Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParameswaranpillai, Jyotishkumar-
dc.date.accessioned2023-05-24T11:38:53Z-
dc.date.available2023-05-24T11:38:53Z-
dc.date.issued2022-04-04-
dc.identifier.urihttps://doi.org/10.1016/j.susmat.2022.e00427-
dc.identifier.urihttp://gnanaganga.inflibnet.ac.in:8080/jspui/handle/123456789/742-
dc.description.abstractFrom a ‘Waste to Wealth’ standpoint, sustainable conversion of agricultural waste materials into value-added products is of crucial importance. The study compares the BET surface area of 5 different rice husk ash varieties: Jyothi (RHA), Jaya (RHA-1), Kanchana (RHA-2), Uma (RHA-3), and Valichoori (RHA-4). The different rice husk ashes were prepared through the calcination of dried rice husk at 700 °C for 2 h. The resulting rice husk ashes and commercial silica (CS) were characterized using FT-IR, XRD, SEM, TEM, DLS, XRF and BET surface area. For the first time, we report on the potential of Kerala rice husk nanoash (Jyothi variety-RHA) with a high surface area (79.33 m2/g) in the development of a basic tyre tread. Natural rubber (NR) composites were prepared by replacing 5phr of carbon black (CB) with 5phr RHA, and 5phr commercial silica (CS). The different composites prepared were designated as NRCB50 (with 50phr CB), NRCB45RHA5 (with 45phr CB and 5phr RHA), and NRCB45CS5 (with 45phr CB and 5phr CS). A comparative study with NR-NEAT (with no filler) was also conducted. The cure rate index was higher for RHA-filled vulcanizates compared to RHA-free composites. Except for abrasion resistance, mechanical properties of NRCB50 and NRCB45RHA5 composites were comparable. The thermo-gravimetric analysis revealed onset degradation temperature ranking as NRCB45RHA5˃NRCB50˃NRCB45CS5. Moreover, dynamic mechanical analysis (DMA) showed no obvious loss in glass transition temperature (Tg). The loss tangent (tan δ) values at 60 °C and 0 °C suggested that the rolling resistance can be significantly reduced by replacing 5phr CB with 5phr RHA without affecting the ice traction.en_US
dc.language.isoenen_US
dc.publisherSustainable Materials and Technologiesen_US
dc.subjectSustainablityen_US
dc.subjectKeralaen_US
dc.subjectCarbon blacken_US
dc.titleSustainable Kerala rice husk ash for formulation of basic tyre tread: Taking first stepen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.