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Standard inspection methods underestimate the true number of defects or nonconformities 
in a complex product ( e.g., automobile, mobile home, airplane, circuit board, computer 

program) when an inspector is unable to identify every defect with certainty . A nonlinear 
statistical model with a nonlinear constraint is developed for estimating the unknown number 
of defects in a product when inspection is imperfect. A sequential defect removal sampling 
plan is defined in which two or more inspectors examine in sequence a product or sample of 
products and then mark or correct any observed defects prior to the next inspection. The number 
of defects identified by each inspector provides the information needed to estimate the number 
of defects in the product in addition to the number of defects that have eluded all inspectors. 
A goodness-of-fit test of model assumptions is presented. A test of hypothesis regarding the 
unknown number of defects in quality improvement experiments also is described . 
(Imperfect Inspection; Nonlinear Statistical Model; Quality Management) 

1. Introduction 
For some complex products, inspection will be imperfect 
and every defect or nonconformity will not be detected. 
When inspection is imperfect, the quality of the product 
will be overestimated. Various aspects of the problem 
of imperfect inspection have been extensively discussed 
(see Bonett 1988) . 

A sequential defect removal sampling plan is pro­
posed here in which two or more inspections are per­
formed and in each inspection the number of defects is 
recorded and then marked or corrected prior to the next 
inspection. Independence of inspections is not assumed. 
A nonlinear statistical model of the number of identified 
defects is developed. The parameters of the model cor­
respond to the unknown total number of defects in the 
product prior to inspection and the unknown probability 
of detecting a defect during an inspection. The method 
of minimum chi-square is used to obtain efficient esti­
mators of the model parameters. A Pearson statistic for 
evaluating model goodness of fit is presented. A Wald 
statistic is defined for testing hypotheses in quality im­
provement experiments. 
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2. Statistical Model 
A product is inspected on t > 1 occasions. On each 
occasion, f; defects are observed and corrected. Let F 
denote a t X 1 observable random vector of frequency 
counts with typical element F; . Note that f; is a sample 
realization of F;. The expected value of F; is denoted as 
µ ;. It is assumed that the elements in Fare multinomial 
random variables with expected values µ ; = N-1r( 1 
- 1r}i- I where N is the unknown number of defects in 
a product prior to inspection and 1r is the unknown 
probability of detecting a defect common to all inspec­
tors. Since the unknown parameters N and 1r are mul­
tiplicative functions ofµ;, a log-linear model of F may 
be defined as 

F = exp(X,8) + E (1) 

where F' = [ F1 F2 • • • F,], ,8 is a 3 X 1 vector of unknown 
parameters with {3 1 = ln(N} , {32 = In( 1r) , {3 3 = In( 1 
- 1r), and Xis at X 3 matrix of known constants with 
rows [1 1 0] to [1 1 t - 1]. Note that {3 2 and {33 are 
functionally related with exp(/33 } = 1 - exp(/32 ). 
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3. Parameter Estimation 
The method of minimum modified transformed chi­
square (Ferguson 1958) is applied to obtain an estimator 
of f3 . The minimum chi-square estimator may be ob­
tained from the scoring iteration 

(2) 

where 

P; = (X 'D1X + D 2vv'D2 ) -
1, (3) 

g; = (X 'D 1(ln(f) - X/3;) + D 2v(l - v '0 ;), (4) 

v ' = [ 0 1 1], D 1 is a diagonal matrix with the elements 
of the vector f along the principal diagonal, 0 = exp(/3) , 
f is a t X 1 sample realization of the random vector F 
with typical element f;, and D2 is a diagonal matrix with 
the elements of the vector 0 ; = exp(/3;) along the prin­
cipal diagonal. Sampling zeros in f are replaced with 
small non-zero va lues such as 1 / t ( Grizzle, Starmer, 
and Koch 1969). Iteration of ( 2) terminates when the 
value of (/3;+ 1 - /3;) '(/3;+ 1 - /3;) is sufficiently small. Con­
vergence is extremely fast. Let n = l' f . A good starting 
vector in ( 2) is the 3 X 1 vector /31 = [ (nfi/ n) 
X ( 1 - f 1 / n)] . 

The final iteration of ( 2) gives the minimum modified 
transformed chi-square estimate of f3 subject to the 
nonlinear constraint exp(,Bi) = 1 - exp(/32 ) . This esti­
mate will be denoted as /3. To be precise, the estimate 
/3 is a sample realization of the estimator /3. 

A consistent estimate of the covariance matrix of f3 is 
defined as 

(5) 

where Pis the final iteration of ( 3), :2\ = D 1 - ff '/ N, 
and N is defined in ( 6) . The square root of the i th di­
agonal element of t ti is denoted as se (/3; ) and represents 
the standard error of the estimator of /3;. 

The estimates of N and 1r are defined as 

N = exp(/3i) , 

ir = exp(/32 ), 

and the estimate of the t X 1 vector µ is defined as 

µ = exp(X/3) . 

(6) 

(7) 

(8) 

Standard errors of the estimators are obtained by ap­
plication of the delta method (see Bishop, Fienberg, and 
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Holland 1975, chapter 14) . The asymptotic standard 
error of the estimator of N is estimated as 

(9) 

and the asymptotic standard error of the estimator of 
1r is estimated as 

(10) 

In the special case of t = 2 inspections, closed form 
estimates of N and 1r can be derived. Assuming [i > [i, 
these estimates are defined as 

N = f I I U1 - ti) 
ir = 1 - hi !1 

( 11) 

(12) 

Using a Poisson approximation to the multinomial and 
assuming / 1 > fi, the estimated asymptotic standard er­
rors of N and -rr in the special case of t = 2 are defined 
as 

se(N) = lnU1 - 2 /i) 2 + ft/2) / U1 - [i)4]1 12 < 13) 

se ( -rr) = [ ( h + f U fi) I Ii] 11 2 
( 14) 

In multiple group designs, N and 1r are estimated in 
group k and are denoted as Nk and ik. Similarly, (9) 
and ( 10) are computed in group k and are denoted as 
se(Nk) and se(ik) . 

4. Hypothesis Testing 
Pearson and Wald tests are presented in this section . 
The Pearson test is useful for assessing the appropri­
ateness of the model and the Wald test is useful in qual ­
ity improvement studies. 

The Pearson goodness-of-fit test statistic is defined 
as 

(15) 

where summation is over i = 1, 2, · · • t inspections 
and is evaluated with t - 2 degrees of freedom. If c 
exceeds the critical chi-square value, then we reject the 
null hypothesis thatµ ; = N1r(l - 1r) ;- 1

• 

In quality improvement experiments with r > 1 treat­
ments, Nk and se (Nk) are computed for each treatment. 
Let N denote an r X 1 vector with typical element Nk 
and let t denote a diagonal matrix with se(Nk)2 in the 
k th row. A Wald test of general linear null hypothesis 
H o: HN = h is based on a chi-square statistic 
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that is evaluated with s degrees of freedom where H is 
an s X r matrix of known constants, h is an s X 1 vector 
of known constants. 

5. Model Assumptions 
The log-linear model defined in §2 is based on three 
assumptions: 1 ) common 1r across all inspectors, 2) 
constant N across inspections, and 3) common 1r across 
all defects (homogeneity) . The Pearson test presented 
in the previous section provides a test of the first two 
assumptions in a t > 2 sampling plan . Stratification is 
used to deal with a violation of the third assumption . 

In any statistical data analysis application, it is im­
portant to know the assumptions underlying the anal­
ysis and methods for testing the assumptions. Also, it 
is important to know the effects of violating the as­
sumptions, since the effects may or may not be trivial. 

Assumption of Common 1r Across Inspections. 
The assumption of a common 1r for all t inspections 
may be violated, if for instance, the first inspection is 
performed by an inexperienced employee and all other 
inspections are performed by highly trained employees. 
Then 1r may differ across inspections. In Table 1, N is 
estimated from a three-sample inspection plan where 
1r differs across the three inspections and the true value 
of N equals 100. We note that in the three-sample plan, 
the estimates of N are positively biased and range from 
100.2 to 111.4 depending on the magnitude of inequal­
ities of 1r across inspections. One may conclude that for 
moderate violations of the first assumption, for instance, 
1r(max) - 1r(min) < .3, the estimate of N is not severely 

Table 1 

... , 7rz 

0.8 0.8 
0.8 0.7 
0.8 0.6 
0.8 0.5 
0.8 0.4 
0.8 0.3 

Effect ol Violating Assumption of Common ..­
Across Inspections 

Noncentrality 
71"3 N N Parameter 

0.8 100 100.0 0 
0.8 100 100.2 0.89 
0.8 100 101.4 3.25 
0.8 100 103.6 6.63 
0.8 100 106.8 10.75 
0.8 100 111.4 15.48 

Note. 1r; is the probability of inspector i detecting a defect. 
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Power for 
a= 0.05 

0.050 
0.157 
0.438 
0.731 
0.906 
0.997 

Table 2 Effect of Violating Constant N Assumption 

Noncentrality Power for 
N, N2 N3 fi/ Parameter a= 0.05 

100 100 100 100.0 0 0.050 
100 110 110 111.2 0.43 0.101 
100 120 120 123.9 1.65 0.250 
100 130 130 138.3 3.58 0.473 
100 140 140 154.6 6.10 0.695 
100 100 110 113.6 4.52 0.566 
100 100 120 132.5 10.57 0.902 
100 100 130 157.2 16.19 0.984 
100 100 140 190.0 21 .33 0.996 
100 110 120 123.8 1.29 0.206 
100 120 140 155.1 1.72 0.258 
100 130 160 198.6 1.54 0.237 
100 140 180 264.1 1.13 0.186 

Note . ... = 0.8 in all conditions; N; is the number of defects in the product 
during inspection i. 

biased. Table 1 also gives the Pearson noncentrality pa­
rameter values and power for a= .05. One may observe 
that for a moderate violation of the first assumption, 
the Pearson test appears to have good power for N 
= 100. With smaller N or 1r, the observed frequency 
counts will be smaller and the Pearson test will be less 
powerful. We conclude that the log-linear model is fairly 
robust to a violation of the first assumption and that 
the Pearson test is able to detect a moderate violation 
of this assumption in a sample of moderate size. 

Assumption of Constant N Across Inspections. 
The second assumption states that N must be constant 
across inspections. In applications where a finished good 
is inspected sequentially by two or more inspectors at 
a common location, this assumption should be easily 
satisfied. However, if inspection occurs at different lo­
cations ( e.g., factory, warehouse, dealer) defects may 
be introduced during shipment and N may be larger at 
inspection i + 1 than at inspection i. Table 2 presents 
estimates of N in a three-sample inspection for three 
classes of assumption violations. In the first case, Nin­
creases only after the first inspection. In the second case, 
N increases only after the second inspection. In the third 
case, N increases after both the first and second in­
spections. 

From the results in Table 2, it appears that the estimate 
of N is actually estimating the final number of defects 
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in a product (rather than the number of defects prior 
to inspection) when the constant N assumption has been 
violated. It is reassuring to observe that the estimate of 
N (under this interpretation) has a moderate positive 
bias if N has been increased only after the first inspec­
tion . However, the bias is more severe if N is increased 
after the second inspection . Also, we note that the 
Pearson test appears to have adequate power under a 
moderate violation of the constant N assumption. 

For the case where N increases after both the first 
and second inspection, the estimate of N has a much 
greater bias and the Pearson test is relatively insensitive 
to a violation of the constant N assumption . The case 
where N increases after two or more inspections could 
occur in applications where a product is inspected after 
each of two or more shipments. However, by not 
counting shipment related defects ( specific type of 
scratches and dents, breakage due to vibration, etc.) at 
each inspection, the sequential defect removal sampling 
plan may still be effectively applied to estimate the 
number of defects prior to inspection. 

Assumption of Equal 1r Across Defects. The third 
assumption, which we will also refer to as the homo­
geneity assumption, states that each defect must have 
the same probability of detection. As in other statistical 
sampling plans, one solution to a violation of this as­
sumption involves stratification ( Cochran 1977). Ho­
mogenous classes of defect types are identified so that 
the probability of defect detection within each class is 
approximately equal for each defect . 

Table 3 presents estimates of N from a three-sample 
inspection plan where defects have one of two different 
detection probabilities and the true number of defects 
is 100. In the second row of the table, one type of defect 
has a detection probability of .3 while the other has a 
detection probability of .9 . The estimate of N is 86 .5 
and is negatively biased by almost 14%. Rows 3 through 
5 in the table show the amount of bias when the de­
tection probabilities differ by .2 at three different levels 
(.3 and .5, .5 and .7, .7 and .9) . The negative bias for 
theses cases ranges from 5.9% to 1.5%. 

The results of Table 3 also illustrate the usefulness 
of stratification. Suppose that detection probabilities 
ranged from .3 to .9. Defect types may be classified into 
three distinct categories (A, B, and C) based on previous 
inspection information where type A defects have typ-
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Table 3 Effect of Violating Assumption of 
Common ,.. Across Defects 

... , 1r2 fv 

0.6 0.6 100.0 
0.3 0.9 86.5 
0.3 0.5 94.1 
0.5 0.7 97.3 
0.7 0.9 98.5 

Note . 1r; is the probabil ity of detecting defect type 
i; N = 100 in all conditions . 

ical detection probabilities in the .3 to .5 range, type B 
in the .5 to .7 range, and type C in the .7 to .9 range. 
Then, the estimated number of defects within each 
stratum will have a much smaller negative bias . The 
bias can be reduced further by using four or five strata . 

6. Examples 
Consider the problem of inspecting a mobile home in 
the final assembly bay, by the dealer upon delivery, 
and by the buyer at the time of purchase. Assume N 
and 1r are constant across inspections. 

Suppose that 25, 15, and 8 defects are detected and 
corrected in the first, second and third inspections re­
spectively so that f' = [ 25 15 8] . The estimate of N is 
exp(/Ji) = 59.1 (or 59) and an estimate of 1r is 
exp(/J2 ) = .428 with estimated standard errors of 8.70 
and .110 respectively. We estimate that the mobile home 
has 59 - ( 25 + 15 + 8) = 11 defects that have not been 
detected. The Pearson statistic ( 15) equals .032 sug­
gesting that the model assumptions have been satisfied. 

A second example, suggested by a referee, involves 
a circuit board test in which the board is tested until 
two successive tests yield zero defects. When two suc­
cessive zeros are observed, the manufacturer then con­
cludes that all defects have been identified. Suppose f ' 
= [ 12 6 0 0] . Our method predicts that there are two 
undetected defects in the board and the manufacturer 
should consider making an additional inspection. 

7. Summary 
Imperfect inspection is a serious problem. When in­
spection is imperfect, standard quality assessment 
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analyses yield negatively biased estimates of the total 
number of defects per product. As a result, the producer 
will overestimate the quality of the product. 

A byproduct of sequential defect removal sampling 
is that a greater number of defects will be removed from 
a product compared to single inspection plans. Although 
sequential defect removal sampling is particularly well 
suited to applications where a product is inspected more 
than once, some manufacturers would benefit by re­
quiring additional inspections of their finished goods. 
In doing so, they would obtain more accurate quality 
estimates while improving outgoing quality. 
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