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Optimal Modeling of Urban Ambient Air Ozone 
Concentration Based on Its Precursors' Concentrations 

and Temperature, Employing Genetic Programming 
and Genetic Algorithm 

SEY ED MAHMOUD MOUSAYJ+, DANJALHUSSEINZADEH AND SADEGH ALIKHANI 

Efficient models are required to predict the optimum values of 0Lone concentration in different leveb 
of its precursors' concentrations and temperatures. A novel model based on the application of a 
genetic programming (GP) optimization is presented in this article. Ozone precursors' concentrations 
and run time average temperature have been chosen as model's parameters. Generalization 

performances of two different homemade models based on genetic programming and genetic algorithm 
(GA), which can be used for calcu lating theoretical ozone concentration, are compared with 
conventional semi-empirical model performance. Experimental data of Mashhad city ambient air have 
been employed to investigate the prediction ability of properly trained GP, GA. and conventional 
semi-empirical modeb. It is clearly demonstrated that the in-house algori thm which is used for the 
model based on GP, provides better generaliLation performance over the model optimized with GA 
and the conventional semi-empirical ones. The proposed model is found accurate enough and can be 
used for urban air ozone concentration prediction. 

Key words: Genetic programming, genetic algorirhm, semi-empirical models, oprimi::,arim1, o::,one 

concenrrarivn, urban ambient air 

1. Introduction 

The main objective of system modeling I is the 

d evelopment of rules expressi ng the re lation between 

quantities known as priori and other quantities that are directly 

correlated with system behavior. These rules are perceived as 

a model of the system. Various model classification criteria 

can be dis tinguished while dealing with a system modeling 

task. These different types of models translate into different 

modeling requirements. 

Completeness and harmony in nature are largely the 

result of evolutionary forces that have adapted species to 

their surroundings and to each o ther. Examining natural 

phenomena, one can appreciate the potential of nature's ready­

made solutions, which are often more efficient than man-made 

ones. For example, consider spider silk, which is more elastic 

than nylon and stronger than steel. and witness the abil ities 

of the spider, essentially blind with a limited nervous system, 

to use six variants of silk to build a robust, complex structure 

in an unpredictable environment". With nature as a motivator, 

recent decades have seen increasing attempts to mimic natural 

evolution using computers'·;_ These efforts are stimulated by 

Darwin 's notion of "the survival of the fittest··. are generally 

referred to as evolutionary-computation, and have been used 

successfully to solve particularly complex problems. 

The most commonly used evolutionary-computation 

algorithm is the genetic algorithm, which is based on solutions 

of fixed-length chromosomes. usually consisting of binary 

genes, organized into sequences, often termed schema•. 

Genetic algorithms, mostly referred to as GAs, are 

one of the optimiLation methods finding wide application in 

optimization problems. Genetic algorithm searches 

stochastically through the real space of problem by generating 

some of the potential solutions, which is named as initial 

population. This method is a kind of evolution-based systems 

that measures the fitness of each individual in population, 

and then selects the fittest individuals until reproducing the 

intermediate population. Recombinant genetic operators affect 

some individuals in this population and produce the next 

population for the new generation. The GA could optimize 

linear and nonlinear objective functions by exploring the space 

of problem and exponentially exploiting promising areas 

through selection, crossover, and mutation operations applied 

to individuals in the population°. Based on the advantages 

and limitations of genetic algorithm, it could be realized when 
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genetic algorithm should be applied for optimization problems. 

Parallelism (solve the problem by several chromosomes), wide 

solution space, complexity of fitness function, discovering 
the global optimum, using as multi-objective function, without 

gradient complexity and ju~t using function evaluations the 

GA is easily modified for different problems. Moreover, it 
handles noisy functions wel l and is resistant to becoming 

trapped in local optima. But it should be considered that the 

GA has some limitations like identifying fitness function, 

definition of representation. premature convergency, problem 

of choosing the various parameters like the size of the 

population, mutation rate. crossover rate. the selection method 

and number of elites and sometimes needs to be coupled with 

a local search technique7 8 • 

In spite of being efficient in a number of fields, genetic 

algorithms are unsuitable for creating empirical model 

structures, since they manipulate populations of solutions of 

fixed-length chromosomes, while the optimal complexity of 

empirical models is unknown in advance. Because of this 

perceived need for more intelligent construction of empirical 

models. a new family of evolutionary computation methods 

has emerged, based on established GA ideas. These new 

algorithms, referred to as genetic programming. rely on tree­

like building blocks, and therefore support populations of 

model structures of varying length and complexity" Activity 

in genetic programming was introduced by Koza\ who 
demonstrated its applications in fields such as robotics, games, 

control , and symbolic regression. 

One of the important applications of genetic 

programming is in creating input-output empirical models in 

process system eng;neering (PSE) applications10
. The class 

of empirical models can be divided into two broad categories: 

(a) models with predefined structure (either linear or nonlinear), 

and whose parameters are determined to maximize the capacity 
of process data prediction: or (b) black-box models with 

undetermined structure. An example of the first category would 

be a linear model relating a dependent variable, y, to a set of n 

independent variables. u,9: 

(I) 

where the coefficients a, are determined to maximize the 

predictive power of the model. 

An example of a black-box model would be an artificial 
neural network (ANN), in which the number and identity of 

the relevant inputs and the number of layers are the only 

attributes of the structure that are determined by the user. In 

present research, the first category of aforementioned models 

was employed to apply GP. 

The functional relationships, observed or 

theoretici.!lly derived, between urban ozone and its precursors. 
non-methane hydrocarbons (NMHC) and nitrogen oxides (NO, 

=NO+ N0
1
), have been reviewed in criteria document 11. Air­

quality simulation models (AQSM) represent th-:: most 

fundamental approach to relate precursor emissions to ozone 

air quality. However, there are still significant uncertainties in 

results obtained from AQSM because of large uncertainties in 

the AQSM input data as well as the difficulties in representing 

atmospheric processes accurately. The derivation of semi­

empirical models based on ambient and smog chamber data is 

another approach to the ozone-precursor relationship. These 

semi-empirical models could supplement results based on 

AQSM and could provide useful insight into the ozone­
precursor relation,hip relevant to ozone control strategies. 

Several attempts have been done to derive semi­

empirical models based on ambient data12
• However, the 

variability of ozone is generally dominated by meteorological 

variables, particularly temperature. As a result, it is difficult to 

discern the relationship of ozone to NMHC and NO, Moreover, 

available ambient NMHC data are very limited. 

Sillman investigated the relation between ozone, NO,, 

hydrocarbons and other factors in urban and polluted rural 

environments". 

During the 1987 Southern California Air Quality Study 

(SCAQS) 1
\ extensive outdoor smog chamber experiments were 

performed on Los Angeles air by the General Motors Research 

Laboratories in order to test and clarify some models. 

In this paper, a general, but simple ozone-precursor 
relationship is investigated usmg experimental data. In-house 

software was also prepared in this research for both GP and 
GA, based on learning algorithms presented in the next 

section. The model predictions were verified using ozone and 
its precursors' concentration experimental data. The objective 

of present work is to investigate the validation of current 

semi-empirical models, compare obtained results from semi­

empirical models with those of purely empirical models 
expressed and finally, propose a reliable model to predict ozone 
concentration based on its precursors' concentration. 
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2. Materials and methods 

2. l Semi-empirical models 

Based on smog chamber studies of the olefin-NO, 
system, Akimoto et al. 15 proposed that the fo llowing 
relationship was held in the NMHC-excess region: 

(O,J = a ( 0),,, (2) 

where (0
1

) is the maximum ozone concentration reached, a is 
the proportionality constant and (0

1
)1" is the photostationary 

ozone concentration in the absence of NMHC. Shen and 
Springer'", on the basis of flow reactor studies of the 
cyclohexene-NO

1 
system, proposed the following relationship: 

(O,J = fk, (NO)J''- F(R) (3) 

where k
1 

is the photolysis rate constant of NOr (NO) is the 
initial concentration of NO,, R is the initial NMHC/NO, ratio 
and F(R) represents a function of R on ly. Since (0

3
) is 
I" 

propo,1ional to [k
1 
(NO,)1 111 when (NO,) is not too low (~0.01 

ppm)1', equation 2 is a special case of Eq. (3) where F(R) 
becomes constant. 

Kelly and Gunst 17 showed that, in irradiations of 
identical NMHC/NO, mixtures, ozone maximum concentrations 
are strongly dependent on the average temperature, and that, 
from multiple linear regression modeling, temperature and initial 
NMHC and NO, concentrations are adequate to represent 
ozone maximum concentrations. They derived the following 
empirical model: 

rQ) = 0.129 + (NO) (2.8 - 6.8/R) + 0.019(Ta" - 21.l) (4) 

where concentrations are in ppm, Ta" is the run­
_werage temperature in °C, and 21.1 °C is the average of the 
Jaily run-average temperatures. 

Chang and Rudy '', based on a simulation of smog 
~hamber experiments with initial input of precursors, but with 
no emissions (no additional input of precursors) and no 
Jilution searched functional forms sim ilar to Eq. (3). 

!mphasizing simplici ty in the functional form. After a number 
Jf trials, the following functional form was chosen: 

0
1
) = c + y (NO)'" / 1-exp(-aRh)J (5) 

Parameters c. y. a and b are determined by a non­
inear least-square method using a non-linear function 
ninimization routine'''. Parameter c is used to account for aloft 
>Olluted air being entrained. In order to include the temperature 
Jfect, Eq. (5) was changed to the following functional fom1 ": 
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(0,) = c + y (N0,}111/ 1-exp(-aRl>) jexp/-d( lff-llT,,)} (6) 

Parameters c, y, a, hand dare determrned by a non­
linear regression described earlier. Parameter c was added to 
represent the smog chamber wall effects in the studied case. T 

is the run-average temperature for each run, and T,,. is the 

average of daily run-average temperatures. 

The obtained results from equations ( ➔) and (6) 

represented the experimental data reasonably. Because of 

having more adjustable parameter. Eq. (6) is more accurate. 

The mentioned model (Eq. (6)) involves non-linear parameters; 

consequently, the non-linear least-square method, which is 

much more complex than the linear least-square method. is 

needed to determine the optimum valucs of parameters. 

Though Eq. (6) is simple. yet is applicable to the entire domain 

of effective precursor concentrations, and may be applicable 

approximately to any urban air mass. Therefore, in present 

work, Eq. (6) is employed to predict ozone concentration based 

on its precursors in ambient air of Mashhad city. 

2.2. Genetic algorithm 

Indi victuals arc known as chromosomes 10 in evolution 

language and every variable in each individual is named as 

the gene. An ordinary GA that is used for optimization 

purposes includes following steps: 

( 1) Initial population is randomly generated in the po~sible 

space and design variable domain as defined chromosomes. 

Simplicity of Gaussian uniform distribution is the reason that 

it is used as a usual method for creating the initial population. 

Likewise, the population size should be determined by user11
. 

(2) Each chromosome should be represented in binary codes 

(0 and l) or fl oat numbers. However, the more natural 

representations are more efficient and generate better 

candidates for problem solut ions6
, but the kind of 

representation depends on problem and rt is totally case 
dependent. For the float representation. each variable (x) 

belongs to each gene of chromosome. but rn binary form. 
each variable (x

1
) is represented by several genes dependant 

on required accuracy and domain of each variable. Suppose 
the required accuracy is Sand x, belongs to la,, b,l so m,. the 
number of genes for each variable, would be calculated by the 
following formula: 

'1"' 1 <(b,-a,)x l0':<::;2"',- 1 (7) 
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(3) To the point of stochastic view, the fitness function , which 

evaluates each individual in population set, is independent of 

the GA operations while depending on minimization, and 

maximization problem could map the population into specified 

form 21• 

(4) A proper selection method should be picked up among 
different types of selection procedure for the GA, which is 

classified as roulette wheel selection, scal ing techniques, 
tournament and ranking selections6. Using the roulette wheel 

after computing a cumulative probability (q,) for each individual 
(v,), random numbers from the domain [0, 1) are generated. 

Since each random number is located between two consequent 
cumulative probabilities, the greater one is selected for new 

population8. Unlike the roulette wheel , the tournament 
selection is used for minimizing. This kind of selection 

randomly takes two chromosomes from the population, selects 

the better one, and sends into the sampling pool. This method 

repeats till the completion of the population size of individuals 
in sampling pool23. The stochastic uniform selection function, 

as scaling technique, lays out a line in which each parent 
corresponds to a section of the length of line proportional to 
its scaled value. The algorithm moves along the line in steps 

of equal size. At each step, the algorithm allocates a parent 
from the section it lands on. The first step is a uniform random 
number less than the step size. However, in all selection 
methods one or several individuals with the best fitness 

value(s) should be kept as elitism(s) and should be copied 
without change in next generation. 

(5) Crossover and mutation are crucial parts of genetic 
operations24 • By using crossover probability (pc), two 
individuals as parents for mating pool are selected and their 
two new children are produced while one chromosome 

randomly by mutation probability (pm) undergoes mutation to 
produce new one. For the binary system, the uniform mutation 

and single or two-point crossover are defined. Furthermore, 
for the float representation, the arithmetic crossover, scattered 

crossover, single or two-point crossover, intermediate 
crossover, and heuristic crossover with uniform mutation, non­
uniform mutation, multi-non-uniform mutation, and boundary 
mutation are also used6• 

(6) There are several approaches to stop the GA, the most 
popular one is the maximum number of generations. Other 
termination criteria are improvement of solutions from one 
generation to the next, fitness value and limitation of time. 

2.3 Genetic programming 

Similar to the GA, the GP is based on simple rules that imitate 

biological evolution. Combining basis functions, inputs and 

constants creates an initial model population, whose 

complexity is controlled by the user. The models are structured 

in a tree-like fashion, with basic functions linking nodes of 

inputs, as in the example shown in Fig. 1, where the tree­

structure for the model: y = (c
1 

x u
1 
+ u

2
) x u1 is presented, 

where y is the dependent variable, u
1
, u

2 
and u

3 
are independent 

variables, and c
1 

is a constant. Note that this example also 

illustrates the organization of the tree in terms of its root and 

the basic function at the highest level, which in this case is 

the multiplier function that multiplies u1 with the remaining 

elements of the tree. It is noted that the basic functions can be 

those requiring two arguments, such as '+' and 'x' as in the 

example, or those with only one (e.g., exp (-) or./(-)). Each 

individual model in the population is then fitted to the empirical 

data using nonlinear regression, and then graded according 

to how well it matches the data9 

Fig. 1 : Tree-structure for the model 
(original GP structure): (c

1 
x u

1 
+ u

2 
x u/· 25 

Regarding Fig. 2, which illustrates the flow diagram 

for a generic GP, in each generation (iteration) of the algorithm, 

relatively successful individuals are chosen as "parents" for 

the next generation and form a reproduction pool. A new 

generation of solutions evolves, using one of three possible 

operators: crossover, mutation and permutation. In crossover. 

two individuals from the pool are chosen, their tree structures 

are divided at a randomly selected crossover point, and the 

resulting sub-trees are recombined to form two ne\'­

individuals. In mutation, a random change is performed on a 

chosen individual by substitution-this can be a functional 

group, an input variable or a constant. In contrast, branchei 

of a chosen individual are randomly switched in permutation 

The parameters for each new individual in the new generatior 

are determined by nonlinear regression, the models are ther 

graded by fitness as before, and the procedure is repeatec 

until a stopping criterion is attained. In most cases, as in thi: 

application, the population size, nPop' and the total number o 
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generations, I\,,n· are decided in advance. Other tuning 

parameters that need to be fixed by the user when using GPs 

are p . p and p . the crossover. mutation and pemrntation 
i.: m p 

probabilities. Additional parameters adopted, are P,, the 

probability of a constant to mutate to an input, and for the 

random population initialization step, Nir«' the maximum 

number of sub-trees in an initial model, and P,,,,, the probability 

Jf creating a sub-tree". 

Evaluate the 6tness 
of the indVldu.is 

1 Pnma,y loop 
I to process n .. H 

/ generahom \ 

- l ~ 
Secondary loop 
to gtlMNlltl n 

L new fo/lilom \ - i --
Random selectlOn of genetIC operator 

Pennutation Crossover 

Reproducflon of 
e single model 

Reproducflon of 
• Pllrr of models 

Reproduct,on of 
ll Slng/e model 

I = J •1 I "'I• 2 

Yes ,.,,,.-
1 

< n :' No -------~,~,,.,.>----~ 
Creetion of 

next(1000l"lltion 
of models 

Stop 

Yes - tem11nall0it 
cn((MOII 

, satisfied ' / 

✓ 

No 

Fig. 2: Generic GP scheme9 

!.4 Simulation 

The training data obtained from Mashhad city 

unbient air stations were used to reconstruct the true 

mderlying surfaces representing the dependency of ozone 
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precursors' concentrat ions and average temperature to ozone 

concen trati on using various techniques. 

2.4.1 Semi-empirical models regression 

The mentioned Eq. (6) in introduction section was 

used to fit best surfaces based on the coefficient of 

determination, square root of correlation coefficient, by 

homemade non-linear regression software. Using this software 

tried to find the best model parameters which are able to 

regenerate ozone concentration with an acceptable degree of 

consistency in comparison with experimental data. 

2.4.2 GA 

Using MATLAB software, a homemade computer 

program based on GA was written for optimizing proposed 

model (Eq. (6)). The objective function, through GA literature 

fitness function, was the standard square error which should 

be minimized: 

(8) 

where L, and L,q., are measured and calculated ozone 

concentration at time i, respectively. 

Five parameters of model, a, b, c, d and y, have to be 

determined by designed GA program which reads the measured 

ozone precursors' concentration and average run time 

temperature data for each run time from a spreadsheet provided 

for the program. 

In the genetic algorithm, a population of points with 

each point representing a set of design parameters has to be 

formed in a given range. Adjusting this range is not a well­

defined process. However, it is not erroneous to estimate these 

parameters around the experimental values within a certain 

range. 

Fig. 3 presents the now chart of used computer program and 

the procedure is as follow: 

• I: Measured data are inputted. 

• 2: The maximum number of generations was specified 

(N = 8000). It was observed that for generation 
Gen.ma\ 

greater than 8000 there was no improvement in 

minimization procedure. 

• 3: The parameters' range was determined as following: 

\E[-2. 0]. b,E[l,2.5], c,E[0, I]. d, E (4000,5000], 

and ykE [0. 21, 
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I Read Input data 

' . 
N=1 

Nmax=SOOO 

• 
Create lnttial 
population 

• 

Calculate -
Leq 

'. 
Calculate Create new 

frtness fltncuon populatton 

◄ 

, r 

Determinate selection, 
crossover, and mutation I N=N•1 I 

' 

" 
N=Nmax 

No 

Yes 
" I Print parameters I 

Fig. 3: Flow chart of used GA program 

and the initial population with respect to the parameters off\, 
b,, ck, d, and , (where k represents each chromosome) was 
randomly generated with I 000 strings (chromosomes). The 
accuracy value was considered as S = 13, so based on Eq. (7) 
the number ot bites (genes) for the a. was calculated as 14 and 
for the other parameters it was 14, 13, 23 and 14, respectively. 
Consequently, each chromosome consisted of 78 bites 
according to Fig. 4. 

• 

• 

• 

• 

'V 
14 

.A. V 

" 
v-
2J 

V 

1• 

Fig. 4 : Sample of a chromosome (point) from population 

4: Ozone concentration, L , was computed via Eq. (6) fa 
cq 

each chromosome 

5: Fitness function was evaluated using Eq. (8) . 

6: The GA operations including selection, crossover, an 
mutation were applied. Five elites were chosen from eac 
population and added to the new one without an 
transformations or changes. The crossover probabilit) 
pc, and mutation probability. pm, were chosen as 0.6 
and 0.20, respectively. It notes the values of pc, pm an, 
elites number are determined empirically. 

7: Finally termination criteria, number of curren 
generations, were checked. Using aforementione 
process, the following expression was attained: 

(0) = 0.1044 +0.4057 (N0)112[]-exp(-l.4098R2 " 150)Jexp/ 
4821 ( 1 IT-] ITU) J (9) 

2.4.3GP 

The GP approach was implemented in MATLAJ 
(MathWorks). The program was run under a Pentium dual 
core processor with 2.50GHz and 4GB of random acces 
memory (RAM). 

The parameters of the GP approach were set a 
follows: population size nPop =30, and the maximum number c 
generation nGen = 150. The tuning parameters were fixed ~ 

P =0.55, P =0.25 and P = 0.1 the crossover, mutation an 
C m p 

permutation probabilities, respectively. The maximum numbe 
of sub-trees in an initial model, Ntree' adopted for this approac 
was 5, and also P,rcc' the probability of creating a sub-tree wa 
assumed 0.5. 

The main challenge is to define the qualities of 
good model and then quantify them into a mathematic, 
expression. In this study, Eq. (I 0), which is almost similar t 
the equation considered by McKay et al.26, was considered a 
the fitness function for minimization proposes9: 

J: = af'_"' -r (1 - a)Fp 
1 1 ~ exp(y[nb - (Mc - ,B)]) 

204 



Mousavi et al I J. Env. Sci. Eng., 56(2), 20/4 

where FM and Fr are the model and prediction fitness, calculated 

by: 

0 
F =---­

M .P o+ssE ( 11) 

where the sum of squares of errors (SSE) is computed 

using the modeling data set for FM and using the validation 

j ata set for F". In both cases, 8 is the standard deviation of the 

jata records, and the fitness values therefore vary from zero 

:when the SSE value is infinite) to unity (when SSE= 0). In Eq. 

: 10), a is the fraction of the fitness value computed on the 

:,asis of modeling performance, is a qonstanl that determines 

:he slope of the complexity constraint sigmoid, nh is the 

;omplexity of the inspected model, which is equal to the 

1umber of its branches, M, the best model complexity of the 

Jrevious generation, and is updated in each generation, and 

s a constant responsible of the abi lity of the algorithm to 

1ccept a solution of greater complexity than M,. 

t Results and discussion 

The accuracy of prediction is re0ected by some 

;tatistical parameters i.e. normalized bias (NB), standard 

;quared error (SSE), mean squared error (MSE), and root mean 

;quared error (RMSE), which are described using equations 

12) to ( 15), respectively. In these relations, L can be ozone 

:oncentration. The results for all presented models are 

:ompared in Table I . Passing the fitted surfaces through all 

raining data points is a favor, in present work. as data points 

ias no considerable noises so statistical parameters can be 

1sed as termination criteria for desired models. 

• (L - L ) / L NB = L 11l!\tl l'i I C\ Jl I C\J'I I 

, n 

" 
SSE = L. (L~mde/' - Le,p, ) 2 

:t ( LmoJr l 1 - L~,p, )
2 

MSE = - ''------­

" 

II 

~:)-4.oo,,, -L.,_,p,)2 

RMS£ = 
n 

( 12) 

(13) 

(14) 

(15) 

Table 1 : Results of statistical parameters for presented models 

Method NB SSE M'iE RMSE 

Employed semi- 58.3545 0.0889 5.081 Oe-00+ 0.0225 
empirical model 
GA based on Eq. (6) 27.0941 0.0590 3.3732e-004 0.()184 
(P 14.8537 0.0435 2.4878e-OO-+ 0.0158 

Considering Table 1. in this specific case with regard 

to NB values both employed semi-empirical and GA models 

highly over predict ambient ozone concentration though GP 

almost closely predicts those based on ozone precursors and 

average temperature. The values of SSE, MSE and RMSE show 

the results of GP have some insignificant errors that can be 

ignored. It should be noted that although the obtained GA 

~ode! is not as accurate as the GP one. it presents better 

results to regenerate the experimental data than the model 

obtained with respect to semi-empirical Eq. (6). 
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Figs. 5 and 6 depict the best recall and generalitation 

performances of both employed semi-empirical and GA models. 

respectively. As it can be seen in those figures. the predicted 

data points by both employed semi-empirical and GA models 

neither fit to experimental data with an acceptable tolerance 

nor provide reliable results for any ranges of NO /NMHC ratio. 

But it is clearly obvious that in spite of the results obtained 

from the best model based on semi-empirical Eq. (6). they do 

not even follow the trend of experimental data; the regenerated 

data points with the best GA model reproduce that trend 

closely to the best. 

Fig. 7 (a) illustrates the best (optimal) recall 

performances of trained GP model. Evidently. the hyper­

surface generated by GP approach almost passes through 

most of training data points. The corTesponding generalization 

performance of this model as shown in Fig. 7 (b) shows the 

practiced algorithm provides realistic values especially for 

the lower ranges of NO/NMHC ratio. 

It is noted that at large R (or NMHC rich regime). the semi­

empirical models do not take into account NOx sinks by some 

NMHC species, suc h as aromat ics 18
• But, as genetic 

progran1ming basically considers only the given data it is able 

to cover all the interactions which are neglected by semi­

empirical models, the derived GP model has better performance 

in this case and do that as well. 
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... . . . ... . 
. . 

,. . 
Measurements 

Fig. 5 (a): Recall performances of the best model based on 
employed semi-empirical Eq. (6) 

. ' 

NO~MRC 

Fig. 5 (b) : Generalization performances of the best model 
based on employed semi-empirical Eq. (6) 

. . . . 
• I••• .. • I ... ·. : ... 

•• u. 
Measurement, 

... .· 
.. 

Fig. 6 (a): Recall performances of the best 
GAmodel 

1 

·' 

.. 
NOIC/NMHC 

. ,\ .. 

Fig. 6 (b): Generalization performances of the best GA 
model 

· .. 

Fig. 7 (a): Recall performances of the best GP model 

.. 

NOIC/NMHC 

Fig. 7 ( b) : Generalization performances of the best GP mod( 

4. Conclusions 

The generalization performances of the in-hous 
genetic programming model and the model based on geneti 
algorithms were compared together and with the prediction 
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of optimal conventional semi-empirical models. The simulation 

results indicate that both genetic programming and genetic 

algorithms provide better predictions but the genetic 

programming ones are more reliable and accurate. The semi­

empirical models which were presented to predict ozone 

concentrations in any ambient air conditions are not 

comprehensive enough to perform their task with different set 

of experimental data very well. 
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