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Abstract. For signal representation, it is always preferred that a 
signal be represented using a minimum number of parameters. In 
any transform coding scheme, the central operation is the reduction 
of correlation and thereby, with appropriate coding of the transform 
coefficients, allows data compression to be achieved. The objective 
of data encoding is to transform a data array into a statistically un
correlated set. This step is typically considered a "decorrelation" 
step, because m the case of unitary transformations, the resulting 
transform coefficients are relatively uncorrelated. Most unitary trans
forms have the tendency to compact the signal energy into relatively 
few coefficients. The compaction of energy thus achieved permits a 
prioritization of the spectral coefficients, with the most energetic 
ones receiving a greater allocation of encoding bits. The transform 
efficiency and ease of implementation are to a large extent mutually 
incompatible. There are various transforms such as Karhunen
Loeve, discrete cosine transforms, etc. , but the choice depends on 
the amount of reconstruction error that can be tolerated and the 
computational resources available. We apply an approximate Fou
rier series expansion (AFE) to sampled one-dimensional signals and 
images, and investigate some mathematical properties. Additionally, 
we extend the expansion to an approximate cosine expansion 
(ACE) and show that, for the purpose of data compression with 
minimum error reconstruction of images, the performance of ACE is 
better than AFE. For comparison purposes, the results are also 
compared with a discrete cosine transform (DCT). © 1997 SPIE and 
1S&T [S1017-9909(97)01004-0l 

1 Introduction 

With the continuing growth of modern communications 
technology. demand for data storage and transmission is 
rapidly increasing. The efficiency, complexity, as well as 
implementation of a compression algorithm are particularly 
important in its hardware implementation. Transform cod
ing is one of the well-known approaches to efficient wave
form representation at medium to low bit rates. The goal of 
transform coding is to decorrelate the signal. resulting in 
the energy being distributed among only a small set of co
efficients. In this way. many coefficients can be discarded 
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after quantization and prior to encoding. A transformation 
can be viewed as a decomposition of the original block of 
signals into a set of basis functions. In the case of sinu
soidal transforn1s (such as Fourier transform), the basis 
functions consist of sines and/or cosines with different spa
tial frequencies. and each transform coefficient is propor
tional to the fraction of energy in the original block at that 
particular frequency. It is important to realize that the trans
form operation by itself does not achieve any compression, 
but by changing the representation of the information con
tained in the signal block. it makes the data more suitable 
for compression. Compression is achieved by subsequent 
steps of quantization and encoding of the transform coeffi
cients. The optimal decorrelation transformation is the 
Karhunen-Loeve transform (KL T).1 The KLT has the prop
erty that for any integer L ~ N. where L is the size of the 
transform and N is the size of the data vector, it packs the 
maximum average energy into some L coefficients.2 Unfor
tunately, no efficient computation of KL T exists, and also it 
does not have the desirable properties of a trigonometric 
series. Another complication in applying KL T is that its 
basis functions are not fixed but are data dependent. Input
dependent transforms are hard to implement, but they also 
have the best input decorrelating and variance ordering 
properties. A practical transform for the purpose of signal 
compression should have a strong decorrelating effect. 
should preferably consist of signal-independent basis func
tions, and should have a fast implementation. For stationary 
random sequences there are other unitary transforms which 
approach the energy packing efficiency of the KL T. Ex
amples arc discrete cosine, Fourier, and sine transforms. 
These transforms are members of a large family of sinu
soidal transforms, all of which have a performance equiva
lent to KL T as the size N of the data vector approaches 
infinity.' To retain the desirable features of the trigonomet
ric series. an approximate Fourier expansion with uncorre
lated coefficients for continuous-time nonperiodic signals. 
can be found in Ref. 4. The approximation can be made 
arbitrarily close by making a transform parameter small 
enough. In this paper. we apply an approximate Fourier 
expansion (AFE) to sampled signals and explore the capa-
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bility of coding one-dimensional signals and images. Fur
thermore, we extend this expansion to an approximate co
sine expansion (ACE) and show that, for the purpose of 
coding and minimum error reconstruction of signals, its 
performance is better than AFE. Performance is also com
pared with the discrete cosine transform. 

2 Approximate Fourier Expansion 

In this section, we present an AFE of sampled, stationary, 
and nonperiodic signals. For continuous-time signals. this 
expansion is expressed as4

: 

. r(t)= L c, exp(jkwot), ( 1 a) 
k - x. 

where c, are random variables given by 

( 1 b) 

For sampled signals. we extend the approximate Fourier 
expansion as 

M 

.r(n)= L c, exp(jkwon), 
k = M 

(2a) 

where 

sin( -w-;-
11

) 

L x(n)---exp(-jkw0n), 
'TT 11 n =-x 

k=O,::t l, .... ::t:M, (2b) 

where M is the maximum number of coefficients to be 
computed. If we divide the frequency spectrum 21r by fre
quency resolution parameter w0 , then we have a total num
ber L of coefficients. Hence, for signals of finite length N, 
we can write discrete AFE as 

N I sm( :
1

) 

c,= L x(n) --- exp( -j -
2

-1TL_k_n), 
II =O 1T/1 

k=0.1. .. .L-l. 

(3) 

We show later that. depending on the value of w 0 
=21r/L , the coefficients c, could be periodic or pseudope
riodic. The signal .r( n) can be reconstructed as 

L 
1 

( 21rkn ) 
.r(n)= L c, exp j -L- . 

k=O 
(4) 

If the signal x(n) is of finite duration N=L, then the pair 
of Eqs. (3) and (4) can be viewed as a discrete Fourier 
transform (OTT) pair of the signal x( n )[ sin( m1/L)/1rn ], i.e., 
the signal x( 11) windowed by the main lobe of the sine 
function. 

X(n) 

Fig. 1 Ideal bandpass filter . 

3 Properties of the Expansion 

In this section, we examine some important properties of 
this expansion. For now, we consider only the case of one
dimensional sampled signals. 

3.1 Mean Value of Coefficients 

Property. 

. - { E{x(n)} 
E{lk} - 0 

for k= 0 
otherwise · 

Proof. From Equation (2b), 

E{cd=E{.r(n)} L 
n= -:x 

sin( w 0n/2) 
---- exp(- jkw0n). 

'TT/1 

(5) 

(6) 

The summation term in this equation represents the Fourier 
transform of sin(w0n/2)/mi evaluated at w=kw0 . Since 
the Fourier transform of sin(Wonl2)/1rn is bandlimited be
tween - w0/2 and w0/2, hence the right-hand side of Equa
tion (6) is zero, except when k=O where it has the value of 
1, the property is proved. 

3.2 Correlation of Coefficients 

Property. The coefficients of the AFE are uncorrelated. 

Proof. Consider the ideal bandpass filters of center fre
quency kw0 and bandwidth w0 as in Fig. I: 

(k- ½)w0<w< (k+ ½)w0 

otherwise 
(7) 

where - 1r~ w~ 1r is a frequency variable. The corre
sponding impulse response is given by 

S111(-w-;_11) 
h,(n) =exp(jkw0n) ----

1r11 
(8) 

If .r( n) is the input to this filter. the output of the k 'th 
bandpass fi lter wi ll be given by the convolution summation 

x sin[ wo(:- T) l 
y,(n)= L x(T)exp[jkw0(n-T)] -----

1r(n- 7) 

At n=O we have 

(9) 
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( I 0) 

Since individual filters are nonoverlapping, their outputs ck 

and c 111 are orthogonal, i.e., 

( I I) 

Since from the property in Sec. 3.1, E{cd=0 except at k 
= 0, we conclude that the coefficients are also uncorrelated. 

3.3 Periodicity 

Property. If w0=21r/L, and Lis a rational number, then 
the coefficients ck and the reconstructed signal .r( n) will be 
periodic. 

Proof. From (3) it is ev ident that if the complex expo
nential is periodic, then the coefficients will be periodic in 
k. If L = PI Q where P, Q are integers and L is a rational 
number, then exp(- j27TQ/Pkn) will be periodic with period 
P. From (4) it can be noticed that the reconstructed signal 
will be also periodic with the same period. Under these 
conditions, the upper limit of the summation in (4) can be 
P. In the special case where L is an integer ( Q = I ), then 
the period will be L . It should also be noted that when L is 
an irrational number, then there will be a "pseudoperiodic
ity" in the coefficients with period P =int{L} . i.e., the co
efficients within a pseudoperiod P will not be equal but 
approximately similar. From this it can be concluded that 
an integer value of L will always result in a computation of 
less number of coefficients. 

3.4 Mean Value of Reconstructed Signal 

Property. 

E{x(n)}=E{x(n)}. 

Proof. Using Equation (4), 

[
L 

1 

( 21rkn)] E{x(n)} = E kLO c, exp ) -L- • 

Using the property in Sec. 3.1, 

c ={E{x(n)} for k=0 
£{ .} 0 otherwise · 

( I 2) 

(13) 

At k = 0, and using this resu lt, we have m mean square 
sense 

£{.r(n)} = £{ c0} = E{x(n) }. ( 14) 

This equation suggests that reconstructed signal .r( n) gives 
mean square approximation to x(n). 

3.5 Mean Square Value of Coefficients 

Property. 

l I (H l/2)w0 
E{ic,J2} = ;,- S.(w)dw. 

~ 1T (k l/2)w0 
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( I 5) 

Proof. Consider the ideal bandpass filters of center fre-
quency k w0 and bandwidth w0 as in Fig. I: 

(k- ½)wo<w<(k+ ½)wo 
otherwise 

where - 7r:,;;, w,;;, 1r is a frequency variable. 
The power spectrum of output of the subfilter k is given 

by 

Sy(w)=S ,( w)IHk(w)l2. ( 16) 

Taking inver~e Fourier transform of both sides. we get 

, I J ,,. , 
E{ IYk(n)I-}= 

2
1T ,,.5,(w)IH,(w)I- exp(jwn)dw. (17) 

Using the limits of H k( w) . we get at n = 0 

I J (k+l/21wo 
£{1Yk(0)i2} = -

2 
S,(w)dw. 

1T (k l/2)w0 

( 18) 

Using the result in Equation ( I 0) we get 

I J (k+l/2)w0 E{lcd 2}= -
2 

S,(w)dw, 
1T Ck l/2)w0 

( 19) 

which is the area under the k'th pulse. If w0 is very small, 
so that S ,( w) is a constant S, in that interval, then 

. 2 _s,* _s, 
E{lckl }- 2 1T wo-T• (20) 

which means that we are sampling the spectrum of the 
original signal at sufficient number L of frequency points 
with an area of each impulse as S, / L. 

3.6 Mean Square Value of Reconstructed Signal 

Property. 

£ {1 -r( n ll 2} =£{Ix( n l 12}. (2 I ) 

Proof. From Equation (4), 

{ 

L I L-1 

E{l.r(n)i2}=£ L c, exp(jkwon) L Cm 
k O m-O 

Xexp( - jmw0n)}. (22) 

Using w0 = 2 1r/ L with L as an integer. we have 

{ 

L I I. I } 

£{1.r(n)i2}=£ L L c,cm exp[j(k - m)won] 
k O m 0 

L 
I 

L 
1 

{ [ 2x(k - m)n ]} 
= L L E{c,cm}E exp ) L , 

k O 111 0 

(23) 
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Fig. 2 (a) Signal length for analysis, (b) data domain equivalent of 
AFE coefficients, and (c) data folded to eliminate discontinuity. 

L - 1 l - 1 ( 

£{1,r(n)i2}= k~O n~O E{ckcm}*-;;; 

N - 1 [ l "" . 21r(k-m)n 
X .,c,., exp J L . 

11 = 0 

Using the result in Equation (11), we have at k=m 
l - 1 

£{1,r(n)i2}= L £{ickl 2
}. 

k =O 

Using the property in Sec. 3.5 we get 
L - 1 

I f (k + l/2lwo 
£{1x(n)i2}= L -2 S,(w)dw. 

k=O 7T (k - l /2 )w0 

(24) 

(25) 

(26) 

If w0 is very small, so that L = 21r/ w0 is sufficiently large 
for minimum reconstruction error and Sx( w) is constant in 
that interval w 0 , then the previous equation becomes 

I I 1'( £{1x(n)l 2}= 27T 1'(S,(w)dw, 

£{1.r(n )12} = Eflx(n )12}. 
(27) 

However, if w0 is not very small, then there will be an error 
in the approximation of the original signal spectrum. In that 
case, the mean square value of the reconstructed signal will 
be given by Equation (26). 

4 Approximate Cosine Expansion 

In this section, we develop an ACE from the AFE and show 
that for the same L it introduces less reconstruction error 
than the AFE. An additional advantage is that the coeffi
cients of ACE are real. Consider Figs. 2(a) and 2(b), which 
represent sampled data and the reconstructed signal after 
applying an AFE. It should be noted that L used was an 
integer and sufficiently large for minimum reconstruction 
error. Since the AFE coefficients and the reconstructed sig-

nal are periodic with period L, Fig. 2(b) contains severe 
discontinuities between the segments and these result in 
spurious spectral components. This discontinuity can be re
moved by making the data to be transformed symmetric, 
i.e .. by folding it about the vertical axis (along the origin) 
as shown in Fig. 2(c), and then overlapping the two halves 
by one element. Folding the data has given us an even 
function to transform. We now apply AFE of length 2L to 
the data of length 2N. Note that the axis of symmetry in 
Fig. 2(c) lies at the point n= -1/2, i.e., 1/2 point to the left 
of the signal at the origin. Therefore, applying AFE to the 
signal in Fig. 2(c), we get 

(28) 

Since x( n) is real and even, therefore 

N - 1 sin( ;~) [ 7Tk( 2n+l)l 
ck= 2 L x(n) --- cos 

2
L , 

11=0 117T 

k=O,l, ... ,L-1. (29) 

The x(n) is reconstructed using Equation (4) as 

L -
1 

[ 1rk( 2 n + I ) l 
,r(n)= k~O ck exp j 2L 

L - I 7Tk(2n+1) l - l 7Tk(2n+I) 
= L ck cos 2L + j L ck sin 2L 

k =O k 0 

(30) 

Since c/.. is real and even as it is generated by symmetric 
extension of input signal, hence the second term in the 
previous equation equates to zero, therefore 

, L - I 1rk(2n+1) 
x(n)= k~o ck cos 2L . (31) 

Letting L 1 = 2L, then Equation (29) can be rewritten as 

[ 

N-
1 sin( :7T) ( 2 1rkn ) 

ck=2 Re L x(n) 
1 

exp - j -L-
11 =0 117T I 

(32) 

The term in the brackets is similar to ck in Equation (3) 
(with L replaced by L 1) multiplied by an exponential term. 
Since L 1=2L, therefore w 0 =21r/L 1=1r/L. This means 
that first null of sin(n1r/L1) will fa ll at 2L instead of at L. In 
other words. the error introduced in the reconstructed signal 
wi ll be less than the error due to applying AFE on the 
signal. 
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5 Mean Square Error 

In this section, we compute the mean square error between 
the original and reconstructed signal. The main objective 
here is to evaluate an upper bound on w0 so that error does 
not exceed a certain percentage of the average power of 
x(n). We define the mean square error as 

ems=E{lx(n)-.r(n)i2}. (33) 

e,,,s = 2£{1.r< 11 >12}- 2£{1x( 11 ).r( n l * I}. (34) 

We have used the property in Sec. 3.6 that E{lx(11)1 2} 

=£{1,r(n)l 2
}. Using c1. = Y1.(0) (output of subfilter k) as 

shown in Equation ( I 0). we get 

£{x(11)c!}=£{.r(n)y!(0)}=R ,_,,(11). (35) 

But the cross-power spectrum of .r(11) and Y1.(11) equals 
S 1 ( w )H!( w), therefore 

, I 1T 
E{x(n)c!}= 2 7T 1T S,(w)H!(w)exp(jwn)dw 

I f (k + 112Jw0 
= -

2 
S,(w)exp(Jwn)dw. 

7T (l.-112)w0 

Summing along all coefficients, we get 
L-1 

L E{x(n)c!}exp(-Jkw0n) 
k 0 

(36) 

I L 
I f <k+ 112Jw0 

= -
2 

L S,(w)exp[j(w-kw0 )n]dw. (37) 
7T I. 0 11. 112)w0 

Using Equation (4), the left-hand side of the previous equa
tion simplifies to 

L-1 
I f (k + ll2Jw0 

E{x(n)x*(n)}= -2 L S,(w) 
7T k O (I. · 112lw0 

X exp[)( w-kw0 )n ]dw 

L I 
I " f (l.-l/2Jw0 

= - £.J S,(w) 
2 7T I. =O ( I. 112Jwo 

X[cos(w-kw0)11 

+ j sin(w-kw0 )11]dw. (38) 

Since S,(w) is an even function, the second term in the 
previous equation equates to zero, hence 

I L-I f (l.+112)w0 
E{x(n).r*(n)}= -2 L S.(w) 

7T k=O (I. 112Jw0 

X cos[( w-kw0 )n ]dw. (39) 

Substituting this equation and the result from Equation (26) 
in Equation (34), we get 

f <I.+ 1n)w0 
S,(w)[ I -cos(w-kw0 )n]dw. 

I I. - l/2Jw0 
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(40) 

w 

Fig. 3 Mean square error of an arbitrary low-pass signal. 

For an arbitrary low pass signal, this equation is plotted as 
a shaded area in Fig. 3. The second part of this equation 
depends on II and is generated by E{lx(n),r*(n)I}. This 
shows that the x( n) and .r( 11) are individually but not 
jointly wide-sense stationary. If they were. the mean square 
error ems would be independent of time. 

The prior is a worst case estimate assuming that S, ( w) 

is concentrated at the end points of each integration inter
val, i.e. , from (k- l/2)w0 to (k+ Il2)w0 . If S,(w) does 
not vary appreciably in these intervals. then Equation ( 17) 
can be modified by replacing S .( w) by a constant in each 
integration interval as 

_ I 
1
"

1 
[ _ sin( w 0n/2) 

em5-- £., S,(w) w0 
7TJ.(J II 

sin(w011/2)] 
II 

_ _!_ ~
1 

[ _ sin(w0n/2)] 
- £., S,(w)w0 I 

12 
. 

7T J. () Woll 

[ 
sin(w01l/2)] I L 

1 

em_,=2 I -
12 

? L woS,(w). 
Woll ~ 7T J. - O 

(41) 

(42) 

Since S 1 ( w) does not vary appreciably in each integration 
interval. then using property ( e), the previous equation can 
be written as 

[ 
sin( w 0n/2) l L 

1 
, 

ems=2 I - /2 L E{icJ.!-}. 
w 0n 1. o 

(43) 

As proven in the property in Sec. 3.6, this can also be 
simplified as 

[ 

. ( w
0
1l) l , Sin 2 

Ems=2£{1x(11)I·} I - --- . 
Woll 

2 

(44) 

This means that in the limit as w0 approaches zero. the 
mean square error approaches zero in a mean square sense. 
We can also deduce from Equation (44) that for the mean 
square error not to exceed a certain percentage of average 
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Table 1 Real component of AFE basis functions. 

0.0892 0.1059 0.1179 0.1242 
0.0892 0.0749 0 -0.0878 
0.0892 0 0.1179 0 

0.0892 0.0749 0 0.0878 

0.0892 -0.1059 0.1179 0.1242 
0.0892 0.0749 0 0.0878 

0.0892 0 0.1179 0 

0.0892 0.0749 0 -0.0878 

power or x(n), the first null or sine runction in Equation 
(44) shall fall very far away from the origin. Since first null 
or the sine runction in an ACE falls at 2L instead of L as in 
an AFE, mean square error introduced by ACE will be less 
than the error due to applying AFE on the signal. 

6 Determination of Transform Efficiency 

In this section, we determine the efficiency of the expan
sions by using the first order Markov process. This model 
represents the gross behavior of image sources moderately 
well, even though it fails if accurate modeling is required. 
Specifically, we compute energy packing efficiency and the 
variance of the coefficients. To demonstrate the approach, 
we take first order Markov model as5

: 

p 

p p 

t/J= O<p< I. (45) 

where t/J provides a useful model for the data covariance 
matrix corresponding to the rows and columns of an image 
matrix and p is the interelement correlation coefficient. The 
covariance matrix in the transform domain is denoted by t/J 
and is given by6 

(46) 

where J\ is the two-dimensional matrix representation of a 
transrorm and J\ * is its complex conjugate. Since AFE and 
ACE expansions have nonorthogonal basis functions and 
OFT and discrete cosine transform (OCT) are orthogonal 

0.1242 0.1179 0.1059 0.0892 

- 0.1242 -0.0834 0 0.0631 

0.1242 0 0.1059 0 

-0.1242 0.0834 0 0.0631 
0.1242 0.1179 0.1059 0.0892 

-0.1242 0.0834 0 0.0631 
0.1242 0 - 0.1059 0 

- 0.1242 - 0.0834 0 0.0631 

transforms, we compare transform efficiency using an equal 
number of transform coefficients i.e., L = N. The basis 
functions or AFE and ACE for N=8 and L=8 are com
puted from the following equations [see Equation (3) and 
(29)] 

( 
/17T) 

Sill L 21rk11 
AFE:ck 11=--- exp(-j -L-) 

• 111T 
(47a) 

(
111T) 

. . _ Sill 2L [ rrk(211 + 1 )] 
ACE.ck,.- cos ?L . 

. 111T -
(47b) 

The computed basis functions are shown in Tables 1 
through 3. We examine the transform efficiency. decorrela
tion efficiency. and the variance of coefficients of ACE, 
AFE. OFT. and OCT for a relatively higher value of inter
element correlation and smaller block size, because com
pression of the signals is useful only when signals are 
highly correlated, and most of the common image coding 
algorithms use block sizes of 8 x 8 or 16X 16. We deter
mine the transform efficiency of AFE, ACE, OFT. and 
OCT by examining the diagonal elements of their respec
tive transform domain covariance Equation (46) ror p 
= 0.9 I. N = l 6. and L = l 6, where J\ represents the respec
tive transformation matrix. The relative amount of energy 
in the first M of the total N diagonal components is given 
as6 

L~1, IYJ,k 
17tran,fonn = ",' \ , j = k, 

~J.I. IXJ.k 
(48) 

where 'iX1.k is the total sum of data covariance entries and 
'i Y J,k is the total sum of transform covariances. We calcu
lated the energy packing efficiency of OCT, OFT, ACE, 
and AFE by looking at diagonal elements of their transform 
covariance matrices when j = k, and M varies from I to N. 

Table 2 Imaginary component of AFE basis functions. 

0 0 0 0 0 0 0 0 
0 0.0749j - 0.1179j - 0.0878j 0 0.0834j 0.1059j 0.0631j 
0 -0.1059j 0 0.1242j 0 0.1179j 0 0.0892j 
0 0.0749/ 0.1179j - 0.0878j 0 0.0834j - 0.1059j 0.0631j 
0 0 0 0 0 0 0 0 
0 0.0749j 0.1179j 0.0878j 0 0.0834j 0.1059j -0.0631j 
0 0.1059j 0 -0.1242j 0 0.1179j 0 0.0892j 
0 0.0749j 0.1179j 0.0878j 0 0.0834j - 0.1059/ -0.0631j 
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Table 3 ACE basis functions. 

0.1154 0.12 0.1232 0.1248 

0.1132 0.0998 0.0684 0.0243 

0.1066 0.0459 - 0.0471 -0.1153 

0.0959 - 0.0234 - 0.1208 - 0.0693 

0.0816 - 0.0849 - 0.0871 0.0882 

0.0641 - 0.1177 0.024 0.1038 

0.0442 - 0.1109 0.1138 -0.0478 

0.0225 -0.0667 0.1024 - 0.1224 

Results are shown in Fig. 4. The best performance is given 
by ACE followed closely by DCT and AFE. The larger 
values of T/, even for relatively small values of M, are 
characteristics of all transforms and are the result of high 
interelement correlation within the data. Good energy pack
ing efficiency also demands that the magnitudes of the vari
ances fall off rapidly with increasing coefficient order. To 
compare transform coefficient variances of OCT, OFT, and 
approximate trigonometric expansions, we again compared 
the diagonal elements of their respective transform domain 
covariance matrices. The diagonal elements of each trans
form domain covariance matrix are shown in Fig. 5, which 
shows that the performance of ACE is the best followed by 
OCT and AFE. Owing to the symmetry inherent within the 
basis matrix, the AFE and OFT have pairs of coefficients of 
equal variance, and this accounts for the step-like trend of 
their curves. To demonstrate decorrelation efficiency of 
trigonometric expansions, we use the same first order Mar
kov model by calculating the decrease in interelement cor
relation in the transform domain covariance matrix com
pared with that in the data domain equivalent. The 
decorrelation efficiency is then given6 as 

"2:-7,k; ,YJ.k 
.,,, - I ~-- 1·1:-k , ·,decorrelation- - LN X , 

J,k; I J.k 
(49) 
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Fig. 4 Energy packing efficiency versus coefficient order. 
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0.1248 0.1232 0.12 0.1154 

-0.0243 - 0.0684 -0.0998 - 0.1132 

- 0.1153 - 0.0471 0.0459 0.1066 

0.0693 0.1208 0.0234 - 0.0959 

0.0882 - 0.0871 - 0.0849 0.0816 

- 0.1083 - 0.024 0.1177 - 0.0641 

-0.0478 0.1138 -0.1109 0.0442 

0.1224 -0.1024 0.0667 -0.0225 

where "2:-XJ.k and "2:-Y1.k are defined as before. We computed 
the decorrelation efficiency of approximate trigonometric 
expansions, discrete cosine, and Fourier transforms for 
various values of N and p, and the resu lts are shown in 
Table 4. It is clear from Table 4 that approximate trigono
metric expansions provide better interelement decorrelation 
than discrete cosine and Fourier transforms. 

7 Implementation and Experimental Results 

In this section we present experimental results. The perfor
mance of the approximate trigonometric expansions is 
evaluated by using an objective fidelity criterion. One com
monly used objective fidelity criterion is the mean square 
signal to noise ratio (SNRms) , defined as: 

_.N - l_,N-1(' )2 
"'- j;Q "'-J;Q Xij 

(50) 

where x(i ,j) and x( i ,j) are reconstructed and original im
age pixels, respectively. Since the performance of the ex
pansions depends on the choice of w 0 =21r/L, the expan
sions were applied to the ''Lena'' image, and the SNRms 
was computed for various values of L. Results are shown 
in Fig. 6. where Fig. 6(a) shows the original "Lena" image 
and Figs. 6(b), 6(c), 6(d), and 6(e) show reconstructed 
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Fig. 5 Variances of coefficients versus coefficient order. 
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p 0.85 

OFT 0.831 

OCT 0.966 

AFE 0.982 

ACE 0.996 
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Table 4 Decorrelation efficiency of trigonometric expansions and OFT/OCT for various values of N 
and p. 

N=8 N= 16 N 

0.9 0.95 0.98 0.85 0.9 0.95 0.98 0.8 0.9 

0.883 0.94 0.975 0.782 0.839 0.911 0.962 0.772 0.816 

0.978 0.989 0.995 0.963 0.976 0.988 0.995 0.962 0.975 

0.986 0.99 0.992 0.991 0.993 0.995 0.997 0.996 0.996 

0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 

(a) (b) 

(c) (d) 

(e) 

Fig. 6 (a) Original "Lena" image; (b) image reconstructed with AFE ( L = N), SNRms= 26 dB; (c) image 
reconstructed with AFE (L = 2N), SNRm5 = 50.9 dB; (d) image reconstructed with ACE (L=2N), 
SNRm5 = 50.6 dB; and (e) image reconstructed with ACE (L= 2N), SNRm

5
= 53.9 dB. 

32 
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Fig. 7 SNRms of reconstructed "Lena" image versus L. 

"Lena" images using AFE and ACE, respectively, for two 
different values of L. It is clear from the figures that for the 
same L. the SNRm, due to ACE is higher than AFE. This 
verifies our results in Sec. 4. This is expected, since a 
higher value of L results in the computation of a relatively 
larger number of coefficients yielding less error in the ap
proximation of the signal spectrum, whereas smaller values 
of L produce a coarse resolution resulting in a large error. 
This is in contrast to the discrete cosine and Fourier trans
forms, where the frequency resolution is determined by the 
size of the data vector. Figure 7 shows SNRm, of the recon
structed "Lena" image when L varies from low to high. It 
is clear from Fig. 7 that larger values of L (and hence more 
coefficients to be computed) yield higher SNRms· To test 
the performance of the approximate trigonometric expan
sions for coding of images, thresholding was applied to 
ACE and AFE coefficients. For comparison purposes, 
thresholding was also applied on the DCT coefficients of 
the "Lena" image. Three different thresholds. each for 
DCT, AFE. and ACE coefficients, were used to retain an 
equal number of coefficients. The number of retained coef
ficients was 13% of the total coefficients for all of the three 
cases. Results are shown in Figs. 8{a) through 8(c) Poor 
SNRms of Fig. 8(a) accounts mainly for the windowing ef
fect present in the reconstructed image. It is clear from the 
figures that ACE has better performance than DCT and 
AFE. This verifies our results in Sec. 6. 

8 Conclusions and Future Work 

We have presented an analysis of approximate trigonomet
ric expansions of sampled signals along with simulation 
results. It was shown that for first order Markov processes, 
the transform efficiency of the ACE is better than the DCT 
and the AFE. ACE was also tested on the "Lena" image 
for coding purposes and the simulations showed that its 
performance is better than DCT and AFE. It was noted that 
the resolution of AFE and ACE coefficients is user defined 
and depends on L. Since practical transform coding of im
ages is performed using blocks of images. L can be used as 
an additional parameter for adaptive coding of images. Ad-
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(a) 

(b) 

(c) 

Fig. 8 (a) Image reconstructed with AFE (l= N) , SNRms= 13 dB; 
(b) image reconstructed with OCT SN Ams= 32 dB; and (c) image 
reconstructed with ACE (l N) , SNRm5 = 34 dB. 

ditionally, this characteristic can also be used for multireso
lution analysis of the signal. Our future tasks will be to 
explore these possibilities. 
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