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S tatistical experimental design and analysis is a cornerstone for scientific inquiry that is rarely 
applied in reporting computational testing. This approach is employed to study the relative 

performance characteristics of the four leading algorithmic and heuristic alternatives to solve 
the Linear Cost Generalized Assignment Problem (LCGAP) against a newly developed heuristic, 
Variable-Depth Search Heuristic (VDSH) . In assessing the relative effectiveness of the prominent 
solution methodologies and VDSH under the effects of various problem characteristics, we 
devise a carefully designed experimentation of state-of-th e-art implementations; through a 
rigorous statistical analysis we identify the most efficient method(s) for commonly studied 
LCGAPs, and determine the effect on solution time and quality of problem class and size. 
( Combinatorial Optimization; Generalized Assignment Problem; Variable-depth Search; Experimental 
Design and Analysis) 

1. Introduction 

One of the fundamental bases for validation of scientific 
inquiries is a rigorous standard of experimental proto­
col-including the use of statistical experimental de­
signs-which allows for drawing inferences from the 
observed data . Unfortunately, this is not a norm in the 
mathematical programming literature, which often 
present unclear designs and unreplicated point estimates 
when reporting empirical testing of software . The ab­
sence of a statistically valid, systematic approach can 
result in the drawing of insupportable conclusions re­
garding the relative performance of alternative algo­
rithms' and/ or heuristics' implementations. The lack 
of an a priori experimental design is believed to be one 
of the main sources of such shortcomings (see Crowder, 
Dembo, and Mulvey ( 1978), McGeoch ( 1986) , Amini 
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(1989), Greenberg (1990), Jackson et al. (1990), Amini 
and Barr (1992)). 

This paper first presents a new heuristic, Variable­
Depth-Search Heuristic (VDSH), to solve the Linear Cost 
Generalized Assignment Problem (LCGAP) . Next, it il­
lustrates the application of basic principles of statistical 
design and analysis of experiments to compare four 
leading LCGAP alternative solution methodologies with 
VDSH. The purposes of our carefully designed exper­
iment are to study the relative efficiency of the promi­
nent solution approaches with respect to the problem 
characteristics and to provide answers to the following 
questions regarding the alternative solution approaches: 

• ls there a best overall method for solving LCGAP? 
• What are the effects of type and degree of para­

metric change on the performance of each solution 
methodology? 

0025 -1909 / 94 / 4007 / 0868$01 .25 
Copyright 1994, The Institute of Management Sciences 



AMINI AND RACER 
Computat ional Comparison of Alternative Solution Methods for the Generalized Assignment Problem 

• What are the effects of problem set and size on the 
performance of each method? 

• What are the interaction effects on the solution 
techniques when the above factors are changed singly 
or in combination? 

To fully explore the interaction between LCGAP so­
lution methodologies and salient problem characteris­
tics, we ( 1) design and implement a new heuristic, 
VDSH; ( 2) devise a statistical experimental design to 
evaluate the relative efficiencies of the leading solution 
methods; ( 3) create a portable testing system to generate 
all necessary data points; and ( 4) implement a rigorous 
statistical analysis of the performance of the methods 
under different experimental combinations. 

The remainder of the paper is organized as follows: 
In §2 we present a background on LCGAP and a dis­
cussion on the alternative solution approaches. Our new 
heuristic VDSH along with an example to illustrate the 
steps involved in the heuristic are also discussed. The 
computer implementation and the complexity of the 
leading methods and VDSH are discussed in §3. A sys­
tematic test procedure is presented in §4. The experi­
mental design for computational comparison of the 
VDSH with the four leading solution methods is the 
topic of §5, followed by discussions on the design, im­
plementation, and analysis of results in §6. Finally, the 
summary and conclusions are presented in §7. 

2. Background 
In this section, we first state the generalized assignment 
problem. Next, we review previous methodologies, and 
introduce in detail the new heuristic, VDSH . 

2.1. Problem Statement 
An important class of network models is the lin ear cost 
assignment problem (LCAP). The assignment problem 
constitutes a linear programming problem in which a 
set of 11 assignees ( e.g . employees, objects, machines, or 
sales districts) is to be assigned uniquely to n particular 
assignments ( e .g . tasks, persons, jobs, or salesmen) . Each 
assignee i associates a cost C;i with each assignment j. 
The objective for the assignment problem is to assign 
one assignee to each assignment in such a way as to 
minimize the sum of the costs. In the last forty years, 
a variety of algorithms have been devised and imple­
mented on the traditional as well as novel computers 

MANAGEMENT S CIE CE/Vol. 40, No. 7, July 1994 

( vector and parallel), which efficiently provide optimal 
solution to the LCAP . 

A challenging variation of LCAP which has found 
merit in real-world applications is the linear cost gen­
eralized assignment problem (LCGAP) . The LCGAP may 
be posed as follows: assign a set of m assignees ( e.g. 
vehicles, employees, etc.), each with a limited capacity 
(e.g . capacity, speed, etc.), uniquely to a set of n par­
ticular assignments ( e.g. packages, loads, jobs, etc.) , 
each consuming some amount of the assignee's capacity. 
Each assignee i has a capacity b; and associates a cost 
c;1 with each assignment j. Also, each assignment j re­
quires an amount r;1 of assignee i's capacity to be com­
pleted. The LCGAP attempts to determine a set of unique 
assignments without violating any of the assignees' 
limited capacity. 

To present a precise mathematical statement of the 
LCGAP we use the following notation: 

Constants: 
m : number of assignees, 
11: number of assignments, 
b;: capacity of assignee i , 
r;i: assignment j's requirement of assignee i's capacity, 
C;i: cost of assigning assignee i to assignment j. 
Variables: 
. {1, if assignee i is assigned to assignment j 

Xij· 
0, othenuise . 

We may formulate the LCGAP as follows: 

m " 

Minimize L L C;ixij, 
i~ l j= l 

Subject to: 

L r;ixii s; b;, i E I , 
j= I 

Ill 

LX;j = 1, jE] , 
i-= 1 

( 1) 

(2) 

(3) 

x;i = 0orl , iEI , and jE] . (4) 

Many applications of LCGAP have been reported in 
the open literature (see Balachandran ( 1972 ), Grigo­
riadis et al. ( 197 4) , Ross and Soland ( 1975) , Fisher and 
Jaikumar (1981) , and Racer (1990)) . Applications in­
clude computer job assignments in computer networks; 
design of communication networks; some special facility 
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location problems converted to LCGAP; vehicle routing, 
in which the vehicle fleet delivers products stored at a 
central warehouse to satisfy the orders placed by scat­
tered customers; and software engineering manage­
ment. A recent study by Gavish and Pirkul ( 1991) ex­
tends the LCGAP application to address the Multi­
Resource LCGAP (MRLCGAP) , in which assignees have 
a limited availability of a set of resources . MRLCGAP 
has important application in the trucking industry. 

2.2. Methodologies to Compare 
Although the LCGAP is known to be NP-hard , the ma­
jority of studies has concentrated on optimization 
methodologies, applying branch-and-bound method. In 
this paper, the performance of VDSH is compared to 
that of three optimization methods-Ross and Soland 
( 1975 ), Fisher, Jaikumar, and van Wassenhove ( 1986) , 
and Martello and Toth ( 1987)-and the heuristic of 
Martello and Toth ( 1987) . We briefly describe each 
below. 

Ross and Soland develop a depth-first branch-and­
bound method for the GAP . Bounding is achieved in 
two steps. First, the capacity constraints are relaxed, 
and assignments are created. Secondly, the bounds are 
tightened by considering all reassignments within re­
sources with violated capacities. The optimization 
method of Fisher, Jaikumar, and van Wassenhove is 
also a depth-first method. Their multiplier adjustment 
method is a Lagrangian technique relaxing the require­
ment that each resource be assigned exactly once. 
Tighter bounds are achieved by intelligently modifying 
the multipliers. 

Martello and Toth 's heuristic is a two-pass method. 
The first pass makes assignments based on minimizing 
a regret function . This regret may take one of several 
forms: task cost; task cost/ unit weight; task size; task 
size relative to resource capacity. The second pass of 
the heuristic identifies any feasible cost-reducing reas­
signments. The optimization scheme of Martello and 
Toth utilizes the heuristic as a rough bound. This bound 
is improved upon by a pair of reduction methods. 

2.3. The Variable-Depth-Search Heuristic 
In this section, we introduce a new heuristic approach 
for solving LCGAP and to compare its performance with 
the leading optimization algorithms and heuristics. The 
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present technique relies on the idea of local search (see 
Papadimitriou and Steiglitz ( 1982)) . Local search 
methods have been used to provide quality solutions 
for a variety of problems, including TSP, job sequencing 
problem, etc. ( Clarke and Wright ( 1964) , Casco et al. 
( 1988) , Hall ( 1989)) . In the case of the LCGAP , the 
capacity constraints were found to hinder the applica­
tion of the typical search methods. Lin and Kernighan 
( 1973) developed a procedure called variable-depth 
search (V DS) , to overcome the roadblock in local search 
methods. Their concept has been successfully applied 
to both the uniform graph partitioning and traveling 
salesman problems ( Kernighan and Lin ( 1970) , and Lin 
and Kernighan ( 1973)) . The heuristic presented in this 
s tudy for solving LCGAP , the variable-depth-search heu­
ristic (V DSH) , is motivated by the Lin and Kernighan 
( 1973) traveling salesman heuristic. 

The method employed for the GAP is similar to one 
used by Kernighan and Lin ( 1970) in solving the uni­
form graph partitioning problem. The essence of such 
a method is to begin with some initial, usually feasible, 
assignment of resources to tasks. From this point, the 
solution is improved in a step-wise fashion . Heuristics 
of this sort may be called local search methods. At each 
step, we seek to find an improvement. If no improve­
ment is possible, then the solution is locally optimal, 
with respect to the definition of a step. 

It is a matter of algorithmic design what is considered 
to be a step. Possible steps for the GAP may be: 

i . reassign a task from one resource to another, or 
ii. swap the assignments of two tasks, or 
iii. permute the assignments of s tasks, s :;; N 
The implications of these possibilities are important. 

First, any method that allows only type i steps is less 
flexible than an algorithm that allows type iii steps. 
However, the other prominent factor is the amount of 
work needed to find an allowable improvement. 

Two possible improvement rules are " first improve­
ment" and " best improvement. " At each iteration, a 
first improvement algorithm will scan the set of allow­
able options until an option is found that will decrease 
costs. A best improvement rule selects the option that 
will produce the largest decrease in cost among all op­
tions that produce savings. On the average, the best 
improvement strategy will require more work per iter­
ation than the first improvement type. 
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All of this is brought back to bear on the three possible 
steps suggested earlier . The w ork required to find a typ e 
i improvem ent, either first or best, is linear in the number 
o f resources and the number of tasks. Moving from step 
definition i to s tep definiti on iii , work increases expo­
nentially in s. 

The structure of the Variable Depth Search H euris tic 
is a two-phase algorithm. The firs t phase develops an 
initial solution and lower bound. Phase two con sists of 
a doubly-n ested iterative refinem ent process. Within 
each major iteration an action set of potential task moves 
and swaps is crea ted. Subsequently, the heuris tic pro­
ceeds through a set of minor iterations , to crea te a se­
quence of action s, in an effort to redu ce to tal costs. The 
m ajor itera tion concludes by identifying the subsequence 
of actions tha t produces the greatest savings in cost. 
Thus, a step within VDSH is an ordered set of moves 
and swaps, observing capacity constraints, that results 
in a reduction of costs . If such a sequen ce is found , the 
task assignments are revised , and another m ajor itera ­
tion is performed . When no such sequence is found , 
VDSH terminates . 

2.3.1. Structure of the Variable-Depth Search 
Heuristic. We define the followin g variables, func­
tions, and sets: 

k = minor iteration counter, 
I (j) = resource assignment of task j at start of major 

iteration , 

f; ,i = c,(i),i - c;,i , 

C; ',i",i",i' = C;' ,j" + C;",i ', 
f ( i) = sum of sizes of tasks assigned to resource i a t 

s ta rt of m ajor itera tion , 
e ( i , k) = sum of sizes of tasks assign ed to resource i 

th rough minor iteration k, 
p ( k ) = accumula ted savings through mi nor itera­

tion k , 
T ; = set o f tasks assigned to resource i at s tart of major 

itera tio n , 

0 ;,k = set o f tasks assign ed to resource i a t minor it­
era tion k , 

µ, = set of ( resou rce, task) reassignment pairs ( i , j ) 
for w hich task j is not assigned to resource i a t start of 
the m a jor itera tion , 

a = se t of swap p airs [( i ', j ") , (i ", j' )] for w hich tasks 
j' and j " h ave different resource assignments- i ' and i" 
respectively-a t s ta rt of the ma jor itera tion , 
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argmax ( •) = determines the index of the maximum 
value in a set. 

v = the value of adding the best m ove at the current 
minor iteration, given all previous actions are also taken 

w = the valu e of adding the best swap at the current 
minor iteration, given all previous actions are also taken. 

We will now describe the GAP Variable-Depth­
Search Heuris tic ( VDSH) , summarized by the flowchart 
in Figure 1: 

Variable Depth Search Heuristic (VDSH) 

IP'IHIA§IE O: 

Step 0: IN ITIALIZATION 

Determine an initial pa rtition of the tasks into T1 , T2 , 

I = I +{ m+l }; 
Set b,,,+1 = oo ; 

Set f (i) , for Vi EI; 

Determine lower bound, using LP relaxation; 

set g = L L C;i 
iE / jE T, 

IP'IHIA§IE 00 : 

Step 1: MAJOR ITERATION INITIALIZATIO N 

Set 0 ;0 = T;, e( i ,0 ) = f (i) , and fo r each task } E T; , /(j) 
= i for Vi E I; 
p (O ) = O; 
u = ]; 
Set k = O; 

Step 2: a. ACTION SET DETERMINATION 

Determine µ, = { ( i , j) : iE J, j EJ , j ff. T;} ; 

Set C;i = cl( i>-i - C; ,j , for each (i , j) E µ, ; 

Determine a = {((i ', j" ) , (i ",j ' )] : i '= l(j' )=l l(j") 
= i"}; 
Set c1Ci',n .<i",i'>l = c;' ,i" + c;",i' for each [(i ', j ") , ( i",j' )] 
E a; 
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Figure 1 

b. BEST ACTION SET CREATION 

VDSH Flowchart 

jsTARTI 

no 

ALGNENT ACTION 
SEQLENCE 

v = max { C;,( (i , j)Eµ; j EU ; e(i,k) + r;i ::::; b; } ; 

µ* = {(i ,j ): C; ,i = v; (i,j)Eµ;j EU ; e(i,k) + Y;j 5 b; }; 
w = max { C; ',i",i"f [(i ', j") , (i",j' )]E<J; j 'EU;j"EU; 

e(i ' ,k) + r;' ,i" - r;',i' ::::; b;,; e(i ",k ) - r;",i" + r ;",i' 

::::; b;" } 
*-{ [('' '")( '" '') · - ~ ·[( '' '")('" '')]E. <J - I,] , I,] .W-C;',j",i",j' , I , ] , I,] <J, 
j'EU; j"EU; e(i',k) + r;',i" - r;' ,i ' ::::; b;,; e(i" ,k ) 

- r;",i" + r;",i' ~ b;"}; 
k = k + l; 
Ifµ* = </J and <J* = </J, go to Step 3; 

c. SEQUENCE CREATION 

k ' = k - l; 
If v > w then 
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Choose (i *,j* ) E µ; 
u = u - {j*}; 
p ( k) = p ( k- 1 ) + v ; 

For V iEJ 

IDENTIFY 
BEST 

SU3SEOLENCE 

ACCEPT 
SU3SEQLENCE 

If i = i*: 0 ;,k = 0; ,k' + {j*}; 
e(i ,k) = e(i,k ' ) + r;•.r; 

If i = l(j *) : 0 ;,k = 0; ,k' - {j*}; 
e(i ,k) = e(i ,k') - r ;,; •; 

Otherwise: 0 ;,k = 0 i.k,; 

e(i,k) = e(i,k') ; 

Otherwise [ w ~ v] 
Choose [(i '*, j "* ),(i"*,j'* )] E <J* ; 
u = u - {j'*,j"*}; 
p(k) = p(k-1) + w; 
For v'iEJ 

If i = i '*: 0 ;,k = 0 i ,k' - {j'*} + {j"*}; 
e(i ,k) = e(i,k ' ) + r; ,;,,. - r; ,; •·; 

If i = i"*: 0; ,k = 0 ;,k' + {j '*} - { j"*}; 
e(i,k) = e(i,k') - r; ,i"" + r ;r•; 

Otherwise: 0 ;,k = e i,k' ; 

e(i ,k) = e(i ,k ' ) ; 

Go to Step 2b . 
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Step 3: SOLUTION REFINEMENT 

p* = max {p(0) ,p(l), ... , p (k) }; 
s* = argmax { p(O),p( l) , ... ,p(k) }; 
If s*> 0 

g = g - p*; 
T ; = 0;,5 •, and f (i) = e(i,s *) for ViEl; 
Go to Step l ; 

Otherwise 
g is cost of current solution; 
{ T ; ,T2 , ... T,,, } is final pa rtition; 
If T ,,, + 1 -:/= ¢, then final solution is infeasible; 
Termina te! 

Init ialization. The initial assignment of tasks to re­
sou rces proceeds as follows . A random permutation of 

th e tasks, {i,,c i), J,,c 2 J, j,,(3) , . . . , J,,c,I)}, is gen erated . A 
dummy resource, i = m + 1, i introduced, where the 
cost of such an assignment is infinite. Task j,,(I > is as­
sign ed to the first assignee with available capaci ty. If 
non e are available, the task is assigned to the " dummy" 
assignee, m + 1. Subsequent tasks are assigned in a 
cyclic fashion. That is, suppose J,,c,> has been initialized 
to resource h . Then , the assignment of J,,c,+i) would firs t 
be sought with resource h + l , or resource 1 if h = m , 
or h = m + 1. We will discuss the rationale for this 
initializa tion in de tail, after describing the heuristic. Also 
during th e initialization, a lower bound is calculated 
(by lin ear progra mming relaxation) , and the cost of the 
initia l solutio n is d e termined . 

Major Iteration Initializa tion. The m ajor iteration p ro­
ceeds b y setting th e temporary loads, 0 , for the re ­
sou rces, and initializing the task assignm ent vector, 1. 
The set U consis ts of all unlabeled tasks-those tasks 
w hich h ave not been used during the iteration . Initially, 
U includes the total task set, J. 

Action Set Determination . In performing a search for 
an improved solution, the heuris tic a llows two types of 
actions-movement of a task to a n ew resource, and 
swapping the resource assignments of two tasks . Cal ­
culations are made for each task / assign ee pair, (j, i) , 
i-:/= 1 (j) . C;,; indicates the savings accrued by moving task 
j from l(j) to i . Similarly, for each pair of potential 
reassignments, [(i ' , j") , (i ", j' )] , we calculate c. 
c1Ci' ,i").(i",i'l l refl ects the accrued savings achieved as a 
result of swapping the assignments of tasks j ' and j". At 
this point, the algorithm proceeds to the first minor it­
eration wi thin the major iteration . 
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Within the major iteration, a sequence of moves and 
swaps is generated . A task is unlabeled until it has been 
involved in some action-either a move or a swap­
w ithin the m ajor iteration . A move of j to i is feasibl e 
a t minor itera tion k if the task j is unl abeled , and the 
reassignment of j to i does not exceed the resource limit 
of i . Likewise, a swap of j ' and j" is feasible if j ' and j" 
are unlabeled , and the swa p does not force either re­
source limit to be exceeded. 

Best Action Set Creation . The best move at minor it­
eration k is a pair (i , j) th at maximizes C;,; over all feasible 
moves. The setµ,* contains a ll such ( i , j) pairs . The best 
swap is [ ( i ', j") , (i", j ' )] th at maximizes c1c, ',i"J .<i",i'll over 
all feasible swaps. The set u* contains all such [(i ' ,j") , 
(i", j' )] . ote that the best move and / or swap at iter­
ation k may actuall y increase costs, i. e. C; ,; < 0 for (i , j) 
E µ, *, and cl<i' ,i"l .Ci".J'>I < 0 for [( i ' ,j") , (i ", j ' )] Eu*. It 
is this relaxation of strict de cent that enha nces the per­

fo rmance of VDS H . An action that increases cos ts may 
simultaneously m ake ava ilable enough space so that 
some other significant cost saving action can follow it 
in the sequence. The example to be discussed later 

highlights this aspect . If it is not possible to extend the 
sequence, i.e . µ,* = ¢ and u* = ¢, then the m ajor iteration 

is concluded by identifying the best subsequence, and 
refining the solution. 

Sequence Crea tion. If v > w, then cos ts can be bes t 
reduced by making a m ove. A pair ( i*, j *) E µ,* is ac­
cepted as the next action i the equ ence, v is added to 

p(k - l) to determine p(k) , resource usages are updated , 
and j * is labeled . If on th e o ther hand, the swap is more 

profitable, then a swap [(i '*, j"* ), (i"*, j'*)] E u* is 
accepted, w is added to p ( k - 1) , resource usages are 

updated, and j '*, j"* are labeled . The next minor iter­
ation is begun . 

Solution Refin ement . The major iteration ends wh en 
no furth er feasible moves or swaps exis t. The variable 
p(k) indicates the reduction in costs achieved by per­

forming all accepted moves and swaps up to itera tion 
k. Th e variable p* identifies the maximum value that 

p( · ) takes on within th e current major iteration, and s * 
indica tes the value of k for w hich p* is maximized . If 
s* = 0, i.e. no cost-reducing sequ ence was identified, 
the algori thm h alts . If s* is not zero, then all m oves and 

swaps in the subsequence are m ade p erman ent. The 
next maj or iteration will begin with each resource i 

873 



AMINI AND RACER 
Co111 pu tatio11al Comparison of Alternat ive So lutio11 Methods for the Genera lized Assignment Problem 

carrying a ll tasks in 0 ;,5 • • The remaining moves and 
swaps are ign ored . 

We return now to a discussion of the initializa tion . 
Developing a randomized initia lization allows the al­
gorithm to address two issues- feasibility and opti­
mality . The task of identifying a feasible solution to 
LCGAP is itself an NP-Hard problem . In some in ­
stances, a single execution of VDSH will not produce a 
feasible set of assignments-there will be some tasks 
that are assigned to resource m + 1. By re-solving the 
problem w ith a different initializa tion, we ca n develop 
some confidence of whether the origin al problem is fea­
sible. Empirical evidence indica tes tha t a feasible so­
lution to a feasible problem will be generated wi th in a 
very small number of itera tions. In most cases, the first 
a ttempt will in fact genera te a feasible solution . 

In terms of optimality, the initia lization is also a very 
p owerful tool. Because VDSH is a heuristic, optimality 
is not guaranteed. By generating q distinct initializations 

(a ) Table 1 Data Initial ization 

Assignee (i ) 2 

A 20 20 
B 10 10 
C 28 20 
Requirement (ri) 2 

and solving th e LCGAP q times, a deeper understanding 
of the algorithm's performance may be rea lized . This 
concept of multiple initializa tions was employed by Lin 
( 1973) , in motiva ting the use of the 3-cha nge h euristic 
for th e Traveling Salesman Problem. Being an integer 
problem, a duality gap will likely exist between the LP 
lower bound, and the optimum LCGAP solution. By 
examining the resul ts of the q trials, some confidence 
can be developed in terms of the size of the duality gap . 
At the same time, of course, confidence in the solution 
genera ted by VDSH is also gained . 

For any instance of the LCGAP, there are three pos­
sible outcomes for a single execution of VDSH. First, 
VDSH may be able to identify a solution improvem ent. 
Secondly, as discussed earlier, the h euristic may b e un­
able to produce a feasible solution . This is a rare oc­
currence, overcom e by repea ting from a new initializa­
tion . The third possibility is that there may be a degen ­
eracy, in that a series of tasks can be reassigned with 

Task (i ) 

3 4 5 Capacity (b,) 

25 7 5 3 
10 10 10 3 
10 15 15 3 
2 1 

(b ) 10 

A 1 

B 
2 

O 3 

C 
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no accompanying reduction in cost. In this case, the 
possibility of non-termination exists. VDSH has been 
written to allow for degenerate improvements, permit­
ting the changes . In this way, VDSH allows for the pos­
sibility that the change may lead to an actual improve­
ment in the next major iteration . If no improvement is 
made after a preset number of iterations-currently 
two-the algorithm terminates. Degeneracy has not 
proven to be an issue in most instances. 

2.3.2. An Example Problem. For simplicity, assume 
r;i = ri for this example. Such a situation may, for in­
stance, occur when the tasks are loads to be delivered, 
and the resources are vehicles . The data is as follows. 
There are three resources, A-C, each wi th a capacity of 
three. The resource requirement vector r is ( 2, 1, 2, 
1, 1) . The cost matrix is shown in Table l(a) . 

The initial assignments are shown in the Table 1 ( b). 
For each task j, and resource i, the value on arc ( i, j) 
indicates ci.i • Table 2(a) identifies the action set. The 
top left table identifies the action set. All potential moves 
and swaps for the major iteration are shown in the left 
column. A ' / ' indicates that such an action is invalid; 
the capacity of at least one resource would be violated. 
A '-' indicates that at least one of the tasks involved in 
the action has already been reassigned in the major it­
eration. The complete action sequence is depicted in 
Table 2(b) , and the algorithm progress is summarized 
in Table 2(c) . 

Had strict monotonicity been forced on the algorithm, 
the last two operations would not have been performed. 
The swap of 3 and 4 at the second iteration provided 
resource B with enough capacity to serve task 1. Also, 
had the move at the third iteration been one such that 
savings was negative, then the algorithm would still 
have retained enough information to know that the only 
profitable operation was at iteration 1 (p * = 5) . The first 
major itera tion is completed. An improvement has been 
found . The algorithm proceeds to the second major it­
eration, with the assignment of task 5 to A, tasks 1 and 
4 to B, and tasks 2 and 3 to C. 

Table 3 indicates the activity of major iteration 2. After 
the fifth minor iteration, no actions are possible . The 
moves of 4 to A , and 2 to B are finalized . The new 
assignments are tasks 4 and 5 to A, tasks 1 and 2 to B, 
and task 3 to C . 
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The algorithm continues with iteration 3, summarized 
in Table 4. A sequence of four moves is identified . The 
subsequence, moving task 2 to resource B, is accepted, 
producing a savings of 10. This is the final cost saving 
iteration . Iteration four will terminate VDSH with the 
global optimum solution. 

3. Computer Implementation of 
Methods 

3.1. Previous Methods 
Since computer codes were unavailable for two of the 
methodologies under comparison-Fisher et al and Ross 
and Soland-we focus our discussion on the codes of 
Martello and Toth . In Martello and Toth 's optimization 
method, MTG, a total of 67 arrays are defined. Of these, 
19 are of length O(m) , 29 are of length O(n) , and 7 
are of order O ( mn). In addition, a number of arrays are 
defined for use in the branch-and-bound structure . 
Martello and Toth define the value jnlev to characterize 
the number of levels in the tree. Given this, there are 
6 additional arrays of O(jnlev ), five of length 
O(jnlev*m) , and one of length O(jnlev*n) . Total 
memory usage is O(mn + jnlev*n + jnlev*m) . 

Martello and Toth's heuristic, HGAP , is a much sim­
pler procedure, and hence requires much less memory. 
Total memory for the two-pass method uses sixteen ar­
rays requiring a total of 6m + 7n + 3mn in storage. 

3.2. VDSH Implementation 
In considering implementation, it is apparent that the 
most computationally intensive operations are the cre­
ation of the action set within each major iteration, and 
the best action set creation within each minor iteration . 
The action set is actually constructed as two arrays­
one for moves, and another for swaps. For each task, 
all potential reassignments are evaluated and stored. 
This produces an array of length O(mn). Subsequently, 
a similarly styled swap array is created, evaluating all 
potential swaps . The result is an array of length O ( n 2 ) 

elements. 
Identifying the best move and swap at each minor 

iteration requires a scan of each of the above arrays. 
Two alternatives were considered. The two arrays could 
be sorted, nondecreasing, requiring time O ( m n In nm) , 
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Table 2 Major Iteration # 1 

(a) Action Set (b) - - - - - - - - - - - - -
1-1 - - 2- I - - - - -, 

A I 3 I B 
K 

I ____ I L ____ 

- - - - 7 

Moves 2 3 I 1 4 5 C L ____ 
I_ - - - - - ------ - - - - -

IB I I 10 
1C I I I ------- - - - - - - - - -
2B 10 I - - - - 7 - - - - , 

A 1 5 I 3 B 2C 0 I I L ___ - L ____ 
3A I I 
3C I I I - - - - I 

4 2 C I ____ I 4A I I 
4B - 5 - 5 

I_ - - - - - - - - - - - - - - - -
SA I 
SB - 5 ------- ------- - -

- - - - 1 - - - - , 
Swaps A I 1 5 I 4 B t ____ I 

L - - - _I 
I 

13 - 5 - 5 r - - - -
C I S 2 I 

14 - 5 - 5 I_ 
L ____ 

- - - - - -------- - - -15 - 3 
23 I 
24 3 
25 5 I - - - - I ,--:,- 4-, 
34 - 5 - 5 A 6 B I ____ I 

L - - I 35 - 5 
r - 3 - -2 - , 
I_ - - - _, C 

(c) Algorithm Progress 

Minor 
Iteration Best Best 

(k) Move Swap 

1 2C 25 
2 4B 34 
3 1B 

and O(n 2 In n) , respectively. Alternatively, the data 
could remain unsorted. This was the chosen approach. 
Both arrays are maintained as linked lists . When a task 
is involved in a move or swap, link pointers are modified 
so that no further scan is made of actions involving that 
task. Our motivation for choosing the second requires 
consideration of the tradeoff between sorting and scan-
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Chosen 
Action Save Pk p· 

Swap 5 5 5 
Swap - 5 0 5 
Move 10 10 10 

ning. Although sorting would place all large savings 
actions at the top, a large portion of the list might still 
have to be scanned, searching for a capacity-feasible 
action . By employing the linked list, the number of ele­
ments scanned decreases significantly with each minor 
iteration. 

The VDSH heuristic requires two input m X n arrays, 
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Table 3 

(a) 

Moves 

1A 
1C 
2A 
2B 
3A 
3B 
4A 
4C 
5B 
5C 

Swaps 

12 
13 
15 
24 
25 
34 
35 
45 

(c) 

Minor 
Iteration 

(k) 

1 
2 
3 
4 
5 

Major Iteration # 2 

Action Set 

K 

2 3 

- 10 I I 
I I I 

0 0 

I 10 
- 15 I I 
I I I 

3 

I 
- 5 - 5 I 

- 10 I - 10 

I I 
- 18 - 18 - 18 
- 15 - 15 - 15 

2 
- 10 - 10 
I 

- 25 - 25 - 25 
- 2 

Algorithm Progress 

Best Best Chosen 
Move Swap Action 

4A 24 Move 
2B 25 Move 
5C 15 Move 
1A 13 Move 
3B Move 

4 

- 10 

I 

- 15 

I 

- 18 

Save 

2 
- 10 
- 10 
- 10 

0 

p, 

2 
12 
2 

- 8 
-8 

5 

I 
0 

p· 

2 
12 
12 
12 
12 

storing demand and cost information. Three m-vectors 
are utilized, indicating resource utilization-current and 
intermediate-and capacity. Two n-vectors indicate la­
bel status and resource assignment for each task. The 
move set is maintained in an mn X 3 matrix, accom­
panied by an mn-vector, for the linked list. Similarly, 
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I_ - -

r - - r - - - - 1 - - - 1 - - - - ,- - - , 

i A i _4_ - s_ J L 1 i B i 
I 

I 
L 

,----, 
3 2 

1 
C 

L - - - -

,----, 
A 4 6 1 L ___ _ 

,----, 
1 2 

1 
B 

L - - - -

L_ 

r - -
3 

L - -

r--
1 2 I L ___ _ 

- - l 
_s_ 1 C 

A 1 -4 - - 1 ~ 1 - - - 2- 1 
L____ ) ____ I 

,_ - - - - -

I 
L_ 

I - - - - l 
3 5 1 C L ___ _ 

r - - - -
3 2 I L ___ _. 

r - - - - I s C , ____ J 

B 

B 

B 

the swap set is contained in an 11
2 X 3 matrix, with 

corresponding n 2 linked list. The selected action se­
quence is s tored in an n X 3 matrix. 

Phase I, Initialization, requires O(max (11 In n, n111)) 
time. The initialization time is dominated by the per­
mutation time, and the amount of time required to make 
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Table 4 Major Iteration #3 

(a) Action Set (b) r - - - - - - - - - - - - - - - - - - -
r - - - - r - - - - 1 A I_ 4 s I 1 B 

K I - - - - L - - - - J 

r - - - - I I ,_3 2 C 
Moves 2 3 4 5 L - - - J 

- - - - - - - - - - - - - - - - - - - J 

1A I I - 10 r - - - - r - - - - 1 A 4 5 I 1 2 B 1C I I I ,_ - - - .... L - - - - I 
2A 0 r - - - - 1 
28 10 

L 
3 

I C 
3A I I - 15 I - - - -
38 I I I 0 
48 3 I r - - - - - - - - - - - - - - - - - -

r - - - - I r - - - - 1 
4C I - 8 A L 5 1 2 B - - - .... L - - - - I 
58 - 5 I I - 5 I r - - - - I 
SC I - 10 I I - 10 I _3 4 C - - - J 

- - - - - - - - - - - - - - - - - J 

Swaps 
r - - - - - - - - - - - - - - - - - - -

A 
r - - - - r - - - -

12 I L 
, s I 2 I B - - - - ,_ - - - -

13 - 18 - 18 - 18 r - - - -
I 

14 - 13 - 13 ,_ 3 4 C - - - .J 

15 - 15 - 15 - 15 - - - - - - - - - - - - - - - - - J 

24 8 
I - - - - - - - - - - - - - - - - - - - , 

25 - 10 r - - - - r - - - 2-1 
34 - 23 - 23 I A ,_ , s I ,_a B - - - - - - - J 

35 - 25 - 25 - 25 - 25 r - - - - I I ,_ 4 C 
L - - - J 

- - - - - - - - - - - - - - - - -
r-------------------, 
I A r 1 - - - 1 1 3 - - 2- 1 B 
I I ____ J L ____ J 

I r 5 - -.. - , C 
L ______ I ____ J __ 

(c) Algorithm Progress 

Minor 
Iteration Best Best Chosen 

(k) Move Swap Action Save Pk p· 

1 28 24 Move 10 10 10 
2 4C 14 Move - 8 2 10 
3 1A 15 Move - 10 - 8 10 
4 38 35 Move 0 - 8 10 
5 SC Move - 10 - 18 10 
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assignments obeying capacity restrictions. Computation 
time for major iteration initialization is O(n). As dis­
cussed earlier, the action set determination is the most 
critical. 

Time complexity in the action set determination step 
is O(n 2

) , dominated by the swap set creation. Identi­
fying the best move and swap in each minor iteration 
requires 0( n 2 ) time. Sequence creation is negligible, in­
dependent of m and 11 . Step 3, solution refinement, re­
quires O ( s *) work, to finalize the set of moves and 
swaps accepted. The values* is certainly no more than 
n. Because the total number of minor iterations is 
bounded by n, the total work per major iteration is O(n 3

). 

Empirical evidence indicates that the number of major 
iterations is weakly dependent on m and n, and is, in 
general, no more than ten. An upper bound on the 
number of major iterations, given a feasible initial so­
lution, is n(cmax - cmin), where cmax is the maximum 
value of C;j , and cmin the minimum value. 

To compare space utilization then, VDSH's memory 
usage is 50% to 20% less than that of MTG, decreasing 
as the problem size increases. The additional space re­
quired by the optimization routine is a consequence of 
the branch-and-bound nature of the algorithm. The ra­
tio of HGAP usage to that of VDSH is 30%. Because 
VDSH is a variable-depth technique, additional memory 
is required to maintain information carried from one 
minor iteration to the next. 

4. Construction of a Testing System 
To simplify and structure the generation and analysis 
of the experimental data points, a portable LC GAP test­
ing system ( LCGAPTS) is developed . LCGAPTS is or­
ganized into three components: ( 1) a random LC GAP 
generator; ( 2) a user-supplied suite of codes to solve 
randomly generated GAP instances (here we utilize 
MTG , HGAP , and VDSH) ; and (3) the data analysis 
module that collects the solution data and performs a 
statistical analysis to identify the relative efficiencies of 
the codes. 

In summary, given a random seed number, a set of 
problem characteristics (levels of the experimental fac­
tors) ( 1) LCGAPTS creates a random GAP; ( 2) the GAP 
is solved by each of the GAP codes; and ( 3) solution 
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data is collected in a convenient form for subsequent 
analysis . 

5. The Experimental Design 
In this section, we first review some of the major works 
in which rigorous statistical experimental design and 
<:1nalysis are applied to compare performance charac­
teristics of heuristic and/ or algorithmic alternatives. 
Next, we detail our experiment, design, and implemen­
tation . 

5.1. Previous Work 
The vital role of a sound statistical experimental design, 
along with some general guidelines for computational 
comparison of solution alternatives, has been discussed 
by Hoaglin and Andrews ( 1975) , Crowder, Dembo, and 
Mulvey (1978) , McGeoch (1986), Amini (1989) , 
Greenberg ( 1990) , Jackson et al ( 1990) , Amini and Barr 
( 1992). There are a number of sources with detailed 
discussions on the theoretical concepts, principles, and 
phases of experimental design, including the most recent 
books by Ostle and Malone ( 1988) and Mason, Gunst, 
and Hess ( 1989) . 

A survey by Jackson and Mulvey ( 1977) of published 
papers shows that a lack of understanding of careful 
experimental planning and reporting of experiments 
exists. A later study by Dembo and Mulvey ( 1978) sug­
gests that a carefully-considered a priori experimental 
design is rarely applied, and offers a checklist of im­
portant factors in designing, implementing, and re­
porting a computational study. Later, revised guidelines 
to report empirical results are provided b y Crowder, 
Dembo, and Mulvey (1978) , Greenberg (1990) , and 
Jackson et al ( 1990). Regardless of all these efforts, 
McGeoch ( 1986) , Amini ( 1989) , and Amini and Barr 
( 1992) report that, while there is motivation for applying 
statistically experimental design in algorithmic perfor­
mance analysis, it appears that not much progress has 
been made . 

The most common method to analyze performance 
characteristics of algorithmic and/ or heuristic alter­
natives has been the use of tables (graphs) of average 
measurement for each sample point, followed by an 
informal discussion of the results . There are a few in­
stances in which application of statistical methods are 
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formally considered. A discussion of these studies, in­
corporating different degrees of sophistication in their 
statistical analyses, is in order. 

Comparing a new convex hull algorithm against two 
others, Eddy ( 1977) estimates standard deviations as­
sociated with the number of operations. Hart ( 1984) 
establishes 90% confidence intervals and conducts h y­
pothesis testing in studying a binary search tree algo­
rithm. Studying some hypothetical alternative heuristics 
on a sample of 15 traveling salesman problems, Golden 
and Stewart ( 1985) use two nonparametric tests, the 
Wilcoxon Signed Rank and Freidman tests . Also, they 
apply an Expected Utility Approach to identify the best 
heuristic as the one that performs well on average and 
that very rarely performs poorly. Analysis of variance 
(ANOVA) is applied by Moore and Whinston ( 1966) 
to measure the significance of quadratic programming 
algorithm parameters and problem attributes against 
computational time and iterations. The absence of a 
comprehensive a priori experimental design is a com­
mon factor among all the aforementioned works. 

In a few instances an a priori statistical experimental 
design has appeared. Lin and Rardin ( 1980) present 
controlled statistical experimental design techniques for 
a comparison of integer programming algorithms. After 
a theoretical discussion on possible factorial designs to 
control seven nuisance problem parameters in the ex­
periment, they offer a " blocking on problem" design 
along with ANOVA to compare two !LP algorithms on 
a set of 512 randomly generated problems. They con­
clude that there is room for much more research on the 
use of experimental design in mathematical program­

ming. Hoaglin, Klema, and Peters ( 1982) investigate 
the performance of five nonlinear optimization routines 

in solving one test problem, starting from each of twenty 
randomly chosen starting points. Applying exploratory 

data analysis techniques and statistical models, the 
variability of performance across optimizers is described, 

and the effect of starting points is exposed. With the 
use of an a priori " split-plot" design and ANOV A, 

Amini and Barr ( 1992a, 19926) conduct a rigorous 
computational study on the performance characteristics 

of the network reoptimization techniques under the im­
pact of seven interacting experimental factors . 

Although, the above studies apply common principles 
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of statistical experimental designs, the related experi­
mental designs are situation-specific and highly inter­
related with the types of questions to be answered. In 
Golden and Stewart ( 1985), Lin and Rardin ( 1982) , 
and Hoaglin, Klema, and Peters ( 1982) the quests are 
to identify an algorithm or heuristic alternative that un­
der all circumstances has a better average performance 
than the others. What about the cases in which average 
performances of algorithmic/ heuristic alternatives sig­
nificantly changes from one factorial combination to an­
other one? Or, what about the cases in which a re­
searcher is interested in studying the heuristic / algo­
rithmic behavior under a specific factorial combination, 
rather than the overall behavior? Amini and Barr ( 1992a 
and 1992b) address this issue by selecting a more flexible 
design, split-plot, to prepare a menu of network reop­
timization algorithms for different factorial combina­
tions. The same flexibility is required to provide answers 
for the questions raised in §1; hence, we apply a similar 
experimental design in this study. 

5.2. The Experimental Environment 
Following the principles suggested in the aforemen­
tioned studies, we present a carefully devised experi­
mental design for computational comparison of the four 
prominent LCGAP optimization and heuristic method­
ologies with the VDSH. In designing the experiments 
for comparative analysis, the goal is to study the relative 
efficiency of the leading solution methods under the 
effects of the problem characteristics, singly and in 
combination. Hence, answers are provided to the fol­
lowing questions: ( 1) Is there a best overall method for 
solving LCGAP? (2) What are the effects of type and 
degree of parametric change on the performance of each 
solution methodology? ( 3) What are the effects of prob­
lem set and size on the performance of each method? 
( 4) What are the interaction effects on the solution 
techniques when the above factors are changed singly 
or in combination? 

The factors considered to be essential in the compu­
tational comparison are: problem class ( capacities, load 
requirements, assignment costs) ; problem size ( number 
of assignees, number of assignments); and solution 
methods. The fa ctor levels are as follows: class (A, B, 
C , D) ; problem size ( small and large); and five solution 
methods. 
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The experiment consists of four classes of test prob­
lems, accepted as the standard LCGAP library (Ross and 
Soland (1975), Fisher et al (1986) , Martello and Toth 
( 1987)) . These classes are defined as follows: 

Set A: r;i selected from a uniform distribution between 
5 and 25; C;i selected from a uniform distribution between 
l and 40; 

b; = .6 (!:) 15 + .4 max L r;1; 

m ' jE/; 

where J,- = {j : C;i = max (ckj ) } . 
k 

Set B: same as A, except b; is set to 70 % of the value 
given in A. 

Set C: same as A, except b; = .8 I i r;if m . 
Set D: r;i selected from a uniform distribution between 

1 and 100; C;i = 111 - r;i + e, where e is uniform between 
-10 and 10; 

In developing problem set characteristics, two items 
are of concern. One is degree of solvability. A problem 
set that admits few feasible solutions is able to test the 
performance characteristics of a method more so than 
a set that admits many. Second, a problem set should 
attempt to characterize real-world conditions. In these 
regards, set A represents a class admi tting many solu­
tions, with a fairly simplistic assumption about cost/ 
load relationships. Sets B and C provide tighter solution 
environments, again with little atten tion to reflecting 
the real world. Class D attempts to do both, by corre­
lating cost and load size. 

Within each class, problems are categorized as "small" 
( n = 10, 20, m = 3, 5) or " large" ( n = 50, 100, 200, 
and m = 5, 10, 20) . Since the GAP is NP-Complete, the 
performance of optimization methods degrades severely 
with increased problem size. As a result, these "small" 
test problems were applied in studies involving opti­
mization techniques. To more adequately reflect real­
world conditions, the " large" problems are included in 
this study. This is also of particular importance in com­
paring heuristic alternatives. 

The solution Central Processing Unit (CPU) time is 
chosen to be the dependent (response ) variable, for the 

MA AGEMENT SCIE CE/Vol. 40 , No. 7, July 1994 

Table 5 

Problem 
Class 

A 

B 

C 

D 

Split-plot Design 

Problem Size 

n 

10 

20 

10 

20 

10 

20 

10 

20 

• 10 observations per cell. 

Heuristic 

m HGAP VDSH 

3 
5 
3 
5 
3 
5 
3 
5 
3 
5 
3 
5 
3 
5 
3 
5 

fo llowing reasons. CPU time has long been a well­
accepted standard of comparison in the mathematical 
programming community . In a practical setting, memory 
is commonly available, and solution quality and speed 
are of major concern. Moreover, the time to derive a 
solution is more sensitive to the factors discussed above 
than is the memory requirement. 

The experiment's characteristics lend themselves to 
a split-plot design . Table 5 depicts the experimental de­
sign. This design is nested in the sense that within each 
treatment combination there are several treatment sub­
combinations. The underlying principle of the design is 
th is: whole plots or main plots to which levels of one or 
more factors are applied, are divided into subplots to 
which one or more additional factors are applied. In 
this type of design, we are concerned with ranked­
precision of information on factors , with the main plots 
having higher precision than the split plots. 

Achieving the main goal of the study and answering 
the questions in §4 necessitate comparisons of the so­
lution methodologies under the different treatment 
combinations as defined by the experimental design . 
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This includes a comprehensive analysis of the effects 
of the factors-singly and jointly- on the performance 
of each method. In particular, the objective is to identify 
the importance of the factors and their interactions, in 
terms of the magnitude of their effects on the solution 
CPU times generated by the codes. 

We decide on ten replications ( observations per cell) 
per split-plot design cell in order to generate an adequate 
number of degrees of freedom for the subsequent sta­
tistical analyses. Another related issue is the fashion in 
which factorial combinations (cells) are generated, en­
suring randomness. As Gilsinn et al ( 1977) report, CPU 
time is affected by both time of day and job mix in a 
multi-tasking environment. In order to avoid biasing 
the results in this study, we randomly select combina ­
tions of the experimental factors (cells) and create the 
ten replications. 

The statistical model used to relate the CPU times to 
the factors and sources of error encapsulated by the 
split-plot design is: 

T;ikl = µ + P; +Si + Uk(ij) + M, + P;Si 

+ P;M, + SiM, + P;SiM, + Eiikl, (5) 

µ = the mean CPU times, 
P; = the effect of problem set i , i = 1, 2, 

3, 4, 
Si = the effect of problem size j, j = 1, 

2, 3, 4, 
Uk(ii> = the effect of problem k of set i and 

sizej, k = 1, 2, 3, 4, 
M, = the effect of solution method I, I 

= 1, 2 
P;Si , P;M1, SiM, , 

and P; SiM, = the subplots effects, and 
E;ikl = the error term. 

This model includes four subplot-factor interaction 
terms of two- and three-factor combinations, each of 
which may affect the response variable. 

6. Design Implementation 
The only implementations available to us were the op­
timization code, MTG , and the heuristic code, HGAP, 
developed by Martello and Toth (1987) . This made it 
possible to collect data on the performance character-
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istics of both MTG and HGAP and conduct a rigorous 
statistical comparison with VDSH. To conduct the ex­
perimentation, two issues are addressed. ( 1) Lack of 
access to the computer codes of the optimization meth ­
ods devised by Ross and Soland ( 1975) , and Fisher et 
al ( 1986) made it impossible to generate the necessary 
data for an in-depth statistical comparison; ( 2) fur ­
thermore, it is known that creating an efficient GAP 
optimization method cannot exist unless P = NP . Thus, 
our experimentation with the three optimization meth­
ods under study and VDSH focuses on the " small" test 
problems along with an average performance compar­
ison, while studying performance characteristics of the 
two heuristics incorporates a rigorous statistical evalu­
ation of both the " small" and " large" test problems. 

Hence, three experiments are conducted as follows. 
The first experiment is devoted to the performance 
comparison of the three leading optimization methods 
and VDSH on "small" test problems. In the second ex­
periment, we provide a rigorous statistical comparison 
of MTG and VDSH on the same " small" set of test prob­
lems. In the third experiment, we compare VDSH and 
HGAP on the set of " large" test problems. 

In the following experiments, all the test problem sets 
are generated and solved on the VAX 6420 computer 
under the VAX/VMS 5.4-2 operating system. The VAX 
Fortran compiler with optimization level 3 is utilized. 
A discussion of the three experiments along with the 
statistical methods, and analyses of the computational 
results are provided in the following sections. 

6.1. First Experiment and Analysis 
This experiment is concerned with the performance 
characteristics of the three GAP optimization methods 
and V DSH on the four classes of "small" test problems. 
First, we present the details of experiment and then our 
analysis. 

The data points required for the three leading opti­
mization methods and the HGAP in the first experiment 
are generated as follows: ( 1) we randomly ordered the 
problem classes and sets; ( 2) given each ordered set 
LCGAP Testing System is used to generate ten random 
replications; and ( 3) solve the replicates by MTG ( Mar­
tello and Toth ( 1990)) and VDSH codes in a random 
order. This process is not applied with the Ross and 
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Soland ( 1975) and Fisher et al ( 1986) methods, due to 
the lack of the access to their computer codes. Hence, 
we converted the average solution times of the same 
set of problems solved by the two other methods from 
the CDC 6600 to DEC 10, using a conversion factor of 
fi ve (Martello and Toth (1987)) . Then applying a con ­
version factor of 1 / 7, provided by the Digital Equip­
ment Company, the DEC 10 CPU times were converted 
to the VAX 6420. Although the va lidity of the conver­
sion process when different hardware, operating sys­
tems, and computational environment involved is 
questionable, under the circumstances where computer 
codes for some of the solution methods under study are 
not available it becomes the only way for comparative 
study. 

Hence, implementation of the split-plot design and 
detailed statistical analysis become infeasible; with two 
of the four methods, generation of the CPU times for 
individual problem instances-and the subsequent de­
tection of significant variations and interactions between 
the experimental factors-is impossible. Consequently, 
a simple average CPU time comparison is applied. 

The average CPU times and the relative error of the 
VDSH are shown in Table 6. Lower bounds are calcu­
lated by relaxing the capacity constraints; hence, errors 
are conservatively estimated. On problem classes A and 
C the solutions obtained by the VDSH are optimal. On 
class B problems, an average error of 7% is detected, 
w hile an average error of 240% is found for problems 
of class D, by far the most difficult problem set. For 
these " small" problems, VDSH exhibits very little sen­
sitivi ty with respect to the problem class; the three op­
timiza tion algorithms, however, did vary greatly in av­
erage solution time, and in fact there is no single al­
gorithm tha t is dominant. In all classes, VDSH performs 
favorably compared to the leading algorithm. In the 
computationally intensive classes, Band D, VDSH's so­
lution times were much lower. 

6.2. Second Experiment and Analysis 
The second experiment's objective is to compare per­
formance characteristics of one of the optimization 
methods, MTG , with VDSH . Since both computer codes 
are available, the aforementioned split-plot design is 

Table 6 Performance Comparison-CPU-seconds and Relative Error 

Problem Size Ross-Soland Fisher et al. MTG VDSH 
Problem 

Class n m Ave. Time Ave . Time Ave. Time Ave. Time Re l. Error 

A 10 3 0.01 0.02 0.01 0.01 0.00 
5 0.02 0.04 0.03 0.01 0.00 

20 3 0.02 0.04 0.03 0.02 0.00 
5 0.06 0.09 0.01 0.03 0.00 

B 10 3 0.16 0.22 0.11 0.01 0.00 
5 0.16 0.28 O.Dl 0.01 0.12 

20 3 23.47 0.73 149.32 0.05 0.06 
5 ETL 2.13 4.92 0.03 0.10 

C 10 3 0.23 0.24 0.18 0.01 0.00 
5 0.26 0.36 0.07 0.01 0.00 

20 3 43.70 0.80 3.61 0.06 0.01 
5 ETL 1.96 5.90 0.04 0.00 

D 10 3 0.57 0.26 0.29 0.00 1.81 
5 0.97 0.56 0.55 0.01 3.89 

20 3 ETL 2.77 11 .72 0.02 1.47 
5 ETL 9.66 72.60 0.01 2.43 

• VAX 6420 CPU seconds. 

• ETL: Exceeded time limit imposed by Martello and Toth (1987). 
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applied, and a rigorous statistical analysis is conducted 
on all four classes of the "small" test problems. 

Applying the LCGAP Testing System, the data gen­
eration for the second experiment includes: ( 1) ran­
domly ordering the 32 experimental factor combinations 
(split-plot cells); (2) generating ten random "small" 
test problems for each ordered factorial combinations; 
and ( 3) solving in random order the ten random test 
problems by each of the two codes and recording the 
solution CPU times. Hence, a total of 160 random test 
problems are generated and solved by both codes. 

The statistical method required is analysis of variance 
(ANOVA). This method provides information for testing 
simultaneously the significance of the difference be-

Table 7 ANOVA Table for CPU-Times-Small Problems 

(a) includes test problems not found feasible 

Source OF ss MS F P-Value 

p 3 21501.139 7167046 3.86 0.0109 
s 3 20999.961 6999.987 3.77 0.0122 
P x S 9 60961.497 6773.500 3.64 0.0004 
U X (P X S) 144 267658.418 1858.739 1.00 0.5002 
M 1 8406.230 8406.230 4.52 0.0352 
P x M 3 21485.526 7161 .842 3.85 0.0109 
S XM 3 20947.889 6982.630 3.76 0.0124 
P x S x M 9 60932.121 6770.236 3.64 0.004 

(b) excludes test problems not found feasible 

Source OF ss MS F P-Value 

p 3 334.666 111 .555 2.60 0.0546 
s 3 278.998 92 .999 2.17 0.0945 
P X S 9 577.964 64 .218 1.50 0.1547 
U X (P X S) 141 6254.917 44.361 1.04 0.4207 
M 1 186.063 186.063 4.34 0.0391 
P x M 3 302.196 100.732 2.35 0.0753 
S x M 3 202.863 67.621 1.58 0.1977 
P x S x M 9 750.156 83.351 1.95 0.0508 

Source: Source of problem variation-single and interaction terms. 

OF: Degrees of freedom. 

SS: Sum of squares. 

MS: Mean squared. 

F: F-value. 

P-value : P-value. 
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tween mean solution times of the methods under single 
or multiple factor treatment combinations. Given the 
experimental design, the significance of the difference 
between treatment-combination mean times could be 
tested by analyzing the variance within and between 
the samples. 

The analysis of variance is initiated by a translation 
of the objectives of the study into statistical hypotheses. 
The hypotheses were categorized into two main groups: 
hypotheses to detect significant difference between sin­
gle factor means, and hypotheses to study the significant 
differences between the multiple-factor interaction 
means. For example, the null hypotheses with regard 
to the problem size factor can be stated as: µ P( i l = 0, for 
all i. The associated alternative hypothesis is: µ P(il 'F 0, 
for at least two is. Hypotheses can be stated similarly 
for each of the other single and multiple-factor inter­
actions. The significance level selected prior to the anal­
ysis was 5%. 

Two ANOV A are conducted. In the first analysis, the 
solution times associated with the test problems not 
found feasible are included. Table 7(a) summarizes this 
information . The null hypotheses associated with the 
problem class, size, heuristics, and interactions of these 
three factors were rejected even at much smaller sig­
nificance levels. Thus, at least two of the mean solution 
times stated in each null hypotheses are significantly 
different. In terms of relative performance, this does 
not permit ranking of the heuristics under different fac­
tor combinations. 

When comparing more than two means, an ANOV A 
procedure indicates whether the means are significantly 
different from each other, but it does not show which 
means actually differ . The significance shown by our 
ANOV A makes it desirable to conduct further analyses 
to determine which pairs or groups of solution average 
CPU times are significantly different. Such comparisons 
between means are sometimes referred to as mean com­
parisons. Rejection of the null hypotheses necessitates 
mean comparisons to provide detailed information 
about the observed differences in means. 

Tukey 's Significance Test is applied to compare and 
rank the performance of the heuristics under the effect 
of different single-factor levels as well as various treat­
ment combinations. Tukey's test controls the experi-
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Table 8(a) Ave. Solution CPU Time For MTG and VDSH-Small 
Problems 

Problem Size Solution Method 
Probl em 

Class 

A 

B 

C 

D 

n 

10 

20 

10 

20 

10 

20 

10 

20 

• VAX 6420 CPU seconds. 

m 

3 
5 
3 
5 
3 
5 
3 
5 
3 
5 
3 
5 
3 
5 
3 
5 

• Includes test problems not found feasible. 

MTG VDSH 

0.01 0.01 
0.03 0.01 
0.08 0.02 
0.01 0.03 
0.12 0.01 
0.08 0.01 

149.33 0.05 
4.92 0.03 
0.19 0.01 
0.07 0.01 
3.61 0.06 
5.90 0.04 
0.29 0.00 
0.55 0.01 

11.72 0.02 
72.60 0.01 

mentwise error rate (EER) for multiple comparisons, de­
fined as the probability of rejecting one or more of the 
null hypotheses when making statistica l tests of two or 
more null hypotheses . In this study, having multiple 
mean comparisons requires more control on EER, and 
consequently th e use of Tukey 's test. 

Applying Tukey's test, we conclude the following 
major result on the "small" test problems: regardless of 
problem class, size, or both, VDSH, with an overall av­
erage solution time of 0.022 CPU seconds, significantly 
outperforms MTG , with an overall average solution time 
of 10.273 CPU seconds. A comparison of average so­
lution times based on the problem class or problem size 
indicates that V DSH dominates MTG. Table 8(a) shows 
the detailed average solution times. 

ln the second ANOV A, solution times on the infea­
sible test problems are excluded and treated as " missing" 
data points. Table 7(b) depicts the information provided 
by the second ANOVA procedure . It is found that the 
null hypo theses associated with the problem class, 
problem size, algorithm, and the three-factor interaction 
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are rejected. Again to identify the significant differences 
among the solution times, Tukey's tes t is applied and 
the fo llowing result is obtained on the "small" test 
problems: the V DSH ( overall average solu tion time of 
.0199 CPU seconds) significantly outperforms MTG 

( overall average solution time of 1.8499 CPU seconds) 
in solving all problem classes and sizes. Table 8 ( b) pre­
sents the detailed average solution times. 

6.3. Third Experiment and Analysis 
To compare the relative performances of the HGAP and 
the VDSH on the " large" size problems, the third ex­
perimental design is developed. In this design, the same 
fac tors and levels included in the second design are 
considered, except that the problem size levels increases 
from four to nine (as in Martello and Toth (1987)). As 
a resul t, the number of factoria l combinations increased 
from 32 to 72 and th e number of test problems gener­
ated and solved is increased from 320 to 720. The nine 

Table 8 (b) 

Problem 
Class 

A 

B 

C 

D 

Ave. Solution CPU Time for MTG and VDSH-Small 
Problems 

Solution Method 

Problem MTG VDSH 
Size 

Ave. 
n m # Exclusions Time # Exclusions 

10 3 0 0.01 0 
5 o 0.03 0 

20 3 o 0.08 0 
5 o 0.01 0 

10 3 3 0.06 2 
5 o 0.08 0 

20 3 3 18.72 1 
5 o 4.92 0 

10 3 3 0.07 1 
5 o 0.07 0 

20 3 o 3.61 2 
5 o 5.90 o 

10 3 o 0.01 0 
5 0 0.01 o 

20 3 0 0.00 0 
5 0 0.01 0 

• VAX 6420 CPU seconds. 

• Excludes test problems not found feasible. 

Ave. 
Time 

0.01 
0.01 
0.02 
0.03 
0.01 
0.01 
0.05 
0.03 
0.01 
0.01 
0.04 
0.04 
0.01 
0.01 
0.02 
0.03 
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Table 9 (a) Ave. Solution CPU Time for HGAP and VDSH-Large 
Problems 

Problem Size Solution Method 
Problem 

Class n m HGAP VDSH 

A 50 5 0.02 0.19 
10 0.03 0.18 
20 0.06 0.25 

100 5 0.05 1.07 
10 0.06 1.12 
20 0.09 1.57 

200 5 0.14 9 08 
10 0.19 11 .00 
20 0.25 11 .78 

B 50 5 0.02 0.82 
10 0.04 0.52 
20 0.06 0.34 

100 5 0.06 11 .59 
10 0.08 5.25 
20 0.13 3.84 

200 5 0.17 131.91 
10 0.23 54.89 
20 0.36 45.69 

C 50 5 0.02 0.90 
10 0.04 1.10 
20 0.08 1.10 

100 5 0.06 12.13 
10 0.08 5.59 
20 0.16 9.20 

200 5 0.17 131 .54 
10 0.24 47.76 
20 040 7942 

D 50 5 0.01 0.12 
10 0.01 0.52 
20 0.01 0.24 

100 5 0.01 0.98 
10 0.01 1.51 
20 0.01 1.64 

200 5 0.03 9.71 
10 0.03 11 .03 
20 0.05 13.27 

• VAX 6420 CPU seconds. 
• Includes test problems not found feasible . 

configurations evaluated are generated with three values 
of n(S0, 100, 200), and three values of m(S, 10, 20) . 
LCGAP Testing System applies the same random process 
as described in the second experiment to generate and 
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solve " large" test problems within the four problem 
classes . 

The statistical model associated with the third exper­
imental design is the same as the second one, except 
that the problem set is " large," the number of problem 
sizes increased to nine, and HGAP is substituted for 
MTG . As in case one: ( 1) the same set of h ypotheses 
regarding the relative performances of the HGAP and 
VDSH are established; and ( 2) tested by two ANOV A 
procedures. Tables 9(a) and 9(b) show the average so­
lution times of HGAP and VDSH . Also, a summary of 
the two ANOVA results are depicted in Table 10 at 5% 
significance level. 

Table lO(a) presents the results of ANOVA of the 
CPU times including the solution times associated with 
the problems not found feasible . Except in one case, all 
the null h ypotheses are rejected at even a lower signif­
icance rate (p-value = .0001). As a result, Tukey's test 
is applied and we find that HGAP , with an average 
solution time of .0963, significantly outperforms the 
VDSH, with an average solution time of 17.1896 CPU 
seconds. Excluding the solution times of the problems 
that are not found feasible from the data set and ap­
plying ANOV A resulted in the information that is de­
picted in Table 10 ( b) . As in the previous case, all the 
null hypotheses are rejected. And again, regardless of 
the problem class or size, Tukey's test indicates that 
HGAP (overall average solution time= 0.0990) domi­
nates VDSH ( overall average solution time = 10 .6338) 
on the " large" test problem sets. However, the signifi­
cance of the difference is weaker than in the previous 
scenario. 

Although the experimentation with the " large" test 
problems strongly suggests the superior performance of 
the HGAP, it should be noted that the solution quality 
provided by this method is inferior to the VDSH. The 
VDSH paid a price of 10 to 17 CPU seconds to achieve 
an average of 20% improvement in solution quality over 
HGAP , where relative errors are calculated with respect 
to the lower bound. Hence, from this point of view the 
superior performance of the VDSH can be verified. Table 
11 shows the improvement of solution quality for each 
class and size of the " large" test problems. 

It should be noted that "statistical significance" does 
not imply practical importance in all cases (see Snedecor 
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Table 9 (b) Ave. Solution CPU Time for HGAP and VDSH-Large Problems 

Problem Size 
Problem 

Class n m # Exclusions 

A 50 5 0 
10 0 
20 0 

100 5 0 
10 0 
20 0 

200 5 0 
10 0 
20 0 

B 50 5 0 
10 0 
20 0 

100 5 0 
10 0 
20 0 

200 5 0 
10 0 
20 0 

C 50 5 0 
10 0 
20 0 

100 5 0 
10 0 
20 0 

200 5 0 
10 0 
20 0 

D 50 5 0 
10 0 
20 0 

100 5 0 
10 0 
20 0 

200 5 0 
10 0 
20 0 

• VAX 6420 CPU seconds. 

• Excludes test problems not found feasible . 

and Cochran ( 1976)) . First, in terms of computational 
resource availability, paying 10 to 17 CPU seconds to 
gain 20% improvement in the solution quality of an 

MANAGEMENT SCIENCE/Vol. 40, No. 7, July 1994 

Solution Method 

HGAP VDSH 

Ave. Time # Exclusions Ave. Time 

0.02 0 0.19 
0.03 0 0.18 
0.06 0 0.25 
0.05 0 1.07 
0.06 0 1.12 
0.09 0 1.57 
0.14 0 9.08 
0.19 0 11 .00 
0.25 0 11 .78 
0.02 1 0.69 
0.04 0 0.52 
0.06 0 0.34 
0.06 2 11.00 
0.08 0 5.25 
0.13 0 3.84 
0.17 9 63.72 
0.23 0 54.89 
0.36 0 45.69 
0.02 2 0.69 
0.04 0 1.10 
0.08 0 1.10 
0.06 5 11 .51 
0.08 0 5.59 
0.16 0 9.20 
0.17 10 
0.24 0 47.76 
0.40 0 79.42 
0.01 0 0.12 
0.01 0 0.52 
0.01 0 0.24 
0.01 0 0.98 
0.01 0 1.51 
0.01 0 1.64 
0.03 0 9.71 
0.03 0 11 .03 
0.05 0 13.27 

NP-Hard problem may be considered " insignificant. " 
Secondly, there is the issue of data integrity. In some 
instances, errors may arise in the estimation of problem 
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Table 10 ANOVA Table for CPU-Times-Large Problems VDSH against the four leading GAP heuristics and op-

(a) includes test problems not found feasible timization algorithms. In-depth statistical analyses 
( analysis of variance and Tukey's test) are followed to 

Source DF ss MS F P-Value 

p 3 30960.619 10320.206 235.17 0.0001 
Table 11 Solution Quality-Large Problems Relative Error 

s 8 95828.830 11978.604 272.97 0.0001 
((result-lower.bound)/(lower.bound)) 

P x s 24 68632.705 2859.696 65.17 0.0001 
Solution Method 

U X (P X S) 4 14210.678 43.860 1.00 0.5019 
M 1 52592.597 52592.597 1198.47 0.0001 

Problem P x M 3 30605.974 10201.991 323.48 0.0001 
Size HGAP VDSH S x M 8 94990 047 11873.756 270.58 0.0001 

P x S x M 24 68422.739 2850 .947 64.97 0.0001 
Problem 

Class n m # Exclusions Error # Exclusions Error 

(b) excludes test problems not found feasible 
A 50 5 0 0.021 0 0.014 

Source DF ss MS F P-Value 
10 0 0.027 0 0.026 
20 0 0.045 0 0.043 

p 3 7114.828 2371 .609 87.73 0.0001 
100 5 0 0.004 0 0.004 

s 8 31698.678 3962.335 146.57 0.0001 
10 0 0.007 0 0.007 

P x s 24 17754.544 739.773 27.36 0.0001 
20 0 0.006 0 0.006 

U x (P X SJ 324 9781.949 30.191 1.12 0.1665 
200 5 0 0.003 0 0.002 

10 0 0.003 0 0.002 M 1 18376.070 18376 070 679.75 0.0001 
20 0 0.002 0 0.002 Px M 3 8502.468 2834.156 104.84 0.0001 

B 50 5 0 0.463 1 0.334 S x M 8 31126.885 3890.861 143.93 0.0001 
10 0 0.399 0 0.258 P x S x M 23 16923.476 735.803 27.22 0.0001 
20 0 0.354 0 0.275 

Source: Source of problem variation-single and interaction terms. 
100 5 0 0.329 2 0.201 

10 0 0.434 0 0.205 
DF: Degrees of freedom. 20 0 0.205 0 0.111 
SS: Sum of squares. 200 5 0 0.388 9 0.112 
MS: Mean squared. 10 0 0.498 0 0.216 

F: F-value . 20 0 0.273 0 0.100 

P-value : P-value. C 50 5 0 0.473 2 0.349 
10 0 0.708 0 0.448 
20 0 1.341 0 0.924 

100 5 0 0.312 5 0.186 
parameters. In such a case, the importance of being close 10 0 0.647 0 0.362 
to the mathematical optimum is diminished.1 

20 0 1.038 0 0.506 
200 5 0 0.347 10 

7. Summary and Conclusions 
10 0 0.546 0 0.294 
20 0 0.705 0 0.280 

In this paper first we present a new heuristic, Variable- D 50 5 0 1.568 1.511 

Depth-Search (VDSH) , to solve the Linear Cost Gen- 10 0 3.747 1 2.598 

eralized Assignment Problem (LCGAP) . Next, we re- 20 0 3.758 5 3.615 
100 5 0 1.591 0 1.518 

view application of statistical experimental design in 
10 0 2.813 0 2.661 

comparing performance characteristics of algorithmic 20 0 3.834 0 3.834 
and heuristic alternatives. Applying a rigorous statistical 200 5 0 1.539 0 1.406 

design of experiment, split-plot design, we compare 10 0 2.691 0 2.517 
20 0 4.040 0 3.815 

1 As noted by one of the anonymous referees. * Excludes test problems not found feasible. 
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evaluate the relative efficiencies of VDSH and the lead­
ing GAP solution methods under different factorial 
combinations. 

We show that on " small" test problems, VDSH pro­
duces solutions of comparable quality and its average 
solution time is "significantly" smaller than the leading 
algorithms. On the set of "large" test problems, although 
VDSH performance is inferior to the leading heuristic, 
HGAP, however, it improves the solution quality by 
20% over HGAP , given the correct problem parameters. 
A major trade-off between VDSH and HGAP becomes 
the solution quality versus solution time.2 

2 We thank the anonymous area editor a nd three referees for their 

careful review of the original manuscript and comments and sugges­
tions tha t enhance the presentation and content of this paper. 
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