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Abstract. A frame is a family { f,} ~ 1 of elements in a Hilbert space 
.Y with the property that eve,y element in .Y can be written as a 
(infinite) linear combination of the frame elements. Frame theo,y 
describes how one can choose the corresponding coefficients, 
which are called frame coefficients. From the mathematical point of 
view this is gratifying, but for applications, it is a problem that the 
calculation requires inversion of an operator on .Y. The projection 
method is introduced to avoid this problem. The basic idea is to 
consider finite subfamilies {f,} ~ 1 of the frame and the orthogonal 
projection P n onto span { f,}~~ 1 . For f e .iii, P nf has a representation 
as a linear combination of f,, i= 1,2, ... ,n, and the corresponding 
coefficients can be calculated using finite dimensional methods. We 
find conditions implying that those coefficients converge to the cor
rect frame coefficients as n-x, in which case, we have avoided the 
inversion problem. In the same spirit, we approximate the solution to 
a moment problem. It turns out that the class of "well-behaving 
frames" are identical for the two problems we consider. © 1997 
SPIE and IS&T. [S1017-9909(97)00804-0] 

1 Introduction 

We begin with some definitions. Let .7! be a separable 
Hilbert space with the inner product ( ·, •) linear in the first 
entry. All index sets are assumed to be countable. 

1.1 Definitions 

I. A family {f1 } 1 E 1~.7f is a Riesz basis for .7! if {/;}; E, 
is total and there exist numbers A and B > 0 such that 

AL Jc;!2,;;;IIL c/111
2

,,,;BL kf 
I E / IE/ I E / 

for all sequences {c1}; E, E /
2
(/). 
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2. A family {/;}1 e ,~-7( is a frame for .7! if 

3A.B>O:Allfll2,;;;L l(f J;)l2,;;;Bl[/112. V/E.71. 
iE/ 

Here A and B are called frame bounds. 

3. The family {f1}; E1~.7f is a frame sequence if {/;}1 E , 

is a frame for its closed span. 

Note that a frame {/;}1 E , gives rise to a decomposition 
of the underlying space .ft"; if we define the frame operator 
by 

S:.71->.7f. Sf= L (/,/1)/;. 
/ E / 

then S is bounded and invertible, and 

J=ss 1/=L (f.s- 1
/;)/;, V/E.71. (I) 

IE/ 

Note that { (/,S 1
/;)} are called the frame coefficients. 

Equation (I) can be viewed as a generalization of the 
well-known representation of/ using an orthonormal basis 
{e1}1 Ei: 

f=L(/,e;)e 1 • /E. 71. (2) 
, e l 

The main difference is that the coefficients {(/,e1)} in Eq. 
(2) are unique. whi le there might exist coefficients { c,} 1 E 1 

other than the frame coefficients that satisfy / = "i, 1 E 1c ,/1 

for a chosen element/. If {c1},E, has this property, it is 
well known I that 
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L ic;l2 = L 1u,s- 1J;)l 2 + L ic;-(J,s - 1J;)l 2
, 

iE/ iE/ iE/ 

i.e. , the frame coefficients have minimal / 2-norm among 
the sequences that can be used to represent f. 

A frame is a Riesz basis if and only if the elements/; are 
w-independent in the sense that 

{c;b1 E / 2
(/) , L cJ,=O⇒c;=O, 't/iE/. 

iE/ 

By definition, every subfamily of a Riesz basis is a Riesz 
basis for its closed span. But in general, not every subfam
ily of a frame is a frame sequence. If every subfamily 
{/;};E; of the frame {/;}, E, is a frame sequence with 
bounds that are common for all those frames, then we call 
{/;}; E/ a Riesz frame. Clearly one only has to check the 
existence of a common lower bound, and it is easy to check 
that {/,}; E, is a Riesz frame if this condition is satisfied for 
all finite index sets Jr;;, I. 

It turns out that the problems we consider here have very 
satisfying solutions for Riesz frames, so it is interesting lo 
notice that they were introduced in a very different context. 
One of the main problems in Ref. 2 was to find conditions 
implying that a frame {/,}, EI contains a Riesz basis, and it 
was shown that every Riesz frame has this property. Later 
it was discovered that the same is true under the weaker 
condition "every subfamily of {/,}; E, is a frame 
sequence." 3 

2 Approximation of the Frame Coefficients 

From the point of view of applications, the problem 
with calculation of the frame coefficients is to invert S. 
An idea to overcome this difficulty is to " truncate" the 
problem. Thus let {/11}:= 1 be a family of finite subsets of 
/ such that 

Corresponding to a subfamily {f;};Ef,, we define the space 

.Jr,, : = span{/;}; E, and the frame operator 
" 

s,, :.Jr,,__,,J/,, ' S,J= L (JJ,)f,. 
i E / II 

The orthogonal projection off E .71' onto .71',, is given by 

P J= L u.s; 11,)1,. 
f E / n 

Since P,J-+J as 11-+cc, one can hope that the coefficients 
(J,S ,; 1/;) converge to the frame coefficients for f, i.e., that 

(J,s,;'J;)-+(/,s- 1/;) as n-+cc, 'viE/, 'v/E.71'. 
(3) 

If Eq. (3) is satisfied, we say that the projection method 
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works. In this case, the frame coefficients can be approxi
mated as close as we want using finite dimensional 
methods, i.e., linear algebra, since S,, is an operator 
on the finite dimensional space ..71'11 • This is a very impor
tant property for applications: for example, it makes it pos
sible to use computers to approximate the frame coeffi
cients. 

If the projection method works, the next natural question 
is how fast the convergence in Eq. (3) is. For example, 
one might wish that the set of coefficients { (/,S; 1/,) }, E ,,, 

converges to the set of frame coefficients in / 2 sense, 
i.e., that 

->O, 't/ f E .71'. (4) 

We say that the strong projection method works if Eq. (4) is 
satisfied. Note that this condition depends on the indexing 
of the elements. The second term I;Ei - , l(J,S- 1/;)1 2-+0 

" 
for every frame, 't/ f E .71', so we need to show only that 
I;E, l(J,s; 1J;)-(J,s- 1J;)l 2-o, 'v/E.Jr. 

n 

The projection method was introduced in Ref. I. The 
original presentation is slightly more general than here, 
since it is formulated for a fami ly {/;};E,, which does not 
have to be a frame. ln the special case of a frame, Ref. I 
contains an equivalent characterization of the projection 
method. 

Theorem 1. Let {/,}; E, be a frame. Then the projection 
method works if and only if for any j E / , there exists a 
constant c i such that 

Reference I also contains an example of a frame, where the 
projection method does not work. If { e ,} ;= 1 is an orthonor
mal basis and we define the family 
{/;}~ 1 :={ei}U{e;- 1+( l/i)e;};=2 , then {/;};=, is a 
frame, but 

II 

11s,;'1, 112 = L (i!) 2-+ 00 for n->00 . 

i= I 

As the first theoretical results concerning the strong pro
jection method we have the following. 

Theorem 2. The strong projection method works for 
every Riesz frame. 

Proof Let A and B denote common bounds for the Riesz 
frame{/;};Ef· ByRef.4,lls,;' 11,s;;( l/A) forallnEN. Now 
fix f E .Jr. Then, 
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= ~ l(s,, 1P,J-s- 1.tJ;)l2 

ie/11 

,s; s11s- 1.r-s,~ 1 PJll2 

,s;B( lls- 1J- P,,s- 1JII + IIP,,s 11-s; 1 P,Jll)2 

=B( 11s- 11-P,,s- 1111 

+Iii~" (s - 1JJJs,~1J;-s;1P,Jll f 

,s; B ( 11s- 11-P,,s- 1111 + 11s; 111 

· t~,, (s- lJ,J;)J;-P,JII r 
,s; s ( 11s - 11-P ,,s- 1JII 

+~II;~" (s - 1J,J;)J, - P,J11r--.o for n--.oo 

Since 2..;e/ (5- 1f,j;)f;--+f for n--+OO . 
" 

The readers who have checked the proof might have 
observed that the proof does not use that all the sequences 
{f;},eJ, J~I, are frame sequences with common bounds: 

Theorem 2 holds if {f;};e/ is a frame and {/11}:= 1 is a 
family of finite index sets such that the frame sequences 
{f;}, e ,, n EN, have a common lower bound, or equiva-

" 
lently, 

3A >0Vn:~ l(JJ;)l 2 ;;;.AIIJll2
, VJE.7r,,. 

iel,, 

Let us say that {f;}; e / is a conditional Riesz frame (with 

respect to{/,,}:= 1) if the frame sequences {f;}; e,, n EN, 
II 

have common frame bounds. In the case of a frame indexed 
by the natural numbers we always use the convention 
/ 11 = { 1,2, ... ,n}. This is indeed a weaker condition. For ex

ample, if { e;}: 1 is an orthonormal basis for .7r, then 

is a conditional Riesz frame, but not a Riesz frame. The 
reason for formulating Theorem I for Riesz frames is that 
Riesz frames give a good intuitive feeling for the problems. 
Furthermore Riesz frames have the advantage that it is not 
necessary to index the frame elements: the conclusions hold 
for every arrangement of the frame elements. 

In terms of the operators s; 1 
, a frame {!;}; e , is a con

ditional Riesz frame if and only if sup11IIS11 

111 < oo. Observe 
that the notion depends on the indexing of the frame ele
ments. For example, if { e ;} ;= 1 is an orthonormal basis then 

{ e;, ( I Ii) e;} ;= 1 is a conditional Riesz frame, but 

{( Ili)e; ,e;};= 1 is not. 
Actually, the strong projection method works if and only 

if{!;}; e I is a conditional Riesz frame. This is the content of 
the following result, which we prove in Ref. 5. 

Theorem 3. Let {f;};e, be a frame. Then the following 
statements are equivalent: 

I. The strong projection method works. 

2. {f;}, e , is a conditional Riesz frame. 

3. s,~ Ip ,J--.s-11 for all f E .Y. 

4. (S; 1P,J,g)--+(S - 1f,g ) forallf,gE.7t. 

5. lim,, _x2..;=,,+ 1 l(S,~ 1 P,J,/;)1 2 = 0, VJ E .7/. 

Usually statement 3 is formulated by saying that 
S,~ 1 P,, --.s- 1 in the strong operator topology, and state

ment 4 by say ing that s; 1 P,,--.s- 1 in the weak operator 
topology. That statements 3 and 4 are equivalent is a con
sequence of the fact that the involved operators are posi
tive. Also, observe that statement 4 shows that the condi
tion for the strong projection method to work can be 
fom1ulated in a very similar way as the condition for the 
projection method to work, cf. Eq. (3). 

3 Approximation of the Solution to a Moment 
Problem 

We now consider a related question. Again let {!;}; e I be a 
frame for .71 and let {a;};ei~/2

(/). We ask whether there 
exists f E . .11 such that 

(f,f;)=a;, Vi E I. 

A problem of this type is called a moment problem. For the 
general theory refer to Ref. 6. It is easy to construct ex
amples where there is no solution f, but as shown in Ref. 7 
there always exists a unique element in .Y minimizing 
2..,e 1la;-(f,JJl 2

; this element isf= 2..; e1a;S - 1J;. We call 
2..; e 1a ;S- 1J; the best approximation solution (BAS) to the 
moment problem. 

Corresponding to a subset {a;}, e ,,,, the unique element 

in .71,, minimizing 2.., e , la;-(f,/;)12 is 2..; e / a;S,, 1J;. We 

say that 2..; e 111a;S; 1J; i~• the BAS to the trun~ated moment 

problem. In analogy with the preceding, we would like to 
find conditions implying that 

(5) 
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Observe the connection to the projection method: if Eq. (5) 
is satisfied (or just for all sequences with I in one entry, 
otherwise 0), then S; 1 /;-> s - 1

/; for n-> oo, Vi, so the pro
jection method works. 

Zwaan8 has shown that Eq. (5) is satisfied if{/;},.,, is a 
Riesz basis. Here we prove that Eq. (5) is satisfied if and 
only if{/,}, e , is a conditional Riesz frames . We need the 
operator (sometimes called the preframe operator) 

T: /1-( !)->./(, T{c,}, e,= L c;f,. 
ie / 

We denote the kernel of T by N r, and T is bounded and 
the adjoint operator T*: ./(-> / 2(/) is given by 
T*J={(/,f,)}, e,. 

Theorem 4. Let {/;},e , be a frame. Then the following 
statements are equivalent: 

I. I, e , a ,S,, 1
/;-> I, e 1a;S - 1

/, for 11 -> 00 , V {a;}, e, 

E /1-( /). 
2. s;'I;ei b;f;->0 for 11-> oo for all {b;}, e1e / 2(1) 

II 

such that I, e 1b ,f, = 0. 

3. {/,},e, is a conditional Riesz frame. 

Proof. First, statement !~statement 2. Since / 2(1) is 
the orthogonal sum of the range of T* and the kernel of T, 
we can write any sequence {a;},e1e/2(1) as 

for some g e,/(, {b;}, ., 1eN7 . Now, the BAS to the trun
cated moment problem is 

The BAS to the moment problem is 

from which the result follows. 
To show statement I ⇒statement 3, define Q :/2(/) 

-,_7( by 

and define Q,, :11-(1)-> . .#' by 
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Statement I states that Q 11 -> Q in the strong operator topol
ogy. Hence sup,,IIQ,,11< 00 . But, Qt/={(f,s; 1/,)}, e,, and 

n 

P,J= L;Ef (f.s; 1/,)/, , implies 
II 

Hence, 

The fact that statement 3⇒statement 2 follows from 

4 Conditional Riesz Frames 

By introducing the distance between an element/ e ./( and 
a subspace V~ . .#' we can find a condition implying that 
{/;} ;= 1 is a conditional Riesz frame. Let 

dist(/, V) = inf~e 1·!1/- 8 11 -

Proposition 1. Let {/;} ;= 1 ~ • .#' satisfy the upper frame 
condition with bound B and suppose that there exists c> 0 
such that for all n e N, 

Choose c so small that II/ill;;,: c. Then {!;}; 1 is a condi
tional Riesz frame with bounds c2

, B. 

Proof. We only need to be concerned about the lower 
bound. First, observe that dist(/,.ft",,) = II/- P ,JII- Let us 
now prove the existence of a common lower bound by in
duction. The assumption 11/,ll;;,: c immediately implies that 
{/1} is a frame for span{/1} with lower bound c2

, so as
sume that{/,}~ 1 has the same lower bound for some k> I. 
For f e ,/(k + 1 we then have 

k+I 

;;,: c2IIPJll 2 + c2 dist (f,.7rk) 

= c2IIPJll2 + c2IIU- Pk)/112 

= c2IIJll2. 

as desired. Now we finish by showing that c2 also is a 
lower bound for u,r_ I . But if/ E .7r, then 

11 

from which the result follows by letting n-> oo. 
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5 Examples 

The most important frames are Weyl-Heisenberg frames 
and wavelet frames. A Weyl-Heisenberg frame with lattice 
parameters a.h > O is a family {fm_,,(.r)}1,,,_,, 1ez2 of func
tions of the form 

f m_,,(x): = exp(i21rmhx)f(x - na), 

where feL 2(R) is fixed. A wavelet frame consists of 
scaled and translated versions of a single function 
/ e L 2( R ); here one choose parameters a > I, h > 0 and de
fine 

There exist easy verifiable conditions implying that such 
families are frames.9 The approximation questions consid
ered here are important for such frames, so it would be 
interesting to answer the question When is a wavelet frame 
or a Weyl-Heisenberg frame a (conditional ) Riesz frame? 

This question seems to be difficult. At present, we know 
the answer only in some special cases. namely. 

I. It is well known that a Weyl-Heisenberg frame is in 
fact a Riesz basis if ah= I. Therefore we have a 
Riesz frame in this case. 

' 2. Consider the Gaussian g(x)=e ,- The Weyl-
Heisenberg family corresponding to this function and 
the lattice parameters a= I and h = I /2 is a frame. 
But the subfamily {gm_11 },,, e2z. 11 ez is not a frame. 
Thus L!i 111 _,,} 1111 _,, 1ez2 is not a Riesz frame. 
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