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This paper studies a multi-facility network synthesis problem, called the Two-level Network 
Design (TLND) problem, that arises in the topological design of hierarchical communication, 

transportation, and electric power distribution networks . We are given an undirected network 
containing two types of nodes-primary and secondary-and fixed costs for ins talling either a 
primary or a secondary facility on each edge. Primary nodes require higher grade interconnections 
than secondary nodes, using the more expensive primary facilities. The TLND problem seeks 
a minimum cost connected design that spans all the nodes, and connects primary nodes via 
edges containing primary facilities; the design can use either primary or secondary edges to 
connect the secondary n odes. The TLND problem generalizes the well-known Steiner network 
problem and the hierarchical network design problem. In this paper, we study the relationship 
between alternative model formulations for this problem ( e.g., directed and undirected models) , 
and analyze the worst-case performance for a composite TLND heuristic based upon solving 
embedded subproblems (e.g., minimum spanning tree and either Steiner tree or shortest path 
subproblems). When the ratio of primary to secondary costs is the same for all edges and when 
we solve the embedded subproblems optimally, the worst-case performance ratio of the com­
posite TLND heuristic is 4/3 . This result applies to the hierarchical network design problem 
with constant primary- to-secondary cost ratio since its subproblems are shortest path and min­
imum spanning tree problems. For more general situations, we express the TLND heuristic 
worst-case ratio in terms of the performance of any heuristic used to solve the embedded Steiner 
tree subproblem. A companion paper develops and tests a dual ascent procedure that generates 
tight upper and lower bounds on the optimal value of a multi-level extension of this problem. 
(Network Design; Integer Programming; Problem Formulation; Valid In equalities; Worst-case Anal­
ysis of Heuristics ) 

1. Introduction 

1.1. Motivation 

This paper studies a multi-facility network synthesis 
problem that addresses design decisions for hierarchical 
telecommunications, transportation, and electric power 
distribution networks, and also generalizes several well­
known optimization models. The nodes in a hierarchical 
or multi-level network have different levels of impor-
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tance, with more critical or higher level nodes requiring 
higher grade (e.g., higher capacity or more reliable) , 
but more expensive, interconnections. Designing the 
topology for such networks motivates the following 
Multi-level Network Design (MLND) problem. The 
problem input consists of an undirected graph whose 
nodes are partitioned into L I eve ls; each edge can contain 
one of L different facility types, with higher grade fa­
cilities requiring higher fixed costs . We must select a 
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connected subgraph, and choose a facility type for each 
selected edge so that all nodes at any level I commu­
nicate via facilities of grade I or higher. The objective 
is to minimize the total cost of the chosen facilities. We 
refer to the special version of the MLND problem con­
taining only two node levels and facility types- primanJ 
and secondary-as the Two-level Network Design 
(TLND) problem. 

Two-level network design models have considerable 
economic significance. Consider, for instance, the tele­
communications context. With increasing demand for 
higher bandwidth telecommunication services, regional 
telephone companies are rapidly modernizing their 
metropolitan networks by replacing copper cables with 
fiber optic systems. For instance, from 1987 to 1993, 
the regional telephone companies in the United States 
nearly sextupled their deployment of fiber optic equip­
ment to an installed base of over 14.2 million fiber­
kilometers. Total U.S. sales of fiber optic cables and sys­
tems was approximately $3.1 billion in 1993, and the 
demand is expected to grow further as the deployment 
of fiber optics in local loops, metropolitan area networks, 
and cable television systems increases (U.S . Industrial 
Outlook 1994) . Since network modernization entails 
enormous investments, planners require new models 
and methods to design cost-effective two-level networks 
combining fiber optic transmission systems (primary 
facilities) and copper cables ( secondary facilities) . The 
switching centers and certain important customers ( e.g., 
large businesses) are primary nodes, and households 
are secondary nodes. Because primary nodes have 
greater traffic volume and higher transmission fre­
quency, the network must connect them using high 
bandwidth, but expensive, fiber optic systems. Second­
ary nodes, on the other hand, might access the network 
via either fiber or copper cables. When the fixed cable 
installation costs dominate (relative to throughput­
dependent costs), this network configuration problem 
reduces to the TLND problem. 

Similar applications arise in road network planning 
and electric power distribution planning (see, for in­
stance, Patel ( 1979), Current, Re Velie, and Co hon 
( 1986)). In the transportation context, the TLND model 
can support planning activities to design a system of 
all-weather highways (primary facilities) and rough 
roads ( secondary facilities) connecting major cities 
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(primary nodes) and rural communities (secondary 
nodes) . For electric power distribution, the primary and 
secondary facilities correspond to high and low voltage 
transmission lines. 

The TLND model or its multi-level generalization 
might not completely capture all the complexities of the 
actual design problem since it incorporates only an ap­
proximate representation of capacity constraints via the 
distinct facility types. However, TLND solutions provide 
insights and principled starting points for a compre­
hensive network planning exercise. 

The TLND model also has theoretical significance be­
cause it generalizes several classical discrete and net­
work optimization models. For instance, the model 
generalizes the Hierarchical Network Design (HND) 
problem, defined by Current et al. ( 1986) . The HND 
problem designates exactly two nodes of the network 
as primary nodes . Its solution consists of a primary path 
connecting these two nodes, and secondary edges con ­
necting the remaining nodes to this path. The TLND 
problem also generalizes the Steiner Network problem 
(Dreyfus and Wagner (1972)) . To model the Steiner 
network problem, we treat the terminal vertices as pri­
mary nodes in the TLND problem, designate the po­
tential Steiner vertices as secondary nodes, and use zero 
secondary costs for all edges; the primary costs are the 
original edge lengths in the Steiner problem. Deleting 
all the secondary edges from the optimal TLND solution 
gives the minimum cost Steiner network. 

1.2. Previous Research 
Duin and Volgenant ( 1989) showed how to transform 
the MLND problem (which they call the multi-weighted 
Steiner tree problem, see also Iwainsky ( 1985)) into an 
equivalent directed Steiner tree model over an expanded 
network. For an MLND problem with n nodes, m un­
directed edges, and L levels, the expanded network 
contains Ln nodes, and ( 2 Lm + Ln) directed arcs. Pre­
vious research on algorithms for the TLND problem is 
limited to Duin and Volgenant's ( 1991) problem re­
duction tests, and two approximate methods that are 
analogous to Steiner tree heuristics. However, re­
searchers have extensively studied the TLND model's 
two important special cases-the Steiner network 
problem and the HND problem . The vast literature on 
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the Steiner network problem ( see Winter ( 198 7) for a 
recent survey) addresses issues of model formulation 
and polyhedral representations ( e .g., Prodon, Liebling 
and Groflin ( 1985) , Chopra and Rao ( 1988)) , worst­
case analysis of heuristics ( e.g., Takahashi and Matsu­
yama ( 1980) , Kou, Markowsky, and Berman ( 1981) , 
Goemans and Bertsimas ( 1990)), and computational 
testing of optimization-based solution methods ( e.g., 
Wong (1984) , Beasley (1984) , (1989)) . The literature 
on the HND problem is relatively recent. Current et al. 
(1986), Shier (1991) , and Pirkul, Current, and Naga­
rajan ( 1991) describe heuristic solution methods, and 
Orlin ( 1991) analyzes the problem's computational 
complexity and heuristic worst-case performance. Duin 
and Volgenant ( 1989) describe methods to identify op­
timal edges and eliminate variables from the HND 
problem formulation , and present computational results 
to demonstrate the effectiveness of these reduction 
strategies. 

The TLND problem is NP-hard since it generalizes 
the Steiner network problem ( Garey and Johnson 
( 1979)) . Orlin ( 1991) showed that the HND special 
case is also NP-hard. Furthermore, the HND problem 
remains NP-hard even when all the edges have the 
same primary-to-secondary cost ratio, or if all the edges 
have unit primary costs and binary secondary costs 
(Orlin (1991)) . This paper considers modeling issues 
for the TLND problem, and develops worst-case bounds 
for a combined heuristic based on Steiner and spanning 
tree solutions. A companion paper (Balakrishnan, Mag­
nanti, and Mirchandani ( 1994a)) develops and tests an 
algorithm that combines problem preprocessing, dual 
ascent, and local improvement to approximately solve 
the MLND problem. Using this method, we have solved 
large-scale TLND problems containing up to 500 nodes 
and 5000 edges to within 0 .9% of optimality; the mixed 
integer formulation for our largest test problem contains 
20,000 integer variables and over 5 million constraints. 

This paper is organized as follows . Section 2 intro­
duces our notation and presents two related integer 
programming formulations for the undirected TLND 
problem-a Steiner-Spanning tree formulation and a 
multicommodity flow-based formulation . We also de­
scribe a class of inequalities, called the bidirectional 
commodity-pair inequalities, that produce a consider­
ably stronger " enhanced" linear programming relaxa-
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tion . In §3, we consider a more compact formulation 
corresponding to the directed version of the TLND 
problem, and show that this formulation has the same 
optimal linear programming value as the enhanced un­
directed formulation. Section 4 describes several natural 
heuristic strategies based upon minimum spanning tree 
and Steiner tree solutions, and derives worst-case per­
formance bounds for a composite TLND heuristic. For 
problem instances with proportional primary and sec­
ondary costs (i.e. , the ratio of primary to secondary costs 
is the same for all edges), our method's worst-case 
bound is 4/ 3 if we solve an embedded Steiner tree 
problem exactly. For the HND problem, this embedded 
subproblem reduces to the shortest path problem, and 
so the composite heuristic solution is at most 33 ½ % 
more expensive than the optimal HND solution if costs 
are proportional. In general, for proportional cost TLND 
problems containing more than two primary nodes, if 
we use a Steiner heuristic with a worst-case bound of 
p to approximately solve the Steiner subproblem, then 
the TLND worst-case bound is p if p ~ 2, or 4 / ( 4 - p) 

if p < 2. The TLND worst-case performance ratio in­
creases to (p + 1) for problems with nonproportional 
costs. As part of our analysis, we provide worst-case 
examples to show that these bounds are tight . Section 
5 offers some concluding comments. 

2. Modeling the Undirected TLND 
Problem 

The TLND problem is defined over an undirected net­
work G = (N , E) whose nodes are partitioned into two 
subsets-primary nodes and secondary nodes. Let p de­
note the number of primary nodes. For convenience, 
we index the primary nodes from 1 to p , and the sec­
ondary nodes from (p + 1) to n . Every candidate edge 
{ i, j} in E has a primary cost a;i and a secondary cost b;i , 
with a;; ~ b;; ~ 0. We assume, without loss of generality, 
that each edge can contain either facility type. If the 
problem context prohibits edge { i, j } from containing 
a primary facility, we can set the primary cost a;; to a 
very high value; similarly, setting b;i = a;; permits us to 
model edges that can contain only primary facilities . 

The TLND problem seeks a tree that spans all the 
nodes of G, and contains a subtree of primary facilities 
connecting all the primary nodes. This primary subtree 
might ( optionally) span some secondary nodes. Note 
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that if all the nodes are primary nodes or if the primary 
cost equals the secondary cost for all the edges, the 
TLND problem reduces to the minimum spanning tree 
problem. At the other extreme, the shortest path problem 
corresponds to the special case in which the network 
contains only two primary nodes, and all secondary 
costs are zero; with more than two primary nodes, this 
model becomes a Steiner network problem. 

To formulate the TLND problem as an integer pro­
gram, we first represent it as two linked subproblems­
a Steiner tree subproblem and a spanning tree sub­
problem. We then expand (in §2.2) the Steiner and 
spanning tree constraints in terms of binary design 
variables and continuous flow variables to obtain a basic 
flow -based formulation . Section 2.3 describes some 
valid inequalities to strengthen this formulation. Using 
a small example, §2.4 demonstrates how these addi­
tional inequalities significantly improve the optimal 
value of the linear programming relaxation . In §3, we 
transform the undirected problem into a directed prob­
lem, and prove that the linear programming relaxation 
of the directed formulation has the same optimal ob­
jective function value as the linear programming relax­
ation of the enhanced undirected formulation . 

2.1. Steiner-Spanning Tree (S-ST) Formulation 
This problem formulation exploits the following two 
observations concerning the optimal TLND solution: 

( i) the optimal design is a spanning tree of the orig­
inal graph G (since all costs are nonnegative) , and 

(ii) the edges containing primary facilities constitute 
a Steiner tree, with the primary nodes as terminals, that 
is embedded in the spanning tree (since a;i ::::: b;i) . 
Correspondingly, we have two sets of binary decision 
variables: 

U ·· = ( 1 if edge { i, j } contains a primary facility, and 
I/ 

0 otherwise. 

if edge { i , j} belongs to the optimal 
design, and 

otherwise. 

We let e;i = a;i - b;i ::::: 0 denote the incremental cost of 
edge { i, j} . 
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Let U be the set of all Steiner trees with primary nodes 
as terminals ( and secondary nodes as Steiner points) . 
u = { U;i } is the characteristic vector of a Steiner tree in 
U, i.e., u;i = 1 if edge { i, j } belongs to the Steiner tree, 
and u;i = 0 otherwise. Similarly, let W be the set of all 
spanning trees of the graph G, and let w denote the 
characteristic vector of a spanning tree. The TLND 
problem then has the following Steiner-Spanning tree 
(S-ST) formulation: 

[S-ST] minimize L (e;iuii + b;iwii ) (2 .1) 
l i,jj E E 

subject to 

Steiner tree constraints: 

u EU, 

Spanning tree constraints: 

wEW, 

Linking constraints: 

U;i 5 W;i for all { i, j} EE, and 

lntegrality constraints: 

U;i,w;i = Oorl forall {i,j } EE . 

(2.2) 

( 2.3) 

(2 .4) 

(2.5) 

The objective function ( 2.1) minimizes the secondary 
cost for the spanning tree w and the incremental cost 
of the Steiner subtree u. Constraints ( 2.2) and ( 2.3) 
specify that the primary subnetwork must be a Steiner 
tree while the overall network is a spanning tree. The 
linking constraints ( 2.4) ensure that the Steiner tree is 
embedded in the selected spanning tree. 

The S-ST formulation extends easily to the general 
MLND problem with more than two levels. Consider L 
different sets U' of Steiner trees, one for each level / 
= 1, 2, ... , L of the network; in our notation, a higher 
grade facility type or level has a higher index I. The set 
U 1 contains all Steiner trees using level / or higher level 
nodes as terminals. Correspondingly, for each edge 
{ i, j}, we have L different design variables zdi , for I 
= 1, . . . , L. The linking constraints are: 

uli 5 ul;-1 for all edges { i , j} EE, and I = 2, . . . , L. 

The objective function coefficient e Ii for variable u Ii 
equals the difference in cost between the level I facility 
and the level ( I - 1) facility on edge { i , j }. 
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Note that for the HND special case ( which contains 
only two primary nodes) , the Steiner tree component 
of the S-ST formulation reduces to a shortest path re­
striction, i.e., U is the set of all simple paths in the net­
work connecting the two primary nodes. Also, if we 
omit the linking constraints (2.4) in formulation [S-ST] , 
the TLND problem decomposes into two independent 
subproblems: a Steiner tree subproblem ( over the pri­
mary nodes) using the incremental edge costs e;j , and 
a spanning tree subproblem using the secondary costs 
b;i . The sum of the optimal values for these two sub­
problems, therefore, provides a lower bound on the op­
timal value of the TLND problem. We exploit this ob­
servation in §4 when we derive heuristic worst-case 
bounds for the TLND problem. 

2.2. Basic Undirected Flow-based Formulation 
This section reformulates the TLND problem by ex­
panding the set constraints ( 2.2) and ( 2.3) in the 
[S-ST] model using multi-commodity flow formulations 
of the Steiner tree and spanning tree subproblems. To 
formulate these subproblems in terms of network flows, 
we introduce (n - l) unit demand commodities , all 
originating at a common root node; for convenience, 
we designate the primary node 1 as the root node. We 
index the commodities from 2 to n , and impose flow 
constraints for commodity k = 2, 3, .. . , n requiring 
that we send one unit of flow from node 1 to node k . 

We refer to commodities 2 top (i.e ., commodities with 
primary nodes as destinations) as primary commodi­
ties, and commodities (p + l) to n as secondary com­
modities; let P and S denote the set of primary and 
secondary commodities. To determine the routing of 
each commodity k, we introduce directed flow variables 
f t and fJ; for each edge { i , j }. The continuous variable 
f t (f J; ) denotes the fraction of commodity k's demand 
flowing from node i to node j ( from node j to node i). 

We next expand the Steiner tree and spanning tree con­
straints (2.2) and (2.3) using these flow variables and 
the design variables u;i and W ;i . 

First, consider the Steiner tree constraints ( 2.2). By 
definition, the Steiner tree must span all the primary 
nodes, i.e., it must provide an origin-to-destination flow 
path for every primary commodity. This requirement 
translates into the following flow conservation and 
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forcing constraints (Wong ( 1984) proposed this Steiner 
tree formulation): 

Stein er tree flo w conservation equations: 

Lft- L i;,= { - ; 
i EN 1EN 

0 

if j = l 

if j = k 

otherwise 

forallkEP , (2 .2a) 

Steiner tree forcing constraints: 

fJ; s U;i for all { i , j} E £, k E P, (2 .2b) 

Non negativity constraints : 

f t,f1;2':. 0 fora!! { i ,j} EE , kEP. (2 .2c) 

The Steiner tree forcing constraints ( 2.2b) ensure that 
primary commodities flow (in either direction) only on 
edges { i, j } containing primary facilities, i.e., only if u ;i 

= 1. 
We can rewrite the spanning tree constraints ( 2.3) 

using an analogous flow formulation. The spanning tree 
must carry one unit of flow from the root node to every 
other node of the network; an edge { i , j } can carry flow 
only if we include it in the design (i .e., only if W ;i = l) . 
The following constraints express these conditions. 

Spanning tree flow conservation equations : 

Lft- Lf7. =r-: 
iEN 1EN 

0 

if j = 1 

if j = k 

otherwise 

forallkEPUS, (2 .3a) 

Spanning tree forcing constraints: 

and 

f k 
j i S W ;j for all { i, j} E £, k E P U S, (2 .3b) 

Nonnegativity constraints : 

f t,f1;;:,:_ 0 forall { i, j} EE,kEPUS. (2 .3c) 

Replacing constraint (2 .2) with (2.2a) , (2 .2b), and 
(2 .2c), and constraint (2 .3) with (2.3a) , (2 .3b) , and 
(2 .3c) in formulation [S-ST], and eliminating the re­
dundant constraints (2.2a) and (2 .2c) fork E P, we 
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obtain an expanded S-ST formulation containing the 
following constraints: 

• flow conservation equations ( 2.3a) for each com­
modity at every node; 

• Steiner tree forcing constraints ( 2.2b) for all edges; 
• spanning tree forcing constraints ( 2.3b) for all 

edges; 
• linking constraints ( 2.4) for all edges; 
• nonnegativity constraints (2.3c) for all the flow 

variables; and, 
• integrality restrictions ( 2.5) for all the design vari­

ables. 
Consider the following change of variables in the ex­

panded S-ST formulation : for every edge { i, j }, we 
introduce a new decision variable V;j, and replace the 
spanning tree edge selection variable W;i with ( U;i + V;i). 
Since both w;i and U;i are binary variables and since W;i 
~ U;i (constraint (2.4)) , V;i is also binary, and has the 
following interpretation: 

if edge { i, j } contains a secondary 
facility, and 

otherwise. 

We refer to U;i and V;i , respectively, as primary and sec­
ondary edge selection variables. Substituting for W;i in the 
linking constraint ( 2.4) gives 

Uij 5 U;j + V;j, 

which reduces to nonnegativity constraints for the v 

variables. Constraints (2 .2b) remain unchanged, while 
constraint ( 2.3b) becomes 

f t 5 U;i + V;j, and 

fJ; 5 U;i + V;i for all { i , j} E E, k E S. 

These constraints specify that a secondary commodity 
k can flow in either direction on edge { i, j} only if this 
edge contains either a primary or a secondary facility. 
Finally, with the change of variables, the primary cost 
a;i replaces the incremental cost e;i as the objective coef­
ficient of U;j, and variable V ;i has the secondary cost b;i 
as its objective coefficient. We refer to this revised for­
mulation as the Basic Undirected Flow-based (BUF) 
formulation . 

[BUF) minimize :Z:: a;iuii + 
l i,j} EE 

L b;jVij 
l i,j} EE 
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(2.6) 

subject to 

Commodity flow conservation: 

iEN {

-

0

1

1 

if j = l 

:Z:: ft - L f1; = if i = k 

otherwise 
iEN 

for all k E P U S, 

Primary forcing constraints: 

(2 .7) 

f t 5 U;j, and 

fJ; 5 u;i for all {i, j} EE, k E P, 

Secondary forcing constraints : 

(2.8a) 

(2 .8b) 

[7i 5 U;i + V;j, and (2.9a) 

fJ; 5 U;i + V;i for all { i, j} EE, k E 5, (2.9b) 

Nonnegativity, integrality constraints: 

u;i , vii = 0 or 1 for all { i, j} E E, 

f t, f f; ~ 0 for all { i, j} E E, k E P U S. 

(2 .10a) 

(2 .10b) 

The flow-based model easily accommodates variable 
(flow-dependent) costs ( these costs appear as objective 
function coefficients for the flow variables f t ), and also 
extends to the more general multi-level network design 
problem. Like the spanning tree and Steiner network 
problems, the TLND problem also has several alternate 
formulations . For instance, we can reformulate the 
problem in cutset form using only the primary and sec­
ondary design variables ( see Aneja ( 1980) and Chopra 
and Rao ( 1988) for cutset formulations of the Steiner 
network problem) . This formulation contains an ex­
ponential number of constraints ( corresponding to all 
possible cutsets in the graph). A second variant would 
express the connectedness constraint by defining a dif­
ferent commodity for every pair of nodes in the network. 

For a network with n nodes and m edges, formulation 
[BUF] has O(m) binary variables, O(mn) flow variables, 
O(n 2

) flow conservation constraints (2 .7), and O(mn) 
forcing constraints ( 2.8) and ( 2. 9). In the next section, 
we describe model enhancements that strengthen the 
formulation but increase the number of forcing con­
straints to O(mn 2

). 
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2.3. Strengthening the Undirected Flow-based 
Formulation 

As we illustrate in § 2.4, the basic undirected flow-based 
formulation [BUF] has a relatively weak linear pro­
gramming relaxation, making it unsuitable for LP-based 
solution methods such as dual ascent algorithms ( e.g., 
Balakrishnan et al. ( 1994a)) . To strengthen this relax­
ation, we describe a class of additional valid inequalities 
which we call the bidirectional commodity-pair forc­
ing constraints. As their name suggests, these con­
straints contain flow variables for pairs of commodities 
flowing in opposite directions on each edge; they replace 
the primary and secondary forcing constraints (2.8) and 
(2 .9) of formulation [BUF]. 

Let us first consider the primary forcing constraints 
(2 .8) in formulation [BUF] . To strengthen these con­
straints, we exploit the following property of the optimal 
TLND solution . Since the primary and secondary costs 
are nonnegative and since all commodities share the 
same origin, the TLND problem has an optimal tree 
solution that routes all the commodities flowing on an 
edge in the same direction on that edge. In particular, 
if this solution routes a pair of primary commodities k 
and h on edge { i, j }, then both commodities must flow 
either from node i to node j or from node j to node i . 
This observation motivates the following stronger forc­
ing constraints, which we call the primary commodity­
pair forcing constraints or P-P forcing constraints: 

.. + .. < u --f k !" 1/ 11- 1/ for all { i , j} E E, k, h E P . (2 .11) 

The same principle also applies to commodity pairs 
containing secondary commodities. However, if either 
commodity k and/ or commodity his a secondary com­
modity, we must add the secondary design variable v ;i 

to the right-hand side. Thus, for mixed ( primary and 
secondary) commodity pairs we add the P-S forcing 
constraints 

/7i +/Ji~ U;i + V;i for all {i, j} EE, and 

for all k E P, h E S 

or kES,hEP. (2.12) 

For pairs of secondary commodities, we replace the sec­
ondary forcing constraints (2.9) in formulation [BUF] 
with the S-S forcing constraints 
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f k !" ij + ji ~ U ;j + V;j for all { i, j} E E, k, h E S. 

(2.13) 

Let [EUF] denote the Enhanced Undirected Flow­
based formulation containing these three sets of con­
straints instead of the single-commodity forcing con­
straints (2 .8) and (2.9). 

The bidirectional commodity-pair forcing constraints 
( 2.11) , ( 2.12) , and ( 2.13) are stronger than the original 
forcing constraints since they contain additional flow 
variables on the left-hand side. However, since these 
constraints apply to every pair of commodities, the en­
hanced formulation for a network with n nodes and rn 
edges contains O(mn 2

) forcing constraints rather than 
the O(mn) forcing constraints in the basic formulation. 
For the largest network size that we tested in our com­
putational study ( Balakrishnan et al. ( 1994a)) , for­
mulation [EUF] contains more than 450 million con­
straints. 

Researchers have previously proposed bidirectional 
commodity-pair forcing constraints for related prob­
lems. Unlike our P-P , P-5 , and 5-S forcing constraints 
(2.11)-(2.13) which incorporate the TLND problem's 
multiple commodity (and multiple facility) types, the 
previous constraints consider only a single commodity 
type. Magnanti and Wong ( 1981) described commodity­
pair forcing constraints for the uncapacitated network 
design problem. Martin ( 1986) showed that adding the 
commodity-pair forcing constraints to the undirected 
multicommodity flow formulation of the minimum 
spanning tree problem gives an exact formulation, i.e. , 
the LP relaxation of this formulation has integer extreme 
points ( this property obviously does not hold for the 
TLND problem) . 

2.4. Impact of Adding the Commodity-pair 
Forcing Constraints 

Using the simple 6-node example shown in Figure 1, 
we illustrate the impact of successively adding the com­
modity-pair forcing constraints on the linear program­
ming lower bound. This example has 3 primary nodes 
( nodes 1, 2, and 3) and 3 secondary nodes. The numbers 
on each edge denote the corresponding primary and 
secondary costs. Primary nodes are shaded circles, and 
secondary nodes are hollow circles. 

Figures 2 (a) through 2 ( e) depict the optimal linear 
programming solutions as we progressively strengthen 
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Figure 1 6-node TLNO Example 

28, 19) 

(55,3, 

! secondary cost 
primary cost 

@ Primary nodes 

Q Secondary nodes 

the basic undirected formulation [BUF] by adding the 
P-P forcing constraints, the S-S forcing constraints, and 
the P-S forcing constraints. In these figures, dark and 
light lines represent, respectively, primary and second­
ary edges with positive LP solution values. Solving the 
LP relaxation of the basic formulation [BUF] gives the 
solution shown in Figure 2(a) with a cost of 78.5; this 
solution violates, for instance, the P-P forcing constraints 
on edge { 2, 3 } . Adding the P-P constraints ( for all 
edges) increases the optimal LP value to 88 .5, and gives 
the solution shown in Figure 2(b). Contrast this solution 
with the solution, shown in Figure 2 ( c) , obtained by 
enforcing integrality for the primary design variables 
U;i ( and keeping the secondary design variables contin­
uous) in the basic formulation [BUF]; this mixed integer 
program has an optimal value of 91. 

The solution in Figure 2(b) (with the P-P forcing 
constraints added to formulation [BUF]) violates the 
S-S forcing constraints for edges { 4, 5 } and { 5, 6 }. 
Adding the S-S forcing constraints for all edges elimi­
nates this solution. However, the new optimal LP so-
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lution, shown in Figure 2 ( d) , still contains fractional 
values. In particular, this solution has a cost of 101 and 
violates the P-S forcing constraint for edge { 3, 6 } . Fi­
nally, when we add all the P-S forcing constraints (i .e., 
if we use the complete enhanced formulation [EUF]), 
the optimal LP solution is integral , and is therefore op­
timal for the original problem as well; Figure 2 ( e) shows 
this optimal TLND solution . 

For this example, the lower bound progressively in­
creases from the basic LP value of 78 to the optimal IP 
value of 106, fully eliminating the original integrality 
gap of 35% as we successively introduce the commod­
ity-pair forcing constraints ( 2.11), ( 2.12) , and ( 2.13) . 
This example also shows that none of these three classes 
of commodity-pair forcing constraints is redundant. We 
next describe a compact directed problem formulation, 
and prove that this formulation has the same optimal 

Figure 2 

LP value 
=78.5 

LP value 
=88.S 

LP value 
= JOI 

LP Solutions for 6-node Example 

(a) Basic undirected formulallon [BUFJ 

(b) Basic+ P-P fordna 
constraints 

.! 

(d) Basic + P-P and S-S 
forcing constraints 

• primary node 

0 secondary node 

(c) Buie+ Int..,- u 

(e) Enhanced undirected 
formulation [EUF) 

primary edge 

secondary edge 

Nodes are numbered cloclcwise from the top (root) node. 

LP value 
=91 

LP value 
= 106 
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linear programming value as the enhanced undirected 
formulation [EUF] . 

3. The Directed TLND Model 
Given a directed graph with primary and secondary 
nodes, and primary and secondary costs for each arc, 
the Directed TLND problem seeks a minimum cost 
spanning ( directed) arborescence rooted at a specified 
primary node that contains a primary path connecting 
the root node to every other primary node. We can 
transform any undirected TLND problem into an 
equivalent directed TLND problem by 

(i) choosing an arbitrary primary node, say node 1, 
as the root node, and, 

(ii) replacing each undirected edge { i, j } in the un­
directed graph with two directed arcs ( i , j) and (j , i) , 
both having the same primary and secondary costs 
(a;i and b;i ) as the original edge. 
Let A denote the set of arcs in this directed network. 
Since the primary and secondary arc costs are nonneg­
ative for all arcs, the directed TLND problem defined 
over the transformed network has an optimal solution 
that selects at most one of the arcs (i, j) and (j , i). 
Therefore, ignoring the arc directions in this solution 
gives the optimal undirected solution with the same 
total cost. Note that this transformation is valid only 
for problems with a single-source ( or single-destination) 
commodity flow pattern. For problem contexts requiring 
flows ( with associated flow costs) between multiple or­
igins and multiple destinations, the optimal solution 
might route different commodities in opposite directions 
on the same edge; therefore, the directed model is not 
equivalent to the undirected problem. 

3.1. The Directed Flow-based Formulation 
To formulate the directed TLND problem as a mixed­
integer program we define, as in the undirected problem, 
a commodity flow pattern with n - 1 unit demand com­
modities, all originating at the common primary root 
node 1. As before, the formulation uses directed ( con­
tinuous) commodity flow variables f t , for all arcs 
(i, j) EA , denoting the proportion of commodity k's 
demand flowing from node i to node j . The formulation 
contains directed (binary) arc selection variables X;i and 
Yii for each arc ( i , j) EA . The primary arc selection vari­
able X;i has value 1 if we select arc ( i, j) as a primary 
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arc, and O otherwise. The secondary arc selection variable 
Yii has value 1 if we install a secondary facility on arc 
( i, j), and O otherwise. We obtain the following Directed 
Flow-based formulation, denoted as [OF] , by replacing 
the primary and secondary edge selection variables U;i 

and V ;i in the basic undirected flow-based formulation 
[BUF] with the directed arc selection variables X;i 
and Yii· 

[OF] minimize :Z: a;iX;i + L b;iYii (3 .1) 
(i,j)EA (i,j)EA 

subject to 

Commodity fl ow conservation: 

if j = 1 

if j = k 

otherwise 

for all k E PUS, (3 .2) 

Primary forcing constraints : 

f t ,s; X;i for all ( i, j) E A, k E P, 

Secondary forcing constraints: 

for all ( i , j) E A , k E S, 

Nonnegativity, integrality : 

X;j , Yii = 0 or 1 for all (i, j) EA , 

f t~ o forall(i,j)EA , kEPUS . 

(3 .3) 

(3 .4) 

(3 .Sa) 

(3 .Sb) 

Observe that, unlike the enhanced undirected formu­
lation [EUF] , the directed formulation uses only the 
O(mn) (unidirectional) single-commodity forcing con­
straints (3 .3) and (3 .4) . Yet, as we show next, this for­
mulation has the same optimal linear programming 
value as formulation [EUF] . 

3.2. LP-Equivalence of Directed and Enhanced 
Undirected Models 

This section shows that, when the primary and sec­
ondary costs are nonnegative ( and all the commodities 
have a common origin) , the linear programming relax­
ations of the directed flow-based formulation [OF] and 
the enhanced undirected formulation [EUF] have the 
same optimal values. Previously, Goemans and Myung 

M ANAGEMENT SCIENCE/Vol. 40, No. 7, July 1994 



BALAKRISHNAN, MAGNANTI AND MIRCHANDANI 
Modeling and Heuristic Worst-case Performance Analysis 

( 1991) have considered a similar result for the Steiner 
tree problem. They showed that the polyhedron deter­
mined by the linear programming relaxation of the en­
hanced undirected Steiner tree formulation (without the 
explicit upper bound constraints U;i .=:; 1) is a projection 
of the polyhedron determined by the linear program­
ming relaxation of the directed formulation. This prop­
erty is a polyhedral result that does not depend upon 
the sign of the objective function coefficients. Our result 
applies to the broader class of multi-level design prob­
lems, but considers only optimal solutions of the linear 
programming relaxation, and requires nonnegative 
costs. We might also note that, for the Steiner network 
problem, Chopra and Rao ( 1988) have shown a related 
equivalence between a directed cutset formulation and 
an (enhanced) undirected multi-cut formulation; both 
these formulations use only design variables, and do 
not include unit upper bounds on these variables. 

Let [LDF] and [LEUF] denote the linear programming 
relaxations of [DF] and [EUF], obtained by replacing 
the integrality ( 0 or 1) restrictions ( 2.1 0a) and ( 3 .Sa) 
on the edge and arc selection variables with nonnega­
tivity constraints and unit upper bounds ( e.g., replace 
the constraint u;i E { 0, 1} in [ BUF] with the constraints 
O.s;u;i .=s;l). 

THEOREM 1. For problems with nonnegative priman; 
and secondary costs, the linear programming relaxations 
of formulations [ EUF] and [ DF] have equal optimal objec­
tive function values. 

PROOF . We prove the theorem by showing that, 
given an optimal solution to either formulation ([LDF] 
or [ LEUF]) , we can construct a feasible solution to the 
other formulation with the same objective function 
value . Given a solution to one formulation, we use the 
same flow solution { f t} for the other formulation, and 
determine appropriate values of the design variables to 
accommodate these flows . 

We first note that; for a given flow solution { f t} , we 
can easily find the optimal values of the design variables 
for either formulation . For any arc ( i , j) EA, let F[ and 
F[5 denote the maximum primary flow and maximum 
combined (primary or secondary) flow on this arc in 
the direction i to j, i .e., 

F[ = max {f t : k E P }, and 

F[5 = max {f t : k E PUS }. 
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For given flows, we use the following equations to 
compute the values of the directed design variables x;i 
and Yii in formulation [LDF]: 

X;i = Fij, and 

Y;i = Fij5 
- X;i for all (i, j) EA . 

(3.6a) 

(3 .6b) 

Equations (3.6a) and (3 .6b) ensure that the directed 
design variables X;i and y ;i are nonnegative, and have 
the smallest possible values that satisfy the primary and 
secondary forcing constraints ( 3 .3) and ( 3.4). Since the 
primary and secondary costs are nonnegative, this so­
lution also has the smallest possible cost among all fea ­
sible designs that can accommodate the given flows . 

Similarly, we can express the undirected design so­
lution to [LEUF] in terms of given flow values as: 

U;i = max Ut + f 11= k, h E P } = F[ + Ff;, and (3 .7a) 

V ;i = max {f7i + f11: k, h E PUS } - U;i 

(3 .7b) 

Again, the undirected design variables are nonnegative, 
and satisfy all the commodity-pair forcing constraints 
( 2.11 )-( 2.13) of formulation [LEUF] . Equations ( 3. 7a) 
and (3 .7b) select the lowest possible values of the pri­
mary and secondary edge selection variables U;i and V;i 

that accommodate the given flows. 
We refer to the values of the directed and undirected 

design variables satisfying (3.6) or (3 .7) as tigh t design 
values . When defined by the same flows f t , these values 
satisfy the following relationships: 

V;1 = Y;i + Yi; for all { i, j} E E. 

(3 .8a) 

(3 .8b) 

Given an optimal solution to either the directed or the 
undirected model, we can assume that it has tight design 
values ( since costs are nonnegative), and use the given 
flows to construct tight design values to the other model 
satisfying ( 3.8). Since the costs are symmetric, the so­
lutions satisfying ( 3.8) have the same objective function 
value . 

So far, we have shown that the transformations via 
equations ( 3.6) and ( 3. 7) from an optimal flow solution 
give directed and undir.ected design solutions that are 
nonnegative, satisfy the forcing constraints of [ LDF] 
and [LEUF], and have equal objective function values. 
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To complete the proof of equivalence, we need to show 
that the computed design variables have values less than 
or equal to 1. The transformation from [LEUF) to [LDF) 
via equations ( 3.6) clearly satisfies this condition, since 
U;i ~ 1 and V;i ~ 1 in the given [LEUF) solution and the 
computed values of X;i and y;i are nonnegative and sat­
isfy equations ( 3.8) . The following claim, which we 
prove (in the Appendix) using the flow decomposition 
property (see, for example, Ahuja, Magnanti, and Orlin 
( 1993)) , establishes that the reverse transformation 
from [LDF) to [LEUF] gives an undirected design so­
lution that also satisfies the unit upper bounds. 

Claim : The linear programming relaxation [LDF) of 
the directed formulation has an optimal solution sa t­
isfying the conditions: 

Y;i + Yi;~ 1 for all edges { i, j} E: E. 

PROOF: See Appendix 1. 
Recall that the values of the undirected design vari­

ables U;i and V ;i that we derive from the optimal directed 
solution to [LDF) satisfy equations (3 .8). Therefore, 
given a directed design solution satisfying the conditions 
of the claim, the derived undirected solution also sat­
isfies the unit upper bounds. These arguments prove 
that the directed formulation and enhanced undirected 
formulation have the same optimal LP value. □ 

Since the directed formulation [OF) and the enhanced 
undirected formulation [EUF) are LP-equivalent, in Ba­
lakrishnan et al. ( 1994a) we use the directed formulation 
to develop the dual ascent algorithm. This algorithm is 
easier to describe and implement than its undirected 
counterpart. Finally, we note that the LP-equivalence 
of the directed and enhanced undirected formulations 
also extends to the more general single-origin ( or single­
destination) two-level network design model with flow 
costs. In this model, routing commodity k on edge 
{ i , j } incurs a nonnegative per unit cost of C;i ( we assume 
this per unit cost to be the same for all commodities) 
in addition to the fixed primary or secondary cost. We 
can apply a slight extension of the previous proof to 
problems with flow costs by additionally showing that 
the flow rerouting step (see Appendix 1) ensures a fea­
sible design but does not increase the total flow cost of 
the optimal LP solution . 
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4. Worst-case Analysis of TLND 
Heuristics 

This section analyzes the worst-case performance of 
several heuristic methods for the undirected TLND 
problem. Duin and Volgenant ( 1991) describe two ap­
proximate algorithms-a modified weight h euristic and 
a branch chord heuristic-for the TLND problem. These 
methods apply a Steiner tree heuristic (Takahashi and 
Matsuyama ( 1980)) to select the primary edges; the 
methods differ in the edge costs they use to construct 
the Steiner tree. Duin and Volgenan t ( 1991 ) raised the 
issue of whether these heuristics have the same worst­
case performance ratio of 2 as the underlying ( undi­
rected) Steiner heuristics, but did not develop any worst­
case bounds. 

We propose two broad classes of heuristic strategies 
for the TLND problem-" forward" heuristics and " re­
verse" heuristics . A forward heuristic first selects the 
configuration of primary edges, and then adds second­
ary edges to connect the remaining secondary nodes. 
In contrast, a reverse heuristic first installs secondary 
facilities to connect all secondary nodes, and then up­
grades or installs primary facilities to connect the pri­
mary nodes . We can implement these two strategies in 
various ways using different methods to construct the 
primary and secondary subtrees. We consider four dis­
tinct methods, two forward and two reverse, and ana­
lyze the worst-case performance of a composite heuristic 
that selects, for each problem instance, the best (lowest 
cost) among the four heuristic solutions. We also inter­
pret Duin and Volgenant's (1991) two _heuristics as 
specific implementations of the forward and reverse 
strategies. 

Motivated by Orlin's ( 1991) heuristic worst-case 
analysis for the HND problem, we first consider a special 
class of TLND problems in which the ratio of primary 
to secondary costs is the same for all edges. For this 
class of " proportional cost" TLND problems, we show 
that, if p is the worst-case ratio of the heuristic used to 
solve the embedded Steiner network subproblem, the 
composite TLND heuristic has a worst-case performance 
ratio of p or 4 / ( 4 - p) depending on whether p :2:::. 2 or 
p < 2. This result implies that, if we can solve the Steiner 
network subproblem optimally ( as in the HND prob­
lem), the composite heuristic produces a solution to the 
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proportional cost TLND problem that is guaranteed to 
cost no more than 4 / 3 the optimal cost. When the pri­
mary to secondary cost ratio varies by edge, the com­
posite heuristic has a worst-case ratio of (p + 1) . We 
also provide worst-case examples to prove that these 
bounds are tight. Our worst-case results resolve Duin 
and Volgenant's ( 1991) conjecture about the relation­
ship between the worst-case ratios for the Steiner and 
TLND heuristics. We note that transforming the TLND 
problem into an equivalent directed Steiner tree problem 
( Duin and Volgenant 1989) is not an effective tactic for 
TLND worst-case analysis since the lowest worst-case 
ratio known to date for the directed Steiner tree problem 
with w terminal nodes ( w = p + n in the equivalent 
directed Steiner tree representation of the TLND prob­
lem) is log(w) ; this result relies on transforming and 
solving the directed Steiner problem as a set covering 
problem ( Goemans 1992). 

4.1. TLND Heuristics 
4.1.1. Forward Heuristics. Forward heuristics first 

select the edges interconnecting the primary nodes 
( these edges must contain primary facilities), and then 
complete the design by adding secondary edges to con­
nect the remaining secondary nodes ( those that do not 
already belong to the primary subtree) . We describe 
two such methods that respectively use the minimum 
spanning tree and Steiner tree to construct the primary 
subtree. 

The basic version of the Minimum Spanning Tree 
(MST) heuristic for the TLND problem determines the 
minimum tree T spanning all the nodes of the original 
graph G ( using primary edge costs) , and installs primary 
facilities on all the edges of this tree. The primary sub­
tree, denoted as Tp, is the minimal subtree of T that 
spans all the primary nodes. 

We can improve the MST heuristic by: (i) installing 
primary facilities only on the edges of subtree Tp (instead 
of all the edges of T) , and (ii) selecting secondary edges 
to span the remaining secondary nodes by applying the 
following optimal secondary completion procedure: 

Condense all the nodes spanned by the primary subtree into 

a single node. If this aggregation process crea tes parallel edges, 

discard all but the cheapest (in terms of secondary costs) parallel 
edge. Find the minimum spanning tree of this condensed graph 

using secondary costs. Ins ta ll secondary facilities on the edges 

of this subtree. 
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We refer to this process of first selecting the primary 
subtree Tp of the minimum spanning tree, and then 
applying the optimal secondary completion procedure 
to T P as the Enhanced Minimum Spanning Tree 
(EMST) heuristic. 

The Forward Steiner Tree (FST) heuristic for the 
TLND problem first finds an exact or approximate Stei­
ner tree ( using primary edge costs) spanning all the 
primary nodes ( and optionally covering some secondary 
nodes) . This Steiner tree serves as the primary subtree 
in the heuristic TLND solution; we determine the sec­
ondary edges by applying the optimal secondary com­
pletion procedure to the primary subtree. Since the 
Steiner network problem is itself NP-hard, we might 
consider using an approximate method to solve the 
Steiner subproblem; consequently, we will express our 
TLND worst-case results in terms of the worst-case ratio 
p of the Steiner tree solution method (p = 1 if we solve 
the Steiner tree subproblem exactly) . For the HND spe­
cial case, we can solve the Steiner subproblem exactly 
since this subproblem corresponds to finding the short­
est path between the two primary nodes ( using primary 
edge costs) . We refer to this specialization of the FST 
heuristic for the HND problem as the Shortest Primary 
Path (SPP) heuristic. 

We can interpret Duin and Volgenant's ( 1991) mod­
ified weight heuristic for the TLND problem as one ver­
sion of the FST method. Using an edge weight function 
that reflects savings in secondary costs, they construct 
a primary subtree using a method analogous to Taka­
hashi and Matsuyama's ( 1980) greedy heuristic for 
solving Steiner tree problems. The modified weight 
heuristic then completes the TLND solution by applying 
the optimal secondary completion procedure. 

4.1.2. Reverse Heuristics. The MST and FST heu ­
ristics first connect the primary nodes ( possibly via in­
termediate secondary nodes), and then add secondary 
edges using the optimal secondary completion proce­
dure. We now consider " reverse" methods that first 
connect the secondary nodes, and then use incremental 
edge costs to install primary facilities . This reverse s trat­
egy might be intuitively appealing for problem instances 
with secondary costs close to primary costs. We describe 
two alternative implementations of this strategy. 

The Incremental Steiner Tree (1ST) heuristic first 
finds the minimum tree spanning the node set S U { 1} 
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using secondary costs (recall that primary node 1 is the 
root node) . Using incremental costs for the edges of 
this tree, and the original primary costs on the remaining 
edges of G, the method constructs a Steiner tree with 
primary nodes as terminals. Adding the edges ( with 
primary facilities) of the Steiner tree to the original sub­
tree ( containing secondary facilities) , and successively 
dropping secondary edges to eliminate any cycles gives 
a feasible TLND solution. 

The Overlay Steiner Tree (OST) heuristic begins 
with the secondary-cost minimum spanning tree over 
all the nodes ( the 1ST heuristic spans only the nodes in 
S U { 1}) . We then construct a Steiner tree ( with primary 
nodes as terminals) using incremental costs for edges 
in the minimum spanning tree, and primary costs for 
the remaining edges. As before, we install primary fa­
cilities on the edges of the Steiner tree, and eliminate 
cycles by successively dropping secondary edges. 

Like the FST heuristic, the 1ST and OST heuristics 
might employ either an exact or approximate method 
for solving the Steiner subproblem. For the HND prob­
lem, we can solve this subproblem exactly using a 
shortest path algorithm. Although all three Steiner tree­
based heuristics-FST, IST, and OST-solve Steiner 
subproblems with the primary nodes as terminals, they 
use different costs (primary costs for FST, and different 
incremental costs for 1ST and OST) . Just as the EMST 
heuristic improves the MST solution, we might consider 
the following enhancement of the 1ST ( or OST) heuristic 
solution: after solving the Steiner tree subproblem in 
the second step, apply optimal secondary completion 
to the primary subtree ( chosen by the exact or approx­
imate Steiner solution method) in order to decide the 
configuration of secondary facilities. We will refer to 
this improved method as the Enhanced IST ( or OST) 
heuristic. 

In addition to the Steiner tree-based reverse heuristics 
IST and OST, we might also consider a minimum span­
ning tree-based reverse heuristic analogous to the MST 
heuristic. This method first finds the secondary-cost 
minimum spanning tree, determines the primary subtree 
of this spanning tree, and upgrades the secondary fa ­
cilities to primary facilities on all edges of this primary 
subtree. Note, however, that the OST heuristic domi­
nates this method since the primary subtree ( of the sec­
ondary-cost minimum spanning tree) is one of many 
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possible heuristic solutions to the Steiner subproblem 
in the second step of the OST method. Finally, we can 
also interpret Duin and Volgenant's ( 1991) branch 
chord heuristic as a version of the enhanced OST heu­
ristic; starting with the secondary minimum spanning 
tree, the branch chord method constructs the primary 
subtree by successively exchanging secondary edges for 
primary edges. 

4.2. Worst-case Bounds for the Proportional Costs 
Case 

This section considers the special class of TLND prob­
lems having the same primary-to-secondary cost ratio, 
say r, for all edges, i.e., 

a--
r = :::..!l. for all edges { i, j} E E. 

b;i 

In this case, the incremental cost e;i of edge { i, j } equals 
( r - 1) b;i. In the following discussion, we let T ( G) de­
note the minimum tree ( using secondary costs) spanning 
all the nodes of the graph G. We assume that the sec­
ondary cost of T(G) is greater than zero; otherwise, the 
MST heuristic finds the optimal TLND solution. To 
simplify our notation, we scale the costs so that the 
secondary cost of the minimum spanning tree T(G) 
equals 1, i.e., 

L b ;j = 1. 
l i, j }E T( G) 

Let s denote the (unknown) secondary cost of the op­
timal Steiner tree spanning all the primary nodes. Note 
that, since the spanning tree T(G) is a feasible solution 
to the Steiner network problem with primary nodes as 
terminals, its secondary cost must be an upper bound 
on the secondary cost of the optimal Steiner tree, i.e., s 
~ 1. 

To evaluate the worst-case performance of the span­
ning and Steiner tree-based heuristics, we first develop 
a lower bound (in terms of the Steiner tree costs, the 
cost ratio r, and the normalized secondary cost of the 
minimum spanning tree T(G)) on the optimal value Z * 
of the TLND problem. We then derive upper bounds 
for each heuristic separately, and for a composite heu­
ristic that applies all four methods and selects the best 
heuristic solution. 

4.2.1. Lower bounds on z• To generate a lower 
bound on Z *, consider the relaxation of formulation 
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[S-ST] obtained by removing the linking constraints 
( 2.4) . The problem then decomposes into two sub­
problems: (i) a Steiner tree subproblem (involving the 
u variables) with primary nodes as terminals and with 
the incremental costs e;i as arc lengths; and (ii) a min­
imum spanning tree subproblem ( the w -subproblem) 
over the original graph, with the secondary costs as arc 
lengths. Since we have relaxed the original formulation, 
adding the optimal values for these two subproblems 
provides a valid lower bound Z = ( r - l) s + 1 on the 
optimal value Z *. Note that deleting the linking con­
straints ( 2.4) corresponds to dualizing these constraints 
using multipliers µ ij = 0; thus, Z is the value of the 
Lagrangian subproblem for this special set of multipliers. 
We, therefore, refer to Z as the Lagrangian lower 
bound . Subsequently, in §4.3, we consider two other 
lower bounds obtained by omitting the spanning tree 
constraint ( 2.3) and the Steiner tree constraint ( 2.2), 
respectively, from formulation [S-ST] . For the propor­
tional costs case, the Lagrangian lower bound dominates 
these latter two bounds . 

4.2.2. Upper bounds on heuristic solutions. We 
now determine upper bounds on the cost of the heuristic 
solutions produced by the four methods-one spanning 
tree method (EMST) and three Steiner tree-based 
methods (FST, 1ST, and OST)-described in §4.1. Let 
ZH denote the cost of the solution produced by the heu­
ristic method H . We begin by analyzing the forward 
heuristics . 

The basic MST heuristic installs a primary facility on 
every edge of the minimum spanning tree of the original 
graph. Since the primary-to-secondary cost ratio is r for 
all the edges, and the secondary minimum spanning 
tree has unit cost, the cost of the MST h euristic solution 
is r . The EMST heuristic improves the MST solution, 
and so 

To analyze the worst-case performance of the Steiner 
tree-based heuristic methods, we will assume that the 
embedded Steiner network solution m ethod has a 
known worst-case performance ratio p . Consequently, 
in the FST heuristic solution, the primary subtree is no 
more than p times the primary cost ( = rs) of the optimal 
Steiner tree solution. Furthermore, the optimal second­
ary completion of this primary subtree must cost no 
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more than the secondary minimum spanning tree for 
the original graph G . Therefore, 

ZFsT .s: prs + 1. 

Let us now consider the reverse heuristics. The IST 
heuristic incurs a secondary cost of at most 1 unit in the 
first step, and a maximum primary cost of prs in the 
second step (for the approximate Steiner tree connecting 
the primary nodes) . Therefore, 

Z1sT .s: prs + l. 

The OST heuristic incurs a cost of 1 in the first step, and 
an incremental cost of at most prs in the second step 
(since the incremental Steiner tree must cost less than 
the primary Steiner tree costs) . Consequently, 

ZosT .s: prs + l. 

Thus, all three Steiner tree-based heuristics (FST, IST, 
and OST) have the same upper bound of ( prs + l). 

4.2.3. Worst-case performance ratio. Let wspan and 
ws,einer represent, respectively, the worst-case perfor­
mance ratios ( i.e ., ratio of heuristic solution cost to op­
timal TLND value) of the spanning tree and Steiner 
tree-based heuristics. Based on our observations in 
§§4.2.1 and 4.2.2, these two ratios have the following 
upper bounds: 

< 
ZEMST r ws -- < ----- and 

pan- Z - (r-l)s+l ' 

ZFsT prs + l 
Wsteiner .s: z .s: ( r _ l ) 

5 
+ l . 

For any given va lue of r ;::: 1, the upper bound on the 
performance ratio wspan is decreasing in s; as s - 0, this 
upper bound tends to r. On the other hand, for the 
Steiner tree-based heuristics, the upper bound on the 
worst-case ratio Wsieiner increases with s. Since s .s: 1, 
Ws1einer has an upper bound of (p + 1 /r). 

Since the two upper bounds on the performance ratio 
respectively decrease and increase with s, we consider 
a Composite heuristic that selects the best among all the 
spanning and Steiner tree-based heuristic solutions for 
a given problem instance . Let i = min {ZEMST, ZFsT , Z1sT, 
ZosT} be the value of the composite heuristic solution, 
and let w denote its worst-case performance ratio. Note 
that 

i.s: min { r, prs+l }. 
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Therefore, the composite heuristic 's worst-case perfor­
mance ratio w satisfies 

min (r , prs + 1) 
w :$ . 

(r - l) s+ l 
( 4.1) 

For fixed r, the right-hand side of ( 4.1) achieves its 
maximum value whens = (r - 1) / pr . Substituting this 
value of s in the right-hand side of inequality ( 4.1) gives 
the following result. 

TH EOREM 2. If th e ratio of primary-to-secondary costs 
equals r for all edges, and p is the worst-case ratio of the 
Steiner network solution method, then the worst-case ratio 
w of the co mposite TLND heuristic has th e upper bound 

w :::::; l+(p - 2) / r+l / r 2 • 

p 
( 4.2) 

Note that this result gives a worst-case bound on the 
performance of the composite heuristic as a function of 
the primary-to-secondary cost ratio r. For example, if r 

= 1, then as we might expect, the worst-case ratio is 1. 
In order to obtain a worst-case bound that applies to 
all values of r, we consider two cases: p 2: 2 and p < 2. 
If p 2: 2, the right-hand side of inequality ( 4.2) is less 
than equal top since r 2: 1 (by definition) . Now consider 
the case with p < 2. For fixed p , the expression on the 
right-hand side of inequality ( 4.2) achieves its maximum 
value of 4/(4 - p) at r* = 2 / (2 - p) . Since p 2'.. 1 (by 
definition) and p < 2 ( by assumption), r* 2: 1 as re­
quired . These arguments establish the following cor­
ollary to Theorem 2. 

COROLLARY: For TLND problems with proportional 
costs, 

if p 2: 2 

if p < 2. 

Observe that, if the FST heuristic uses an exact Steiner 
tree solution method ( with p = 1) , this corollary implies 
a worst-case bound of 4/3 . In particular, for the HND 
problem (with only two primary nodes) the SPP heu­
ristic produces a solution that is at most 33 ½ % more 
expensive than the optimal solution . Since we use the 
Lagrangian lower bound to characterize the composite 
heuristic's worst-case performance, the analysis leading 
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to Theorem 2 also provides bounds on the linear pro­
gramming relaxation of the [S-ST] formulation . Bala ­
krishnan, Magnanti, and Mirchandani ( 1994b) develop 
these results in a more general problem setting than 
two-level network design . 

4.2.4. Worst-case examples with proportional costs 
We now present worst-case examples to show that the 
bounds of Theorem 2 are tight. We separately consider 
the HND problem and the general TLND problem . For 
the HND special case, p = 1 since the shortest path 
algorithm solves the Steiner tree subproblems exactly. 
For the TLND problem, we will assume a particular 
approximate method to solve the Steiner tree subprob­
lems with worst-case ratio p = 2. To prove the tightness 
of bounds in Theorem 2, we show that the upper bound 
( 4.2) on w is achievable for arbitrary values of r. In 
particular, for the HND problem, we show an example 
with w = r 2 

/ ( r 2 
- r + 1) that satisfies ( 4.1) as an equal­

ity, and for the general TLND problem our worst-case 
example achieves w = 2r 2 

/ ( r 2 + 1) . In all our examples, 
the enhanced versions of the MST, 1ST, and OST heu­
ristics, i.e ., using the optimal secondary completion 
procedure to select the secondary edges, do not improve 
the solution. 

Worst-case example for the HND problem. Figure 
3 (a) shows the HND worst-case example. This network 
has two primary nodes ( shown as solid circles) , and 
( q + d - 1) secondary nodes ( the hollow circles) . The 
parameter f has a small , positive value, and q is suffi ­
ciently large. We set the parameter d equal to an integer 
value grea ter than q / ( r - 1) . The number on each edge 
denotes its secondary cost; the primary cost is r times 
this value. For this example, 

(i) the EMST heuristic (Figure 3(b)) selects the pri­
mary edges on the lower path (selecting a large value 
of d ensures this MST configuration) , with a total cost 
of 

Z EMST = r { q [ r - 1] / q + 1 - f} = r 2 
- rf; 

(ii) the SPP heuristic ( Figure 3 ( c)) installs a primary 
facility on the direct edge between the primary nodes; 
the optimal secondary completion installs secondary 
facilities on the lower path ( excluding the last edge in­
cident to the primary node on the right) . This solution 
costs 
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Figure 3 Worst-case Example for HND Problem with Proportional Costs 

(r- 1) - E 

(a) Worst-case network 
( secondary costs shown on edges) 

(c) SPP, 1ST & OST heuristic solution 

e Primary node 

0 Secondary node 

ZsrP = r ( r - 1 - E) + 1 + ( q - 1 )( r - 1 ) / q 

= r 2 - ( r - 1) / q - rE. 

Note tha t ZsPP - ( r 2 
- rE) as q - oo; 

( iii ) the IST h euristic first selects the lower pa th as 
the minimum tree spanning the secondary nodes ( and 
nod e 1, the primary n ode on the left -hand side) ; the 
method then installs a primary facility on the direct edge 
connecting the two primary nodes . This solution is the 
sam e as the SPP solution (Figure 3(c)) ; 

(iv ) the OST heuristic first installs secondary facilities 
on the lower pa th connecting the two primary nodes 
( this is the minimum spanning tree) , then installs a 
primary facility (incurring a ost of r (r - 1 - E)) on the 
direct edge connecting the p rimary nodes, and finally 
dele tes one of the (secondary) edges in the lower path 
during the drop phase. This procedure also gives the 
SPP solution (Figure 3 (c) ); 
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U------U-------••··-1 

d 

Primary edge 

Secondary edge 

(b) EMST heuristic solution 

(d) Optimal solution 

( v ) the optimal solution (Figure 3 ( d)) consists of in­
s talling primary facilities on the lower path, and a sec­
ondary facility on the pendant edge. This solution has 
cost 

Z * = rq(r - 1 )/ q + 1 = ( r 2 
- r + 1) . 

As E - 0, w = min {ZEMST, Zsrr }/Z * approaches r 2
/ 

{ r 2 
- r + 1} as desired . Note that if r = 2 / (2 - p) 

= 2, we achieve the bound of 4 / 3 implied by Theorem 
2 fo r the composite heuristic. 

Worst-case example for the TLND problem. For 
TLND problems with more than two primary nodes, 
we will assume tha t the FST, 1ST, and O ST methods 
u se the following Terminal Tree heuristic to solve the 
Steiner subproblems. If the edge costs do not sa tisfy the 
triangle inequality, we set the length of edge ( i, j) , for 
every pair of nodes i and j, equal to the sh ortest path 
distan ce from i to j in the original graph . Using these 
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revised edge costs, we select the minimum tree spanning 
only the terminal (primary) nodes. The cost of this so­
lution is at most twice the cost of the optimal ( undi­
rected) Steiner tree (Takahashi and Matsuyama ( 1980), 
Lou, Markowsky, and Berman (1981)), i.e., p = 2 for 
the Terminal Tree heuristic. 

Figure 4 (a) shows the TLND worst-case example. 
This example has q primary nodes ( solid circles) on the 
circumference; the edges connecting each primary node 
to its neighbors have a secondary cost of ( r - l) / q. 
Each primary node is connected to a central secondary 
node via a "direct" path containing t edges (and t - l 

intermediate secondary nodes), each with a secondary 
cost of ( r - 1) / 2qt. Every pair of adjacent nodes i and 
j on this path is also connected by a string of (d + 1) 
edges ( with d intermediate secondary nodes) where d 
is a sufficiently large integer. The first edge on this string 
has a secondary cost of ( r - 1) / 2qt ; all remaining edges 
have secondary costs of ( r + 1) / 2 dqt. Thus, the cost 
of the string from i to j is r /qt . In all, the network 
contains qt such strings. If we use only these strings to 
connect each primary node to the central secondary 
node, we incur a total secondary cost of r . To ensure 
unique heuristic and optimal solutions, we can perturb 
the costs by small values ( similar to the f perturbation 
in our previous HND example). 

Figure 4 (b) shows the EMST solution for this ex­
ample. Its total cost is 

The FST, 1ST, and OST heuristics generate the solution 
shown in Figure 4 ( c) . This solution has cost 

ZFsT = r(q - l)(r - 1)/q + q(t - l)(r + l)/2qt 

+ (r - l)/2qt + (r + 1) / 2, 

which approaches r 2 as q and t - oo. Finally, the cost 
of the optimal solution ( Figure 4 ( d)) approaches 

Z* = rqt(r - l)/2qt + (r + 1)/2 = (r 2 + 1) / 2. 

Therefore, for this example, the performance ratio for 
the composite heuristic is 

w = 2r 2 /(r 2 + 1) . 

Again, as r - oo , w - 2 as indicated in Theorem 2. 
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4.3. Worst-case Analysis for the Nonproportional 
Costs Case 

We now analyze the composite heuristic's worst-case 
performance when the ratio of primary to secondary 
costs varies by edge. 

THEOREM 3. For TLND problems with nonproportional 
costs, if pis the worst-case ratio of the embedded Steiner 
tree heuristic, the composite heuristic has a worst-case 
performance ratio w of at most (p + 1) . 

PROOF. Let Z *, ZsT and ZTcc > denote, respectively, 
the values of the optimal TLND solution, the minimum 
Steiner tree spanning the primary nodes ( using primary 
costs), and the minimum spanning tree T(G) of the 
original graph G ( using secondary costs) . As the follow­
ing arguments show, ZsT and ZTCG) underestimate Z *. 

Consider the relaxation of formulation [S-ST] ob­
tained by omitting the spanning tree constraint ( 2.3) . 
Since the secondary costs are nonnegative, the relaxed 
problem must have an optimal solution with W;i = U;i . 
Substituting U;i for W;i in the objective function, and 
removing constraints ( 2.4) shows that this problem is 
eguivc}lent to finding the minimum Steiner tree using 
the primary costs a;i = b;i + e;i· Therefore, 

ZsT::; Z *. 

Similarly, if we omit the Steiner tree constraint ( 2.2), 
the optimal solution to the residual problem is the sec­
ondary-cost minimum spanning tree; therefore, 

ZT(G) ::; z *. 

The Forward Steiner Tree heuristic finds a primary 
subtree with a cost that is at most p times the optimal 
Steiner tree cost; applying optimal secondary completion 
to this subtree increases the total cost by at most the 
cost of the secondary minimum spanning tree. Thus, 

::; pl * + Z * from the previous inequalities. 

Therefore, 

W = Z composite / Z * 

::; (p+l) . □ 

COROLLARY. For TLND problems with nonpropor­
tional costs, if we use an exact solution method for the 
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Figure 4 Worst-case Example for TLND Problem with Proportional Costs 

(r-1)/q (r-1 )/2ql 

·spoke" 
construction 

-d--ledges--

(r-1)/2q~r+l)/2qtd (r+l)/2qld ' -- ,_ 
o---- ----0 

I j 

(b) EMST heuristic solution 

(a) Wont-cue network 
(sccondary costS shown on edges) 

(c) FST, 1ST and OST heuristic 90lutlon 

e Primary node 
Q Secondary node 

Steiner network subproblem , the composite heuristic has a 
worst-ca e ratio of 2. 

4.3.1. Worst-case examples with nonproportional 
costs. This section presents examples with varying 
primary-to-secondary cost ratios that achieve the worst­
case heuristic performance bound of ( p + l) . Again, 
we separately consider the HND problem and the gen-
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Primary edge 

Secondary edge 

(d) Optimal solution 

era! TLND problem. The worst-case examples have the 
same network configuration as before (i .e., same as Fig­
ures 3 and 4 for the HND and TL D problems, re­
spectively) , but h ave different (nonproportional ) cos ts. 
As before, enhancing the MST, 1ST, and OST heuristics 
by applying optimal secondary completion as a final 
step does not improve the solutions. 
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Figure 5 Worst-case Example for HND Problem with Nonproportional 
Costs 

primary cost = q/d 
secondary cost = O 

A primary cost = secondary COSI = q - E 

.____ primary cost= I ____,,,, 

C .#' secondary cost = I ......_ 

◄f---- (q-l)nodes ----­
IJ 

li"° ... 

B '/ 

e Primary node 

O Secondary node 

D 

Worst-case example for the HND problem. Figure 
5 shows the worst-case example for the HND problem. 
The primary and secondary costs are equal for all edges 
except the edge connecting nodes A and B, and the 
edges on the path connecting nodes Band C; these edges 
have a primary cost of 1 and a secondary cost of 0. The 
direct edge from A to D has primary and secondary cost 
equal to q - f . For this example, the EMST, SPP ( and 
1ST, OST) and optimal solutions have the same config­
urations as before (Figures 3(b) , 3(c) , and 3(d)). The 
cost of the EMST solution ( Figure 3 ( b)) is 

Z EMST = 2q . 

The SPP solution (Figure 3(c)) , obtained by first finding 
the shortest path between the two primary nodes, has 
cost 

Zsrr = 2q - 1 - f . 

The optimal solution, shown in Figure 3 ( d) , has a cost 
of q. Thus, the performance ratio for the composite 
heuristic is arbitrarily close to 2 = p + 1. 

Worst-case example for the TLND problem. Now 
consider the general TLND problem with more than 2 
primary nodes and nonproportional costs. Figure 6 
shows the TLND worst-case example. The optimal and 
heuristic (EMST and FST, 1ST, OST) solutions to this 
problem instance have the same structure as our pre­
vious example ( Figure 4) . The cost of the EMST solution 
( Figure 4 ( b)) is 

Z EM ST = 3q . 
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The cost of the FST (and 1ST, OST) solution using the 
Terminal Tree heuristic to construct the approximate 
Steiner tree is 

ZFST = 2(q - 1) + q(t - 1) / t + 1 / t, 

which is arbitrarily close to 3q for large values of q and 
t. The optimal solution, on the other hand, has cost 

z * = qt ; t = q. 

Thus, the performance ratio w is arbitrarily close to 3 
= (p + l) . 

4.4. Summary of Worst-case Results 
This section has described several heuristic methods for 
the TLND problem, developed worst-case performance 
bounds for two cost structures-proportional and non­
proportional costs-and proved that these bounds are 
tight . We note that the analysis for the proportional 
costs case might extend to problems in which the 
primary-to-secondary cost ratio varies by edge, but the 
ratio for every edge belongs to a prespecified interval 

[ r,, r u] ( r1 = r u corresponds to the proportional costs 
case). In this case, the worst-case bound would depend 
on the values of the upper and lower limits r1 and ru. 
This bound is likely to be superior to the bound of 
(p + 1) for the general cost structure. The following 
table summarizes the worst-case performance bounds 
for the different heuristics under various problem sce­
narios. 

Figure 6 Worst-case Example for TLND Problem with Nonproportional 
Costs 

primuy,.o=nda,y-2 

primary• tccondary-1/l 

....... 
oomlnlction 

"' d-1 - ~ 
prim~ 

• Primary node 

0 Secondary node i J --0 
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Worst-Case Performance Ratios for TLND Heuristics 

Proportional Nonproportional 
Heuristic Method Costs Costs 

FORWARD heuristics: 
EMST heuristic r (X., 

FST heuristic p + 1/ r p + 1 
REVERSE heuristics: 

1ST heuristic p + 1/ r p + 1 
OST heuristic p + 1/ r p + 1 

COMPOSITE heuristic: 
(i) p < 2 4/ (4 - p) p + 1 
(ii) p <!:. 2 p p + 1 

The results in this table show the power of combining 
two classes of heuristics, one whose performance ratio 
decreases and one whose performance ratio increases 
as a function of some underlying problem parameter ; 
in our analysis, this balancing parameter is s, the cost 
of the optimal Steiner tree. By balancing the effects of 
these two trends, the composite procedure is able to 
achieve a better performance ratio than each heuristic 
alone. The bound of 4 / 3 for the SPP heuristic is one 
example. Our analysis has the added novelty that the 
balancing parameter s, which is the optimal objective 
value ( using secondary costs) of the Steiner tree problem 
with the primary nodes as terminals, is unknown. 

5. Conclusion 
This paper has examined modeling issues and analyzed 
the worst-case performance of heuristics for a new class 
of multi-level network design problems. The model has 
applications in telecommunication, transportation, and 
electric distribution network planning. We showed that 
the basic flow-based formulation for the undirected 
problem is relatively weak (in terms of its LP value) , 
and the additional bidirectional commodity-pair forcing 
consh·aints considerably strengthen the lin ear pro­
gramming relaxation . When all the commoclities origi­
nate at a single node ( or have a single destination) this 
enhanced formulation is LP-equivalent to a more com­
pact directed formulation. To analyze heuristic worst­
case performance, we considered a composite heuristic 
that selects the best among several heuristic solutions 
based upon minimum Steiner and spanning trees. For 
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the HND special case with only two primary nodes, this 
heuristic gives a solution that is guaranteed to be no 
more than 33 ½ % more expensive than the optimal so­
lution . For the general case (with more than two primary 
nodes, and arbitrary primary and secondary costs), the 
composite heuristic's worst-case performance ratio of 
(p + 1) depends on the worst-case performance ratio p 

of a Steiner network heuristic. 
In a companion paper ( Balakrishnan et al. ( 1994a)) , 

we develop and test an optimization-based heuristic 
methodology for solving the multi-level network design 
problem. This method first applies certain preprocessing 
tests to reduce the problem by eliminating or installing 
primary or secondary facilities before solving the prob­
lem. The core of the method consists of a dual ascent 
algorithm to generate good linear programming-based 
lower bounds and heuristic upper bounds. Computa­
tional experience on large-scale problems ( containing 
up to 500 nodes and 5000 edges) shows that the method 
provides very good heuristic solutions that are within 
0.9% of optimality.1 

1 We appreciate the helpful comments from the referees and Mr. 5 . 

Raghavan, and thank a referee for bringing the work of lwainsky, 

and Duin and Yolgenant to our attention. We thank Professor James 
Orlin for illuminating discussions about HND heuristics. Our results 

concerning alternative problem formulations are rooted in many d.is­
cussions about network design with Dr. Richard Wong. 

Th e work of Anantaram Balakrishnan was supported in part by a 

grant from the AT&T Research Fund . The work of Prakash Mirchan­

dani was supported in part by a Faculty Grant from the Katz Graduate 

School of Business, University of Pittsburgh . 

Appendix 1. Proof of Claim in §3.2 
Claim : The linear programming relaxa tion [LDF) of the directed 

formula tion has an optimal solution sa tisfying the cond.itions: 

YiJ + y1, ,,;; 1 fo r a II edges { i , j} E E. 

P ROOF . To establish this claim, we use the flow decomposition 

property (see, for example, Ahuja, Magnanti , and Orlin ( 1993 )) . Let 

{ i , j ) be any edge fo r w hich 

in the given optimal solution to the linea r programming relaxation 

[ LDF) of the d irected formul a tion . 

We will construct an a lternate solution to [ LDF) that has equal ( or 

lesser ) cost but less fl ow in the j -to-i direction, and hence a lower 
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value of xi , . First, if a flow pattern for any commodHy conta ins a cycle, 

we can e liminate this cycle by reducing the flow on all of its a rcs; 

since the costs are nonnega ti ve, the new directed design solution de­

rived from equations ( 3.6) has equal or lower cost. Therefore, we wi ll 

assume tha t the given flow solution routes a ll commodities on simple 
paths. Let h and k be the indices of the " bottleneck" primary com­

modities in the i-to-j and j- to-i directions, respectively, i.e. , 

f fi= F~= x{j, and 

ote that, since f t + f1; :s; 1 (since commodity k has unit demand 

and its fl ow pattern does not contain cycles) and f 7, + fj; > 1 ( by 
assumption) , commodity k cannot be a bottleneck flow in the i-to- j 
direction, i.e., 

Let fl ; d enote the set of feasible flow paths from the root node 1 

to n ode i not containing node j defined by arcs with x-variables grea ter 

than zero. Similarly, let Ili denote the set of paths from n ode 1 to 

nod e j not containing node i. We will maintain commodity k's current 

fl ow into node i by increasing its flow on paths fl ; by <I> = (ft 
+ft - 1) units, and correspondingly decreasing its fl ow on paths Il1 

and arc (j , i). Observe that O < <I> 5 ft. We next argue that we can 

perform this rerouting without increasing the cost of the [LDF] so­
lution. 

Since commodity h's flo w paths do not contain cycles, its i-to- j 
fl ow must enter node i solely on paths fl ;. Consequently, the va lues 
of the design variables in the given [ LDF] solution must create a total 

capacity of at least ft units on the paths fl ;. We can, therefore, increase 

commodity k's flow on these paths by f = (/ t - f t ) < 0. Since f t 
5 1 - fr;, we have f ~ (/ 7, + f1; - 1) = </>. Thus, we can increase 
commodity k's fl ow on paths fl ; by <J> units and correspondingly de­

crease its flow on paths Ili and arc ( j, i) by <I> units w ithout increasing 
the values of the design variables X;1 (and hen ce without increasing 

the cost of the [LDF] solution) . Le t g~; = f1; - <J> ~ 0 denote the new 
value of commodity k's flow on arc (j , i) after the rerouting step. We 

also update the values of the design variable xi; using Equation (3 .6 ); 
let x j; denote the new design value. Note that commodity k's new 

flow value from node j to node i satisfies the condition: 

= 1. 

If commodity k continues to be the bottleneck commodity in the 
j-to-i direction, then the previous inequality implies X;i + xj; :s; 1, as 

required. Otherwise, we successively perform the rerouting step for 
each new bottleneck commodity in the j- to-i direction until the sum 

of the d esign variables values in the i-to- j and j-to-i directions is less 
than or equal to 1. 

A similar constructive argument proves that [LDF] must ha ve an 

optimal solution sa tisfying yq + Yi; 5 1. □ 
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