
™(Hg-1,b-a+1) = s O

4. Graphs with matchable ratio a/b in which b-a is not bounded
n
above b ;
We now consider the case in which 0 <a <b and b-a is not
bounded above by [;IJ In the results above, b-a is bounded above by (;) -the
number of chords that can be added to the boundary cycle. This excludes many

classes of rational numbers. For example, the rational number EI)B is not
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covered by the results above, since they all are based on the condition that Cg
is a proper cycle. In fact, the smallest even value of a is 4 (Corollary 1.1) and
the smallest odd value is 5 (Corollary 2.1). Therefore the numerator of the

fraction must be at least 4. In this case the fraction will be ﬁ :

When b-a is bounded, as defined above, we have identified a

connected graph G of size b with a matchable edges, such that ©(G) = %.

However, for some rational numbers, it will be impossible to find a graph;
connected or not , with this property. For example, for the rational number

1
E’ one would have to find a graph with 100 edges in which exactly one edge

belongs to a perfect matching. No such graph exists. We will therefore consider

the related problem of finding a connected graph G, such that (G) = %. This

means that there are no restrictions on the size of the graph. Our technique is

based on the simple fact that the rational numbers % and % are equal, for all

non-zero values of k. This will allow us to use the construction given in
Sections 2 and 3, since we can always arrange for ka to be even. We will do
better than this. We will identify a smallest order graph obtained by our
construction, that is, a smallest order Gy .

The following result is crucial.
Lemma 3

For all positive integers a and b, with b > a, there exists a positive
integer k such that

ka/ZJ

kb -ka s( , when ka is even. Furthermore, the smallest value of k for

which the condition holds is IV -z—(i(b —a)+ lﬂ
ala

Proof

Since b > a, then b-a> 0 and {E[i(b —-a)+ lﬂis a positive integer.
ala

Choose k > [z(i(b~a) + Iﬂ Then % > (ij(b—a)+ 1. From this, we
ala a

. 4
obtain % —~1 2 (—J(b —a), which in turn, implies thatb —a < %(% -=1).
a

57



Thus k(b—a) < %(% -1= [kazl 2), when ka is even. Hence there exists

such a positive integer k. It can be easily shown that if k < (3 (i(b —a)+ lﬂ
a\a

the inequality no longer holds. Hence the result follows. |

This lemma identifies the range of values of k which would
make the ka-cycle (when ka is even ) large enough so that there would be
enough "room" to add the necessary number (kb-ka) of chords. We can now

construct a graph G, for which ©(G) = l;—:. This is the gist of the following

theorem.

Theorem 3

Let % be a positive rational number. Then, for n = ka and

s = k(b-a), where k > {E(i(b —a)+ lﬂ , the graph G s has the property
al\a

that ©(Gp_s) = %, when ka is even.When ka is odd, the graph Hp.j ¢ has the

property that t(Hp-1,5) =

Proof
The result follows immediately from Corollary 1.1, Corollary 2.1 and

Lemma 3.

o |

This theorem gives the range of values of k for which graphs
of the types G, s and H; s can be constructed with a given matchable ratio.

Example 1
Let % =1, Then @=b. [ thils case. bea =0, so it k= =i, = o

a
and s= k(b-a) =0. The resulting graph is Gp s = G20 ; which is a 2-cycle with
no chords added. Therefore, the graph is an edge.
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Example 2

1
Let %= E Then a =1 and b =100. In this case, the smallest value of k is

Z{i(IOO -1 +1|| =2(397)=794. Therefore E= —7&-
1{1 kb 79400

Therefore resulting graph is G794,79400. This graph has 794 vertices, 79400
edges; and contains
79400 -794 =78606 chords.

It will be interesting to find out how good is this lowest value
of k. We will therefore find the maximum number of (odd) chords that the
794-gon can contain. It is

794/2_(397 = 78606.
2 2
This means that the graph G794,79400 is saturated. Thus, we have indeed found
the smallest order graph of the form Gy ;. In the above

Example (ii), the smallest order graph belonging to the family of graphs of the
form G, g was found. However, it is a large graph. The natural question at this

stage is the following. Can we find a smaller order graph; maybe from an
entirely different family with %= ﬁ? This question motivates the material in
the next section.

S. The smallest connected graphs with matchable ratio

If the matchable ratio % is 0 or 1, then the smallest connected graphs

are obvious, For % = (, the smallest connected graph is P3 . For % =1, every

edge is matchable. In this case, the smallest graph is an edge. We will therefore
consider only matchable ratios which are neither O nor 1.

We will denote vertex and edge sets of a graph G, by V(G) and E(G),
respectively.

Definiti
Let A and B be graphs. We sill say that A is smaller than B if and only if
IV(A)l < IV(B)l and IE(A)l < |E(B)| and at least one of the inequalities is strict.
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Let r be a positive integer.such thatr = ( n) , for some even
2

positive integer n. Then the smallest order connected graph with r matchable
edges is Kp. Otherwise, the smallest order connected graph with r matchable
edges is G0, if risevenand r>4 ; and is H,.;, if r is odd and r > 5.
Proof

If a graph has r matchable edges, then it has at least r edges. Hence, any
connected graph G with r > 0 matchable edges must have the following
properties.
(i) G has at least r edges.
(ii) G has an even number of vertices (since it must have a perfect matching).

Case (1) r-even

For r= 2, the smallest graph is P4 - the chain with 4 vertices.
When r is even, and greater than 2, two connected graphs satisfy the minimum
value of Condition(i), i.e. every edge is matchable; and Condition (ii). They are
the r-cycle and the complete graph K, , where

n P :
r= (2) , for some even positive integer n. It follows that when r is even, and

greater than 2, the smallest connected unsaturated graph with r matchable edges
is the r-cycle. Case (2) r-odd

When r =1, the smallest connected graph, must have at least
two vertices, by Condition (ii). Hence it must be an edge, When r=3, two
graphs satisfy the above conditions; the chain Pg and the chain P5 with a
pendant edge attached to its centre vertex. Both graphs are trees with six vertices.
For r 2 5, we can start off the unique smallest connected matching unsaturated
graph with r-1 (=4) matchable edges-which is C;_1, and then add one more
matchable edge, in the "cheapest” way. The desired graph G must have at least
r+1 vertices. So ideally, we would like to add one matchable edge and exactly
two vertices (if possible). This can be achieved in only one way; that is, by
attaching a P3 to a C,._1. It follows that when r is odd, and greater than 3, the
smallest connected graph with r matchable edges is an r-cycle, with a P3
attached. Hence the result folllows. []

In order to construct a minimum graph with a prescribed
number of matchable and non-matchable edges, we would start off with the
smallest graph with the desired number of matchable edges and then add non-
matchable edges, so as to minimize the number of additional vertices. Clearly, if
we can add the non-matchable edges to the smallest graphs, without adding any
new vertices, then the resulting graphs must be the smallest possible. This
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means that our initial smallest graph should be unsaturated. Thus, a complete

graph cannot be used. Therefore, the smallest graphs with r matchable edges and
s non-matchable edges and with appropriate restriction on s. are the graphs Gr, s
and Hp g defined in Section 2. Our discussion, together with Corollaries 1.1 and

2.1, lead to the following result.
Theorem 4
Leta=2n (n> 1) and b be positive integers, such that a < b and

O0<b-a< [;J Then the smallest connected graph of size b with a matchable

edges and with matching ratio %, is the graph Ggp.q. Ifa=2n+1(n> 1),

then the smallest connected graph of size b with a matchable edges and with
matching ratio % is the graph H; 1 p-g-1.
6. Discussion

At this stage, there is still one unanswered question.

Problem Given % (0 <a <b), find a smallest graph G, relative to either order

of size, such that n(G) =

o |

: . ; e, e
As discussed in Section 4, for some matchable ratios ; it

might be impossible for any graph with a matchable edges to have size b.
Therefore, a smallest graph does not exist. So the next best thing, is to look for
the smallest graph with gqual matchable ratio. This case is still unsolved. Is
the graph with 794 vertices and 79400 edges, in Example (ii), the smallest

connected graph with matchable ratio ﬁ?

Lemma 3 gives the smallest multiple of the ratio, which will
yield a cycle large enough to accommodate the necessary unmatchable edges. We
are assured that the smallest graph of the G, s and H,. ; forms are found. But for

the cases where b-a > (;) , we are not sure that these types of graphs are the

smallest connected graphs.
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