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Abstract. For signal representation, it is always preferred that a
signal be represented using a minimum number of parameters. In
any transform coding scheme, the central operation is the reduction
of correlation and thereby, with appropriate coding of the transform
coefficients, allows data compression to be achieved. The objective
of data encoding is to transform a data array into a statistically un-
correlated set. This step is typically considered a “decorrelation”
step, because in the case of unitary transformations, the resulting
transform coefficients are relatively uncorrelated. Most unitary trans-
forms have the tendency to compact the signal energy into relatively
few coefficients. The compaction of energy thus achieved permits a
prioritization of the spectral coefficients, with the most energetic
ones receiving a greater allocation of encoding bits. The transform
efficiency and ease of implementation are to a large extent mutually
incompatible. There are various transforms such as Karhunen-
Loeve, discrete cosine transforms, etc., but the choice depends on
the amount of reconstruction error that can be tolerated and the
computational resources available. We apply an approximate Fou-
rier series expansion (AFE) to sampled one-dimensional signals and
images, and investigate some mathematical properties. Additionally,
we extend the expansion to an approximate cosine expansion
(ACE) and show that, for the purpose of data compression with
minimum error reconstruction of images, the performance of ACE is
better than AFE. For comparison purposes, the results are also
compared with a discrete cosine transform (DCT). © 1997 SPIE and
IS&T. [S1017-9909(97)01004-0]

1 Introduction

With the continuing growth of modern communications
technology, demand for data storage and transmission is
rapidly increasing. The efficiency, complexity, as well as
implementation of a compression algorithm are particularly
important in its hardware implementation. Transform cod-
ing is one of the well-known approaches to efficient wave-
form representation at medium to low bit rates. The goal of
transform coding is to decorrelate the signal, resulting in
the energy being distributed among only a small set of co-
efficients. In this way, many coefficients can be discarded
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after quantization and prior to encoding. A transformation
can be viewed as a decomposition of the original block of
signals into a set of basis functions. In the case of sinu-
soidal transforms (such as Fourier transform), the basis
functions consist of sines and/or cosines with different spa-
tial frequencies, and each transform coefficient is propor-
tional to the fraction of energy in the original block at that
particular frequency. It is important to realize that the trans-
form operation by itself does not achieve any compression,
but by changing the representation of the information con-
tained in the signal block, it makes the data more suitable
for compression. Compression is achieved by subsequent
steps of quantization and encoding of the transform coeffi-
cients. The optimal decorrelation transformation is the
Karhunen-Loeve transform (KLT).! The KLT has the prop-
erty that for any integer L<N, where L is the size of the
transform and N is the size of the data vector, it packs the
maximum average energy into some L coefficients.” Unfor-
tunately, no efficient computation of KLT exists, and also it
does not have the desirable properties of a trigonometric
series. Another complication in applying KLT is that its
basis functions are not fixed but are data dependent. Input-
dependent transforms are hard to implement, but they also
have the best input decorrelating and variance ordering
properties. A practical transform for the purpose of signal
compression should have a strong decorrelating effect,
should preferably consist of signal-independent basis func-
tions, and should have a fast implementation. For stationary
random sequences there are other unitary transforms which
approach the energy packing efficiency of the KLT. Ex-
amples are discrete cosine, Fourier, and sine transforms.
These transforms are members of a large family of sinu-
soidal transforms, all of which have a performance equiva-
lent to KLT as the size N of the data vector approaches
inﬁnity." To retain the desirable features of the trigonomet-
ric series, an approximate Fourier expansion with uncorre-
lated coefficients for continuous-time nonperiodic signals,
can be found in Ref. 4. The approximation can be made
arbitrarily close by making a transform parameter small
enough. In this paper, we apply an approximate Fourier
expansion (AFE) to sampled signals and explore the capa-
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bility of coding one-dimensional signals and images. Fur-
thermore, we extend this expansion to an approximate co-
sine expansion (ACE) and show that, for the purpose of
coding and minimum error reconstruction of signals, its
performance is better than AFE. Performance is also com-
pared with the discrete cosine transform.

2 Approximate Fourier Expansion

In this section, we present an AFE of sampled, stationary,
and nonperiodic signals. For continuous-time signals, this
expansion is expressed as™:

- 4

,f'(r)=kz ¢ expljkwyt), (1a)

where ¢, are random variables given by
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For sampled signals, we extend the approximate Fourier
expansion as

M
.f'(n)=£ > ¢ expljkagn), (2a)
(=—M
where
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k=0%1,..,XM, (2b)

where M is the maximum number of coefficients to be
computed. If we divide the frequency spectrum 27 by fre-
quency resolution parameter w;, then we have a total num-
ber L of coefficients. Hence, for signals of finite length N,
we can write discrete AFE as

/
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\

(3)

We show later that, depending on the value of w,
=2m7/L, the coefficients ¢, could be periodic or pseudope-
riodic. The signal x(n) can be reconstructed as

L—1
3 2mkn
x(n)= E Cy exp(j
=0 i

(4)

If the signal x(n) is of finite duration N=L, then the pair
of Eqs. (3) and (4) can be viewed as a discrete Fourier
transform (DFT) pair of the signal x(#n)[ sin(an/L)/mn], i.c.,
the signal x(n) windowed by the main lobe of the sinc
function.
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Fig. 1 Ideal bandpass filter.

3 Properties of the Expansion

In this section, we examine some important properties of
this expansion. For now, we consider only the case of one-
dimensional sampled signals.

3.1 Mean Value of Coefficients

Property.

E{x(n)} for k=0
Eled=1g otherwise - (3)
Proof.  From Equation (2b),

sin(wgn/2)

E{cy=E{x(n)} >

Pl o SXP(—jkawon). (6)

The summation term in this equation represents the Fourier
transform of sin(wyn/2)/mn evaluated at w=kw,. Since
the Fourier transform of sin(wgn/2)/ wn is bandlimited be-
tween — w(/2 and wy/2, hence the right-hand side of Equa-
tion (6) is zero, except when k=0 where it has the value of
1, the property is proved.

3.2 Correlation of Coefficients
Property.  The coefficients of the AFE are uncorrelated.

Proof.  Consider the ideal bandpass filters of center fre-
quency kw, and bandwidth w as in Fig. 1:

(7)

I (k= Hwg<w<(k+ 1)
HA.(w)=[ (k= 3wy<w 2w

0 otherwise

where —m<w<m is a frequency variable. The corre-
sponding impulse response is given by

) 'w“n')
sin| —
2

hy(n)=exp(jkwyn) T (8)

If x(n) is the input to this filter, the output of the k’th
bandpass filter will be given by the convolution summation

| wy(n— T)}
% S ?
yiln)= _2_ x(rexpljkwg(n—1)] ﬁ 9)

At n=0 we have
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. [ @oT
% sm| ——

yl(0)= 2 x'(r)exp(~jkw(,r)T=q. (10)

r=—1

Since individual filters are nonoverlapping, their outputs ¢,
and ¢, are orthogonal, i.e..
E{yi(0)y;(0)}=E{cicn}=0,

Since from the property in Sec. 3.1, E{c;}=0 except at k
=0, we conclude that the coefficients are also uncorrelated.

for k#m. (11)

3.3 Periodicity

Property. If wy=2a/L, and L is a rational number, then
the coefficients ¢, and the reconstructed signal x(n) will be
periodic.

Proof.  From (3) it is evident that if the complex expo-
nential is periodic, then the coefficients will be periodic in
k. If L=PI/Q where P, Q are integers and L is a rational
number, then exp(—j27Q/Pkn) will be periodic with period
P. From (4) it can be noticed that the reconstructed signal
will be also periodic with the same period. Under these
conditions, the upper limit of the summation in (4) can be
P. In the special case where L is an integer (0 =1), then
the period will be L. It should also be noted that when L is
an irrational number, then there will be a **pseudoperiodic-
ity”" in the coefficients with period P=int{L}, i.e., the co-
efficients within a pseudoperiod P will not be equal but
approximately similar. From this it can be concluded that
an integer value of L will always result in a computation of
less number of coefficients.

3.4 Mean Value of Reconstructed Signal

Property.
E{x(n)}=
Proof.

E{x(n)}. (12)
U%ing Equalion (4),

2mkn
2 e exp(

Using the property in Sec. 3.1,
lE{\(n)} for k=0

E{x(n)}

E{ed= otherwise

At k=0, and using this result, we have in mean square
sense

E{x(n)}=E{co}=E{x(n)}. (14)

This equation suggests that reconstructed signal x(n) gives
mean square approximation to x(7).

3.5 Mean Square Value of Coefficients
Property.
(k+ 112)wq

2> I .
Efled?t=5- f(“mwnsl(_wmw. (15)
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Proof.  Consider the ideal bandpass filters of center fre-
quency kwg and bandwidth w,, as in Fig. 1:
1 (k= Dwg<w<(k+ Hw

H‘ ——
@) 0 otherwise

where — m=w= 7 is a frequency variable.
The power spectrum of output of the subfilter k is given
by

S(w)=S(w)|H o). (16)

Taking inverse Fourier transform of both sides, we get

2 1 L D &
E{lye(m)*}= 5 J S (w)|H(w)|* exp(jon)dw. (17)

Using the limits of H,(w), we get at n=0

’ 1 (k12w
E{|yk(0)|'}=ﬁ . S(w)dw. (18)
— ..H)D

Using the result in Equation (10) we get

(k+12)wyg

S(w)dw, (19)

(k= 112)wy

E“‘L :_

which is the area under the k’th pulse. If w is very small,
so that S (w) is a constant S, in that interval, then
Sy

Sy
= Znigy=22, (20)
2w

E{|cil?} T

which means that we are sampling the spectrum of the
original signal at sufficient number L of frequency points
with an area of each impulse as S, /L.

3.6 Mean Square Value of Reconstructed Signal

Properry.
*(n)|*t=E{|x(n)]*}. (21)
Proof.  From Equation (4),

L=1 L=

E{|-{‘(")|2}=E( kz:” ¢y exp(jkwon) Z() Cm

Xexp( — jmwgpn )] ; (22)

Using wy=27/L with L as an integer, we have

L=1 L=1
E{].f'(lw)l:}:ElAz) Eﬂ CiCm exp[j(k—m)w(,n]]
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=0 m=0

|



Transform coding of signals

5 T T T T T T T
e
a

0 \\_,\/\f—~ 1 @
4l : . , : . k J

o, 10 20 30 40 50 60 70 80

10

sf‘ ; .
O—W L

|
-5 1 L

D . 10 20 30 40 50 60 70 80
LA : : ; ' .
DW | o
5 . \ L i | ) "

0 10 20 30 40 50 60 70 80

Fig. 2 (a) Signal length for analysis, (b) data domain equivalent of
AFE coefficients, and (c) data folded to eliminate discontinuity.

L-1L-1
E{i(n)= 2 2 E{eicnl* §
2m(k—m)n
X 2 o p 2T (24)
n=0 L
Using the result in Equation (11), we have at k=m
E{ _f-(n)iz}zz0 E{|ci|?}. (25)
Using the property in Sec. 3.5 we get
. =1 (k+12)wq
E{|i(m)|*}= 2 P J S(w)dw. (26)
k=0 £ J(k—112)w,

If wg is very small, so that L=2m/w, is sufficiently large
for minimum reconstruction error and S ,(w) is constant in
that interval wg, then the previous equation becomes

1 bid
E{|x(n)]*}= o j S(w)dw,

(27)
E{|(n)[*}=E{x(n

However, if w is not very small, then there will be an error
in the approximation of the original signal spectrum. In that
case, the mean square value of the reconstructed signal will
be given by Equation (26).

4 Approximate Cosine Expansion

In this section, we develop an ACE from the AFE and show
that for the same L it introduces less reconstruction error
than the AFE. An additional advantage is that the coeffi-
cients of ACE are real. Consider Figs. 2(a) and 2(b), which
represent sampled data and the reconstructed signal after
applying an AFE. It should be noted that L used was an
integer and sufficiently large for minimum reconstruction
error. Since the AFE coefficients and the reconstructed sig-

nal are periodic with period L, Fig. 2(b) contains severe
discontinuities between the segments and these result in
spurious spectral components. This discontinuity can be re-
moved by making the data to be transformed symmetric,
i.e., by folding it about the vertical axis (along the origin)
as shown in Fig. 2(c), and then overlapping the two halves
by one element. Folding the data has given us an even
function to transform. We now apply AFE of length 2L to
the data of length 2N. Note that the axis of symmetry in
Fig. 2(c) lies at the point n=—1/2, i.e., 1/2 point to the left
of the signal at the origin. Therefore, applying AFE to the
signal in Fig. 2(c), we get

ni
N-1 sin CY3

2uk(n+ 1)

(k=”;N,\‘(n)Texp{—‘} 7 | (28)
Since x(n) is real and even, therefore
nqr)
) ST [wk2n+1)
= 2 x(n) pommt 5L i
k=015b—1 (29)
The x(n) is reconstructed using Equation (4) as
L1
. _mk(2n+1)
X(n)_gu Cp €Xp|j ——
2 mk(2n+1) | 'E‘,‘ Cmk(2n+1)
Cp COS — 2L jk:o Cr SIHT.
(30)

Since ¢, is real and even as it is generated by symmetric
extension of input signal, hence the second term in the
previous equation equates to zero, therefore

L-1

N wk(2n+1)

_\'(n)=2 €y 008 ———, (31)
=0 2L

Letting L= 2L, then Equation (29) can be rewritten as

C(nm
N-1 sin| —

CoRe S Li) ( 2mkn
&, =2 Re nz()x(n)Texp‘ J L

(32)

The term in the brackets is similar to ¢, in Equation (3)
(with L replaced by L) multiplied by an exponential term.
Since L,=2L, therefore wy=2m/L,=m/L. This means
that first null of sin(nr/L;) will fall at 2L instead of at L. In
other words, the error introduced in the reconstructed signal
will be less than the error due to applying AFE on the
signal.
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5 Mean Square Error

In this section, we compute the mean square error between
the original and reconstructed signal. The main objective
here is to evaluate an upper bound on w,, so that error does
not exceed a certain percentage of the average power of
x(n). We define the mean square error as

ems=E{|x(n)—%(n)|?}, (33)
ms=2E{|X(n)|*}—2E{|x(n)2(n)*|}. (34)
We have used the property in Sec. 3.6 that E{|x(n)|’}

=E{|&(n)[*}. Using c¢;=y,(0) (output of subfilter k) as
shown in Equation (10), we get

E{x(n)cf}=E{x(n)y}(0)} =Ry, (n). (35)

But the cross-power spectrum of x(n) and yy(n) equals
S (w)H{(w), therefore

E{x(n)c}}= WJ S HE (w)exp(jon)dw
1 J’(.&+l/7 @
=— 5, jwn)daw. 36
27 Jk-12)w, dw)exp(jon)dw (36)

Summing along all coefficients, we get
L-1

E E{x(n)c}lexp( = jkwon)
(k+112)wq
= J S (wexp[j(w—kwy)nldw. (37)
27 =0 Ji-1n)w,

Using Equation (4), the left-hand side of the previous equa-
tion simplifies to
L-1
| (k+112)w,
Efx(n)#*(n)}= 57— ] o J’ "S (@)
k=0 J{

k= 1/2)ay

Xexplj(w—kwy)n]dw
L-1

1 (k+112)wyg
=e=F f Suw)
{

2m i=0 Ji-12)w,
X [cos(w—kawg)n

Since S, (w) is an even function, the second term in the
previous equation equates to zero, hence
X { 4l (k+12)wy
E{x(n)x*(n)}=— 2 J S (w)
2w =0 J

k=12)wyg

Xcos[(w—kwy)n]dw. (39)

Substituting this equation and the result from Equation (26)
in Equation (34), we get
L-1

I (k+112)wq
€ps=— Sdw)[1=cos(w—kwy)nldw.
T k=0 J(k-12)wy

(40)
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Fig. 3 Mean square error of an arbitrary low-pass signal.

For an arbitrary low pass signal, this equation is plotted as
a shaded area in Fig. 3. The second part of this equation
depends on n and is generated by E{|x(n)X*(n)|}. This
shows that the x(n) and x(n) are individually but not
jointly wide-sense stationary. If they were, the mean square
error ¢,,, would be independent of time.

The prior is a worst case estimate assuming that S, (w)
is concentrated at the end points of each integration inter-
val, i.e., from (k—1/2)w; o (k+1/2)w,. If S (w) does
not vary appreciably in these intervals, then Equation (17)
can be modified by replacing S.(w) by a constant in each
integration interval as

L-|
1 sin( w, n/2) sin( wyn/2)
€ms = 2 S’ (w wy— " :
n n
B LE' s sm( wyn/2) @1
= i e 1~—r s )
X L-1
sin(fwgn/2)| 1
=3 f=c—m——l] = : 42
Ems l wonf2 | 2w k;) WoS () =)

Since S,(w) does not vary appreciably in each integration
interval, then using property (¢), the previous equation can
be written as

Sln( (J)()HI’Z)]

E E{|cil?}. (43)

k=0

ems

2

As proven in the property in Sec. 3.6, this can also be
simplified as

[ wgn
. sin 2
e,,,5*2E{].\'(n)|'} = W : (44)

2

This means that in the limit as w, approaches zero, the
mean square error approaches zero in a mean square sense.
We can also deduce from Equation (44) that for the mean
square error not to exceed a certain percentage of average



Transform coding of signals

Table 1 Real component of AFE basis functions.

0.0892 0.1059 0.1179 0.1242
0.0892 0.0749 0 —-0.0878
0.0892 0 —0.1179 0

0.0892 -0.0749 0 0.0878
0.0892 —-0.1059 0.1179 —0.1242
0.0892 -0.0749 0 0.0878
0.0892 0 — 04179 0

0.0892 0.0749 0 —0.0878

0.1242 0.1179 0.1059 0.0892
~0.1242 ~0.0834 0 0.0631
0.1242 0 ~0.1059 0
~0.1242 0.0834 0 - 0.0631
0.1242 ~0.1179 0.1059 -0.0892
~0.1242 0.0834 0 — 0.0631
0.1242 0 —-0.1059 0
-0.1242 ~0.0834 0 0.0631

power of x(n), the first null of sinc function in Equation
(44) shall fall very far away from the origin. Since first null
of the sinc function in an ACE falls at 2L instead of L as in
an AFE, mean square error introduced by ACE will be less
than the error due to applying AFE on the signal.

6 Determination of Transform Efficiency

In this section, we determine the efficiency of the expan-
sions by using the first order Markov process. This model
represents the gross behavior of image sources moderately
well, even though it fails if accurate modeling is required.
Specifically, we compute energy packing efficiency and the
variance of the coefficients. To demonstrate the approach,
we take first order Markov model as”:

pp
o= | 0<p<1, @9)

N-1 N-2
VAR AR B

where i provides a useful model for the data covariance
matrix corresponding to the rows and columns of an image
matrix and p is the interelement correlation coefficient. The
covariance matrix in the transform domain is denoted by
and is given by"

Y=AyA*T, (46)

where A is the two-dimensional matrix representation of a
transform and A* is its complex conjugate. Since AFE and
ACE expansions have nonorthogonal basis functions and
DFT and discrete cosine transform (DCT) are orthogonal

transforms, we compare transform efficiency using an equal
number of transform coefficients i.e., L=N. The basis
functions of AFE and ACE for N=8 and L=8 are com-
puted from the following equations [see Equation (3) and
(29)]
(nm
sin —)

‘ ( ) 2'rrkn] "
AFE:c;,=———exp| —j = (47a)
‘ 'nﬂ)
S 2L Tk(2n+1)
ACE:cy ;= cos (47b)
4 nw 2L

The computed basis functions are shown in Tables |
through 3. We examine the transform efficiency, decorrela-
tion efficiency, and the variance of coefficients of ACE,
AFE, DFT, and DCT for a relatively higher value of inter-
element correlation and smaller block size, because com-
pression of the signals is useful only when signals are
highly correlated, and most of the common image coding
algorithms use block sizes of 8 X8 or 16X 16. We deter-
mine the transform efficiency of AFE, ACE, DFT, and
DCT by examining the diagonal elements of their respec-
tive transform domain covariance Equation (46) for p
=091, N=16, and L= 16, where A represents the respec-
tive transformation matrix. The relative amount of energy
in the first M of the total N diagonal components is given

6
as’

EML- =] Yj.k
”lmﬂsfnrmzv,:\'ix- _I:k. (48)
“~ k=1 .k

where X, ; is the total sum of data covariance entries and
XY, ; is the total sum of transform covariances. We calcu-
lated the energy packing efficiency of DCT, DFT, ACE,
and AFE by looking at diagonal elements of their transform
covariance matrices when j=4k, and M varies from 1 to N.

Table 2 Imaginary component of AFE basis functions.

0 0 0 0

0 ~0.0749j ~0.1179j ~0.0878)
0 ~0.1059/ 0 0.1242j
0 ~0.0749j 0.1179j ~0.0878)
0 0 0 0

0 0.0749j ~0.1179; 0.0878]
0 0.1059; 0 -0.1242]
0 0.0749; 0.1179j 0.0878]

0 0 0 0

0 0.0834; 0.1059; 0.0631)
0 ~0.1179j 0 0.0892j
0 0.0834; ~0.1059j 0.0631)
0 0 0 0

0 ~0.0834j 0.1059; ~0.0631j
0 0.1179j 0 ~0.0892;
0 ~0.0834j ~0.1059j ~0.0631)
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Table 3 ACE basis functions.

0.1154 0.12 0.1232 0.1248
0.1132 0.0998 0.0684 0.0243
0.1066 0.0459 —0.0471 -0.1153
0.0959 —0.0234 —-0.1208 —0.0693
0.0816 —-0.0849 —-0.0871 0.0882
0.0641 -0.1177 0.024 0.1038
0.0442 ~0.1109 0.1138 —0.0478
0.0225 —0.0667 0.1024 -0.1224

0.1248 0.1232 0.12 0.1154
—0.0243 —0.0684 —0.0998 -0.1132
—0.1158 —0.0471 0.0459 0.1066

0.0693 0.1208 0.0234 —0.0959

0.0882 -0.0871 —0.0849 0.0816
—-0.1083 -0.024 0.1177 -0.0641
—0.0478 0.1138 -0.1109 0.0442

0.1224 -0.1024 0.0667 —0.0225

Results are shown in Fig. 4. The best performance is given
by ACE followed closely by DCT and AFE. The larger
values of 7, even for relatively small values of M, are
characteristics of all transforms and are the result of high
interelement correlation within the data. Good energy pack-
ing efficiency also demands that the magnitudes of the vari-
ances fall off rapidly with increasing coefficient order. To
compare transform coefficient variances of DCT, DFT, and
approximate trigonometric expansions, we again compared
the diagonal elements of their respective transform domain
covariance matrices. The diagonal elements of each trans-
form domain covariance matrix are shown in Fig. 5, which
shows that the performance of ACE is the best followed by
DCT and AFE. Owing to the symmetry inherent within the
basis matrix, the AFE and DFT have pairs of coefficients of
equal variance, and this accounts for the step-like trend of
their curves. To demonstrate decorrelation efficiency of
trigonometric expansions, we use the same first order Mar-
kov model by calculating the decrease in interelement cor-
relation in the transform domain covariance matrix com-
pared with that in the data domain equivalent. The
decorrelation efficiency is then given® as

b

Jok=1% jk .
Mdecorrelation 1= <! o e k, (49)
""‘_f.k:lxj.k
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Fig. 4 Energy packing efficiency versus coefficient order.
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where 2X; ; and 2Y; , are defined as before. We computed
the decorrelation efficiency of approximate trigonometric
expansions, discrete cosine, and Fourier transforms for
various values of N and p, and the results are shown in
Table 4. It is clear from Table 4 that approximate trigono-
metric expansions provide better interelement decorrelation
than discrete cosine and Fourier transforms.

7 Implementation and Experimental Results

In this section we present experimental results. The perfor-
mance of the approximate trigonometric expansions is
evaluated by using an objective fidelity criterion. One com-
monly used objective fidelity criterion is the mean square
signal to noise ratio (SNR ), defined as:

2

SNR,,.= - (50)

where x(i,j) and x(i,j) are reconstructed and original im-
age pixels, respectively. Since the performance of the ex-
pansions depends on the choice of wy=2m/L, the expan-
sions were applied to the “‘Lena’” image, and the SNR,
was computed for various values of L. Results are shown
in Fig. 6, where Fig. 6(a) shows the original “‘Lena’’ image
and Figs. 6(b), 6(c), 6(d), and 6(e) show reconstructed
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Fig. 5 Variances of coefficients versus coefficient order.
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Table 4 Decorrelation efficiency of trigonometric expansions and DFT/DCT for various values of N

and p.
N=8 N=16 N=32
p 0.85 0.9 0.95 0.98 0.85 0.9 0.95 0.98 0.8 0.9 0.95 0.98
DFT 0.831 0.883 0.94 0.975 0.782 0.839 0.911 0.962 0.772 0.816 0.886 0.948
DCT 0.966 0.978 0.989 0.995 0.963 0.976 0.988 0.995 0.962 0.975 0.988 0.995
AFE 0.982 0.986 0.99 0.992 0.991 0.993 0.995 0.997 0.996 0.996 0.997 0.998

ACE 0.996 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999

(@ (b)

(e)

Fig. 6 (a) Original “Lena” image: (b) image reconstructed with AFE (L= N), SNR,.=26 dB; (c) image
reconstructed with AFE (L=2N), SNR,=50.9 dB; (d) image reconstructed with ACE (L=2N),
SNR;,s=50.6 dB; and (e) image reconstructed with ACE (L=2N), SNR_.=53.9 dB.
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Fig. 7 SNR,, of reconstructed “Lena” image versus L.

“*Lena’ images using AFE and ACE, respectively, for two
different values of L. It is clear from the figures that for the
same L. the SNR,, due to ACE is higher than AFE. This
verifies our results in Sec. 4. This is expected, since a
higher value of L results in the computation of a relatively
larger number of coefficients yielding less error in the ap-
proximation of the signal spectrum, whereas smaller values
of L produce a coarse resolution resulting in a large error.
This is in contrast to the discrete cosine and Fourier trans-
forms, where the frequency resolution is determined by the
size of the data vector. Figure 7 shows SNR,, of the recon-
structed “*Lena’” image when L varies from low to high. It
is clear from Fig. 7 that larger values of L (and hence more
coefficients to be computed) yield higher SNR,.. To test
the performance of the approximate trigonometric expan-
sions for coding of images, thresholding was applied to
ACE and AFE coefficients. For comparison purposes,
thresholding was also applied on the DCT coefficients of
the “‘Lena’” image. Three different thresholds. each for
DCT, AFE, and ACE coefficients, were used to retain an
equal number of coefficients. The number of retained coef-
ficients was 13% of the total coefficients for all of the three
cases. Results are shown in Figs. 8(a) through 8(c) Poor
SNR,,, of Fig. 8(a) accounts mainly for the windowing ef-
fect present in the reconstructed image. It is clear from the
figures that ACE has better performance than DCT and
AFE. This verifies our results in Sec. 6.

8 Conclusions and Future Work

We have presented an analysis of approximate trigonomet-
ric expansions of sampled signals along with simulation
results. It was shown that for first order Markov processes,
the transform efficiency of the ACE is better than the DCT
and the AFE. ACE was also tested on the “*Lena’’ image
for coding purposes and the simulations showed that its
performance is better than DCT and AFE. It was noted that
the resolution of AFE and ACE coefficients is user defined
and depends on L. Since practical transform coding of im-
ages is performed using blocks of images, L can be used as
an additional parameter for adaptive coding of images. Ad-
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(a)

()

Fig. 8 (a) Image reconstructed with AFE (L=N), SNR,,=13 dB;
(b) image reconstructed with DCT SNR,s=32 dB; and (c) image
reconstructed with ACE (L= N), SNR;=34 dB.

ditionally, this characteristic can also be used for multireso-
lution analysis of the signal. Our future tasks will be to
explore these possibilities.
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