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Abstract 

"Common sense" might seem to indicate t hat if two fair di ce a re 
rolled against each other repeatedly, t hen over the long term the 
result will be predicted by their average rolls. We observe t hat dice 
whi ch sati s fy this "common sense" prediction are actually rather rare. 

In September of 2003 Peter Winkler ( the Director of Fundamental Math
ematics Research at Bell Labs) came to Lafayette College, where he inau
gurated the lect ure series sponsored by our new math club. His talk was 
about several games, and over dinner he talked about more games. One 
involved three dice he carried with him. Each of the dice was a <.,'Ube with 
21 "spots" or "pips," like an ordinary die, but the pips were distributed in 
different ways. One had four pips on each of five faces, and a single pip 
on the last face ; we will denote this one B = (l , 4, 4, 4, 4, 4) . Another was 
C = (1 , 1, 1, 6 , 6 , 6) , and a third was D = (3, 3, 3, 3, 3, 6) . 

To simplify our discussion we will presume that the faces of dice are 
labeled with integers rather than collections of pips . The natural game to 
play with two dice is to roll them, and declare the winner to be the die 
which lands with a larger number on the top face. One of the two dice is 
stronger if it wins more of the possible rolls than the other; if neither is 
s tronger then the two dice are tied. For instance, the die B is stronger than 
the die D because it wins 25 of the 36 possible rolls (each of the five rolls of 
4 wins against any of the five rolls of 3). Din turn is stronger than C (with 
18 wins and only 15 losses among the 36 possible rolls) , and C is stronger 
than B (C wins 18 of the 36 possible rolls, and loses only 15) . 

"Common sense" might suggest that the relative strengths of two dice 
are typically determined by their average rolls, and that B, C, D are excep
tional in that they do not tie each other despite having the same average 
roll. It turns out instead that among the 32 six-sided dice whose faces are 
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labeled with elements of {1 , 2, 3, 4, 5, 6} which have the average 21/6, only 
the standard die A = ( 1, 2, 3, 4, 5, 6) always ties. 

Theorem 1. Let X = (x1, ... ,x6 ) with x 1, .. . ,x6 E {1 ,2,3,4,5,6}. 

(a) A and X are tied if and only if L X; = 21. 

( b) If X i= A and L Xi = 21, then there is another die Y = (Y1 , ... , Y6) 
with y 1 , ··· ,Y6 E {1,2,3, 4,5, 6} and LYi = 21 which is not tied with X. 

Proof. (a) If X is rolled and x; comes up, it will lose against any 
higher roll of A and win against any lower roll of A. That is, x; will win 
x; - l rolls and lose 6 - x; rolls. Hence X wins I:(x; - 1) out of the 36 
rolls , and loses I:(6 - x;). Consequently A and X are tied if and only if 
-6 + I:x; = 36-I:x;. 

(b) Suppose X has m ls and n 6s. If m > n then X loses to C = 
( 1, 1, 1, 6, 6 , 6), because the three 6s -~n C win 3(6 - n) of 36 rolls , and the 
three ls on Conly lose 3(6 - m). Similarly, if m < n then Cl= to X. 

Suppose m = n and X has p 2s and q 5s. E = (2, 2, 2, 5, 5, 5) wins 
3m + 3(6 - n - q) of the 36 rolls against X, because each 2 wins against 
a roll of 1 and each 5 wins against a roll not 6 or 5. Similarly, E loses 
3n+3(6-m-p) of the 36 rolls against X. If pi= q then E and X are not tied. 
If p = q then a similar calculation shows that X and F = (3, 3, 3, 4, 4, 4) 
are not tied unless X has the same number of 3s as it has 4s. 

Suppose now that X has n ls, n 6s, p 2s, p 5s, r 3.s and r 4s. Then 
X wins 6n + 6p + r + r + p times against B , and B wins 5(n + p + r) 
times against X. Hence if B and X are tied then n + 2p = 3r. Against 
G = (1, 3, 3, 3, 5, 6), X wins 5n + 4p + 4r + r + p = 5n + 5p + 5r times 
and loses 3(n + p) + (n + p + 2r) + (n + 2p + 2r) = 5n + 6p + 4r times. 
Hence if G and X are t ied then p = r; n + 2p = 3r implies that n = p = r. 
I:x; = 7n + 7p + 7r = 21 , so it follows that n = p = r = 1. That is, 
X=A. ■ 

Peter Winkler has suggested generalizing Theorem 1 to other kinds of 
dice. Given integers n > 0 and a,b, s let D(n ,a,b, s) denote the set of all 
lists X = (x 1, ... , Xn) of integers such that a $ x 1 $ ... $ Xn $ band L X ; = 
s . An element of D(n, a , b, s) is an n-sided genem.lized die with integer labels 
between a and b which sum to s. Let L(n,a, b,s) = {x l:3X E D(n,a, b, s) 
with x = x; for some i }. Note that L(n, a, b, s) might not include all of the 
integers from a to b; indeed L( n, a, b, s) might be empty. If L( n , a, b, s) ::/- 0 
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then let p(n,a,b,s) = minL(n,a,b,s) and q(n ,a , b,s) = max.L(n,a,b,s) ; 
we use p and q unleBB there is danger of confusion. Clearly L(n, a, b, s ) = 
{x E Zip ::; x ::S q} and D(n ,a ,b,s) = D(n, p,q, s). 

We are interested in the elements of D( n , a, b, s ) which are balanced in 
the sense that they tie all other elements of D( n , a , b, s) . 

For each X = (x 1 , ••• ,xn) E D(n,a, b, s) let f x : L(n,a, b, s)-t Z give 
the win-loss difference of a roll of x against the die X ; that is, 

f x (x ) = l{ ilxi < x} l - l{ilxi > x}j . 

T his function may be used to determine the relative strengths of X and 
other dice: if Y = (y1, .. ·,Yn) E D(n , a,b,s) then "i:,fx(Y;) is positive, 
negative or O according to whether X is weaker than Y , stronger than Y , 
or tied with Y . 

T heo rem 2. (a) All the elements of D(2,a,b, s) are balanced. 

( b) If n 2'.: 3 then a given X E D(n , a , b, s) is balanced if and only if 
there is a ex E Z with 

f x (x ) - fx(p) =ex· (x - p) 

for every x E L(n, a , b, s). 

Proof. (a) Two distinct 2--sided dice with the same sum must be (x1, xz) 
and (y1 , yz) with X1 < y1 < yz < xz, so each die wins two of the four possible 
rolls . 

(b) U q - p ::; 1 then ID( n , a, b, s )I = 1 and the equivalent conditions 
stated in (b) are both trivially true. 

Suppose q - p 2'.: 2. If there is a ex as in the statement of (b) then for 
any Y = (Yl ,··•, Yn) E D(n,a,b,s), 

n n 

I: 1x(v;) = nf x(p) - npex + ex LY; 
i =l i=l 

nf x(p) - npex + sex 
n 

= nfx(P) - npex + ex L x; 
i=I 

n 

= L fx(x;), 
i=l 
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which is O because X must be tied with itself. Hence X and Y are tied. 

Suppose conversely that X is tied with every YE D(n, a, b, s) . Observe 
that if the labels v > p and w < q both appear in Y then there is a 
Z E D(n,a, b,s) with the same labels as Y (including multiplicities) except 
for the replacement of one v by v - 1 and the replacement of one w by 
w + 1. Then I:; fx(Yi) = 0 = I:; fx( zi) implies that f x (v) - f x(v - 1) = 
J x(w + 1) - fx(w) . 

There is a unique k with 1 s k s n-1 and (k + l)p+ (n- k- l)q < s s 
kp+ (n-k)q. Hence there is a yo= (y?, ... , y~) E D(n , a,b,s) with Y? = p 
for i S k and Y? = q for i 2: k+2; moreover if k = n-1 then y~ = q. In any 
case, p and q both appear as labels in yo. We obtain elements Y 1, .•. , yq- p 
of D( n, a, b, s) by replacing single appearances of p + i and q - i in Yi wit h 
appearances of p + i + 1 and q - i- 1 in yHI ; note that because n 2: 3 there 
is at least one label which appears in every one of Y0 , ... , yq- p_ Applying 
the observation of the preceding paragraph to v = q - i and w = p + i in 
Yi, we conclude that f x(q - i) - fx(q- i - 1) = f x (p+ i + 1) - f x (P+ i) 
for each i . Considering that Y 0 , ... , yq- p all share a label, the observation 
of the preceding paragraph also implies that these diHerences are all equal, 
i.e., that fx( x ) - fx(x - 1) is the same for all x E {p + 1, ... , q} . This 
common value is ex . ■ 

If n 2: 3 and IL(n, a, b, s )I 2: 3 then the condition that there be a ex E Z 
with f x(x)- f x(p) =ex· (x- p) is easily described using the charoeteristie 
vector (vp , ... , Vq) of X = (x1 , .. . , Xn) , where Vj = l{ijx, = j}j . If X satisfies 
the condition then ex= fx(i + 1)- fx(j) = Vj + v,+1 for every j E {p, ... , 
q- 1}, so the characteristic vector must be of the form (v , w,v , w , .. . ) . For 
instance, the balanced elements of D(6, 1, 6 , s) include (1 , 1, 3, 3, 5, 5) with 
v = 2 and w = 0, (2, 2, 4, 4, 6, 6) with v = 0 and w = 2, and ( 1, 2, 3, 4, 5, 6) 
with V = w = 1. 

A consequence is that balanced dice obey "common sense" not only by 
tying dice with the same average roll , but also by winning (resp. losing) 
against dice with lower (resp. higher) average rolls. 

Corollary 3 . Suppose n 2: 3 and X E D( n, a, b, s) is balanced. Then X 
is weaker than every YE D(n,p(n, a ,b,s),q(n,a,b,s) ,s') with s 1 > s, and 
X is stronger than every YE D(n, p(n, a, b, s), q(n, a, b, s) , s') with s' < s. 

Proof. IfY = (Y1,---,Yn) E D(n, p(n,a, b,s), q(n,a,b,s),s') then Xis 
weaker or stronger than Y according to whether I:; f x (y;) is positive or 
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negative. X must tie itself, so "'£,fx(x;) = 0. Theorem 2 implies that 

n 

L,fx(y;) - L,fx(x; ) 
i= l i= l 

n n 

L, U x(p) +ex · (y; - p)) - L, U x(P) + ex · (x ; - p)) 
i= l i= l 

n 

L, ex · (y; - x;) = ex · (s ' - s), 
i= l 

so X is weaker or stronger than Y according to whether s1 
- s is positive 

or negative. ■ 

T he next corollary generalizes part (b) of Theorem 1. 

Corollary 4 . If q(n, a, b, s) - p(n, a, b, s) ~ 3 is odd and n ~ 3 then 
there is at most one bal,aneed X E D( n, a , b, s) . 

Proof. Suppose X, X' E D(n, a, b, s) are both t ied with all the el
ements of D(n, a ,b,s); let their characteristic vectors be (v ,w,v,w, ... ) 
and (v' ,w' ,v' ,w', ... ) respectively. Let n 1 = l{i ~ Olp+ 2i $ q}I and n 2 = 
l{i ~ Olp+ 1 + 2i $ q}I - T hen vn1+wn2 = n = v'n1 +w'n2, so (v- v' )n1 = 
(w' - w)n2, If v = v' then it follows that w = w', and hence X = X' . 

Suppose v =/= v '. T he label-sums of X and X I are both s, so 

n, - 1 n2 - l 

s v L, (p + 2i) + w L (p + 1 + 2i) 
i =O i=O 

n~- 1 n 2 - l 

= v' L (p + 2i) + w ' L (p + l + 2i). 
i =O 

These equalities imply 

Then (v - v')n1 = (w' - w)n2 implies 

(v - v')(p + n1 - l)n1 = (v - v')(p + n2)n1, 

and henc..e n 1 - 1 = n 2 by cancellation. This contradicts the hypothesis 
that q - p = n 1 + n 2 - 1 is odd. ■ 
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If n, a, b are as in Corollary 4 then there may be several different s
values for which D(n , a, b, s) has a balanced element. For instance each 
of D(6, 1, 6, 18), D(6, 1, 6, 21), D(6, 1, 6 , 24) has a balanced element, as ob-
served above. 

If q( n, a, b, s) - p( n , a, b, s) > 3 is even and n ~ 3 then the situation is re
versed: there is only ones-value for which D(n, a, b, s) may have a balanced 
element, and such an element need not be unique. If D(n, a, b, s) has a bal
anced element then this element's characteristic vector is (v , w, v, w, .. . , v, 
w, v) with n 1 entries equal to v and n2 = n 1 - l entries equal to w . The 
labels other than the "middle" label ~ may be paired so that the sum of 
each pair is p + q; then if n 1 is odd 

and if n 1 is even 

s = (n1) (p+q) (n2-l) 2 v(p+q)+w -2- + -2- w(p+q) 

= 

D(n, a, b, ( ~ )n) may have several different balanced elements; for in
stance each of (2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4), (1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5) and 
(1 , 1, 1, 1, 3, 3, 3, 3, 5, 5 , 5, 5) is tied with all the elements of D(12, 1, 5, 36). 

The special case most directly suggested by familiar 6-sided dice occurs 
when a = 1 and b = n. 

Corollary 5. If n ~ 2 is even then D(n, 1, n, s) has a balanced element 
f d nl j { 1 n 2 n(n+ l ) n(n+2) 2 l 2 } d h t an o y i s E n, n + , 2 , 2 , 2 , n - , n , an sue an 
element is unique. If n ~ 3 is odd then D(n, l , n, s) has a balanced element 
if and only if s E {n ,n + 1, n (ntl ) , n 2 - l , n 2 } , and such an element is 
unique unless n = 3. 

Proof. If 1 :S IL(n , 1, n , s) I S 2 then s E { n , n + 1, n 2 
- 1, n 2

} and 
I D(n , 1, n, s)i = 1. The single element of D(n, 1, n , s) is balanced, of course. 

Suppose IL(n , 1, n , s) I > 2; then n > 2. If n + 1 < s < 2n then 
(1, 1, .. . , 1, s - n + 1) is weaker than every other element of D(n, 1, n, s), 
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so there is no balanced element. If n 2 
- n < s < n 2 

- 1 then (s - n 2 + n, 
n, n, ... , n) is stronger than every other element of D(n, 1, n, s) , so there is 
no balanced element. 

Suppose 2n s; s s; n 2 - n ; then p = l and q = n. If n is even then 
a balanced element of D(n, 1, n, s) has characteristic vector (v , w, ... , v, w), 
with v (%) + w (~) = n . The only possibilities are v = w = land vi= w E 
{O, 2}, corresponding to s E {;

2
, n(n

2
+1

), n(n
2
+2) } . If n is odd , on the other 

hand, the discussion preceding this corollary implies that 2s = (p + q)n = 
n(n+ 1). The characterist ic vector of a balanced element is (v, w, v, ... , w, v) 
with n = v (~) + w ( n21 

) . This is impossible if v > 1. If v = l t hen 
w(n - 1) = 2n - (n + 1) = n - land hence v = w = 1. If v = 0 then 
2n = w(n - 1) and hence w = }~1 = 2 + n: 1, so n:J E Z; necessarily then 

n = 3 and w = 2 + ~ = 3. ■ 

Dice may b e thought of as candidates in a multi-candidate election. 
Each voter gives each candidate a number of points from a to b; for instance 
a voter who likes all the candidates may give every candidate b points, and 
a voter who likes none of them may give every candidate a points. The 
die (2,2,3,3,4,5) represents a candidate who has attracted the following 
support: one of the six voters gives the candidate 5 points, one of the six 
voters gives the candidate 4 points, two of the six voters give the candidate 
3 points apiece , and two of the six voters give the candidate 2 points apiece. 
With this interpretation, the results above indicate that almost all possible 
candidates in this kind of election are involved in "paradoxical" election 
results, winning and losing one-on-one contests against candidates with the 
same average level of voter support. Such electoral ''paradoxes" have been 
carefully studied in recent years; see [1] for an engaging and accessible 
introduction. 
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