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Abstract: The purpose of this paper is to introduce several optimization algorithms that can be
used to address optimization models in the power network, where the level of observability
may be either complete or incomplete. These algorithms include discrete, continuous and
metaheuristic methods. Initially, the optimization problem is approached by implementing a
zero-one mixed integer linear program solved by several methods, including branch and bound
revised simplex and primal dual-simplex in combination with interior point algorithms. To
solve the problem of depth-one-unobservability (DoOU), a nonlinear program is proposed
using Sequential Quadratic Programming (SQP), Interior-Point methods (IPMs) or YALMIP\s
branch-and-bound algorithm. Additionally, the paper proposes the use of metaheuristic
algorithms, such as Genetic Algorithms (GAs) and Binary Particle Swarm Optimization
(BPSO), to solve optimization problems under incomplete observability. The proposed
algorithms are tested using simulations on IEEE standard systems to illustrate their efficiency
and reliability in solving the optimization problem under partial observability. Overall, the
paper concludes that these algorithms can efficiently lead to the optimum point in a reasonable
runtime. Hence, this work examines the problem of putting a restricted PMUs number to make
the DoOU and to give a feedback to the state estimation routine accuracy.

1. Introduction

The transformation of conventional power grids into smart grids (SGs) is a process that must begin
with the installation of sophisticated monitoring equipment capable of determining the current status
of the power grid in actual time. At present, the existing power systems are changed completely into
futuristic power grids incorporating smart devices such as Phasor Measurement Units (PMUs) [1].

A futuristic power grid called SGs, where synchronized measurements will observe the state of the
grid, will replace the existing power grids soon [1]. PMU is an advanced electronic monitoring device
that is utilized in SGs to collect data for grid data-driven implementations such as protection, state
estimation and control in real-time [1]-[8]. PMUs are replacing traditional measuring devices in the
existing power grids and thus transforming them into Smart Grids [1]. This replacement allows a Wide
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Area Monitoring System being present and enables sufficient applications such as observation, control
and protection.

PMUs are posed in power system substations in which power transmission lines, generators and
loads are connected [1]. The installation of the equipment, that is the selection of the substation in
which the PMU will be located, is an agreement between sensible constraints and restrictions [9].

By posing a PMU on a network node, the synchrophasor devices are able to calculate both the
phasor voltage and the current phasor in power lines emanating from that node [1]. In real-life, the
final installation of a PMU is the decision being derived by discussion aimed at agreement, to some
degree an outcome of a minimization process, such as derived by PMU minimizing process [9].

These synchronized measurements are used for Energy Management System (EMS) applications
and real-time observation of the grid state [2]-[8]. The utility industries are putting in place PMUs in
the classical transmission grids for the purpose of achieving the system observation in real-time [1].

At the moment, the existing transmission grids aremonitored by a PMU limited number in
conjunction with traditional SCADA measurements [11]-[13].

In the near future, the existing power grids are transformed into Smart Grids, a futuristic power grid
where the synchronized measurements will observe the grid state [1]. By the point in time, following
the logic of massive installation of PMUs in power grids, at each node, a vast amount of cost is
required for getting the purpose of real-time power monitoring [10]-[12].

For the purpose of decreasing the cost of installation of PMUs in the case of massively placing at
power grid nodes, a minimum number of those devices must be optimally selected on the inside of a
power grid. Those optimal PMU numbers are adequate to perform real-time observation of the power
grid state estimation [2]-[6]. Minimization algorithms result in those numbers of PMUs [11]-[13].

In evolutionary algorithms, the evaluation of each individual and its fitness function is performed
in coordination with the prior run of the algorithmic model, which is executed in MATLAB [14].

In contrast to this, mathematical algorithms involving continuous and discrete optimization models
make a fast evaluation of the optimization function being optimized [14]. The principal concept is to
adopt the mathematical algorithm and begin using a different initial point each time the iterative
process is starting to get the optimal point. Several mathematical techniques have been addressed for
the solution of a large number of similar technical challeges [70]-[77].

To succeed with stochastic algorithms, some randomness is followed to solve the combinatorial
optimization problem which is an iterative procedure [14]. An evolutionary algorithm uses a
population in a double vector to get the optimum point [14].

Integer linear programming models with binary decision values construct an iterative process to
estimate the PMUs number and their optimal sites for complete observability [15]-[18].

Ali Abur et al implemented and solved the optimal PMU arrangement problem with a binary
integer programming-based procedure [15]. In [18], some indices such as Bus Observability Index
(BOI) and System Observability Redundancy Index (SORI) have been suggested for monitoring of the
state of a power network. In this work, we found those optima points with the highest SORI.

Heuristic algorithms are utilized in the PMU allocation problem in handling all inequality
constraints of the binary integer program [14], [19]-[26]. After a comparative study with BBA’s
metrics, it can be inferred that evolutionary algorithms solve exactly the optimal PMU localization
problem in getting a global optimum non-unique and constraint point. [19]-[26].

The minimization models are stated as a binary-integer-linear program [15]-[18] as well as
nonlinear (polynomial) models, for which this study brings algorithms not wasteful for optimal
solutions being developed [27]-[30]. Nonlinear algorithms such as sequential quadratic programming
(SQP) and interior point methods (IPMs) are adopted in [27]-[30].

An optimal solutionis found to satisfy the numerical observability using a Semi-definite
programming approach [31]. A fault location observability based on synchronized and traditional
measurements was presented in [32]-[33]. As it is well observed and studied, the full condition of
observability signifies that all network buses are fully monitored by an optimal PMU configuration
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[15]. On the other hand, depth — of — n unobservability signifies that there exist not more than n
power network buses remaining unobservant by putting a PMUs number on the inside of the power
grid [34]-[41].

The concept of depth — of — nunobservability signifies unobserved states being derived by a
restricted but not sufficient PMUs number within the power grid [49], [34]-[40]. The circumstances of
partial observability are firstly introduced in [34].

Afterward, Gou proposed a concept under the framework of the integer program in binary nature
[17]. The incomplete observability is a basic context because it delivers a systematic approach of
installation of synchronized sensors, arranging gradually, to such an extent the parts of an electric
graph not being monitored to be decreased until the power network will be completely monitored. The
concept of depth — of — one unobservability (DoOU) has been given in [17], [39]. The approach
employed In this work utilizes graph theory as a methodology to tackle and resolve the issue of
incomplete observability at level one. At the initial stage, the minimization problem is proposed as a
binary integer program (BIP) to gather some benchmark optimal solutions within a zero-gap tolerance.

This label tolerance allows us to characterize these solutions as globally optimal solutions. The BIP
model is executed with MATLAB solvers either black-box routine embedded in MATLAB
optimization library [61]-[62], commercial packages as Gurobi [64]-[66] or MOSEK [67] or open-
source optimizer codes [63].

We also follow an evolutionary standpoint to attack the BIP model [14]. Then, we transform the
model into a nonlinear program. This program can be solved either with SQP [28]-[30] or [PMs [27]
towards locality or with SCIP optimizer getting the global solution [48]-[50], [58]-[60]. The models
are given with a 7-bus system. The entire process optimization is executed using the classical power
systems of the IEEE organization [56].

In this work, the DoOU problem is revisited and formulated, and solved in the following
programming way; a 0/1 integer-linear program (ILP) [17] is utilized in the first phase, and in the
second phase, a nonlinear (polynomial) problem is solved by nonlinear algorithms or a branch-and-
bound tree [52]. Preferable nonlinear algorithms are the interior-point methods [26] and sequential
quadratic programming [27]-[29] to solve nonlinear problems [30]-[48].

Those nonlinear algorithms are able to be aware of the existence of a locally optimal solution.
Those optimum points can be characterized as non-sole globally solutions after an appropriate relative
to other BBA’s optimal metrics [49]-[52].

As is well known, BBAs efficiently solve the BIP discovering a globally optimal solution inside a
zero-gap tolerance counting a specific number of nodes where linear problems are solved towards
optimality [45]-[48]. Some infeasible regions are pruned during the iterative process, the first best
integral and feasible solution is found and then a globally optimal solution is attained [49]-[52].

Also, evolutionary algorithms efficiently handle the inequality constraint of the BIP in the direction
of getting a globally optimal solution [13]. Then, optimal results are derived by the utilization of
mathematical and evolutionary algorithms to the partial observability optimization problem [34].

The optimum points are derived after testing the mathematical models on classical electrical graphs
[57]. We use benchmark power systems such involving 14-, 30-, 57- and 118 bus systems [56]. Their
design data lines and edge-vertex incidence matrix of a line-diagram power network and a square
binary matrix can be found in MATPOWER software [56].

Hence, the square matrix as well as the branch-to-node incident matrix [17] is well constructed and
utilized in the 0/1integer program to get the global solution within a zero-gap tolerance [39].

The work [17] can be used as a case study related to the concept of depth-one-unobservability
(DoOU). The incomplete observability with degree one is stated in binary or continuous minimization
models. For the thing just mentioned this study presents effective algorithms for calculation solutions
during the iterative process [45]-[52].

Our purpose is to give PMU placement sets under the DoOU using mathematical and evolutionary
algorithms. Performing of the suggested algorithms is examined deeply via experimental results using
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standard IEEE power systems [57]. Branch-and-Bound algorithms [15]-[18] and evolutionary
algorithms such as Genetic Algorithms (GAs) [19]-[22] and Binary Particle Swarm Optimization
(BPSO) [22]-[26] handle with efficiency the 0/1ILP constraints towards optimality [14], [30]-[48].

Each population-based algorithm counts several function evaluations that reveal a global optimal
solution at the final iteration [14]. An optimum objective function is assessed and a set of solution sites
related to that objective function are derived [19]-[26].

Then, the 0/1ILP model is transformed into an equivalent nonlinear model giving the same PMU
numbers under the concept of DoOU [17], [34]-[40]. In any case, the PMU placement sets are
fervently dependent on the nature of the algorithm and always cover the incomplete observability with
one-depth-observability [17]. This work helps the power engineers to keep in mind concepts such as
complete and incomplete observability based on synchronized measurements [15]-[17], [34]-[40].

Thus, the wide-area measuring system can observe the network state in real time [2]-[8]. The final
remarks conclude the impact of mathematical and evolutionary algorithms to the partial observability
problem solving with distance equal to one-depth (DoOU) [17], [34]-[40].

Each programming code has the factor leading success in a manner that guarantees the least linear
measure between buses not being observed and monitored power network nodes during installation in
phases. Consequently, in order to completely see each voltage phasor's node, the unobserved portions
of the power network are steadily reduced until they are eliminated [34]. In that case, an adequate
number of sensors will be installed after installation in phases [17], [34]-[40].

In the following section, the concept of full and partial observability is studied, analyzed and
results are confirmed for further validation of our modeling application. This study considers
unobservable areas of a power network following an installation of a limited number of PMUs.

We present a novel contribution related to a lower bound of unobservability regarding the full
condition of a power monitoring. The depth-of-one unobservability is presented, examined and solved
in an integer as well as nonlinear frameworks.

We use for this situation the acronym DoOU. Initially, a binary integer program (BIP) is presented
and solved by technology advanced optimizer functions in the integer programming domain [45], [49]-
[50]. Then, we follow an evolutionary standpoint to analyze convergence to desired outcomes and
finally we transform the BIP model into a nonlinear model to get the optimality [52]. The last model is
solved by SQP [28]-[30], [PMs [27] or YALMIP’s branch-and-bound algorithm [68]. The nonlinear
problem is the result from a transformation of a binary integer program into a continuous format [52].

The objective function consists of a polynomial function either in continuous or binary decision
domain [52]. The transformation is efficient and hence optimal solutions are achieved within absolute
tolerance criteria [47]. To develop the nonlinear framework, the cost function is stated as either in
quadratic or linear format. Both optimization functions are minimized to get the optimality under the
same multiple-choice constraint function [47].

Hence, the whole task is deeply analyzed with suitable algorithms being presented In this work. We
show the robustness of our models to detect optimality even for this situation with a restricted PMUs
number being present within a power grid. Some experimental results are produced by mathematical
and evolutionary algorithms to prove its robustness from different algorithmic schemes. Finally, we
present and conclude this study's impact with a discussion and the final remarks.

2. Concept of Complete and Partial Observability
Using actual-time measurements through the utilization of synchronized PMUs permits us to
accomplish the wide-area monitoring and the observation of the system state [1]. Although it is a
necessity to install PMU at every node, it's impossible to do this due to economic reasons [10].

To stay away from this fact, scientists and planner engineers have developed strategies to pose a
restricted PMUSs number together with traditional supervisory control and data acquisition (SCADA)
measurements in order to observe the state estimator [6]-[8].
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In the power grids of the future, the operator collects measurements based on PMUs [1]. Therefore,
branch-and-bound algorithm is mainly used to find a solution of the binary integer linear program to
declare a restricted PMUs number and optimal in unison [15]-[18]. Full observability employs the
topological-based scenario [15]-[18] where a suitable mathematical or evolutionary algorithm
embedded in general purpose optimization functions find an optimal solution [13]; a desired outcome
with an adequate PMU in numbers at selected power network nodes.

The whole concept is executed and simulated in the MATLAB platform [61] with specialized
optimizer libraries [63]-[64]. For that purpose, benchmark power systems are used to give good
enough PMU devices for cases such as an existing power system with traditional measurements
performing, helping in a successful execution of a linear estimation [2]-[8]. As a future target, the
technology advanced branch-and-bound algorithmic scheme solves the classical integer constraint
program with binary values to find an optimal solution within an absolute gap [16]. It can give the
optimal solution reflecting the smallest in amount PMU devices giving a total observation of voltage
phasors of each power node [15]-[17].

Partial observability concerns the optimal PMU localization when the number and the PMU
positioning sites are not adequate to declare the full state of the power system [17], [34]. Thus, the
PMU number and their sites are not good enough to describe the overall collection of phasor bus
voltage at every node in the power grid [34]. The incomplete observability is a calculation of the
imprecise distance of an unobserved node from it’s observed nearby power nodes [34].

In this work, the concept of depth-one-observability (DoOU) has been implemented. According to
our rigorous definition of DoOU, these instances are when all nearby network nodes must be
observably connected to the power node that cannot be observed [17], [34]-[41]. The DoOU is
displayed in Fig.1 [39]. As can be seen, there is one unobservable bus which is linked together with
observable buses directly monitored by PMUs installed at a specific power network [39].

We study the depth of unobservability with degree one which is a measure of the distance of an
unobservant network node from a neighborhood including observable buses [39]. Partial observability
is presented, analyzed and some experimental results are derived based on that concept. The placement
result justifies the statement in which all adjacent buses are observable and only one node is
unobservable as displayed in Fig.1.

DoOU topological scenario is determined as a state in which all the neighboring power network
buses of any unobservable bus must be monitored. This definition declares that it is not possible for
two unobservable buses to link together, which gives a higher depth-of-unobservability on that
occasion. The entire picture is given in Fig.1. This methodology guarantees a minimum distance
between an unobservable node and the adjacent local area consisting of observable network buses.

In Fig.1 bus By is linked together with buses B3 and Bs both being observable directly by PMUs
posed at network buses B, and Bs. Also, buses B; and B; are directly observable by PMUs posed at
buses B3 and Bg respectively [39].

Hence, bus B, is the only unobservable bus in the entire local area within a power transmission
grid. On one occasion as studied in this work, the PMU numbers are expected to be lesser than the
PMUs number needed for complete state observability. The experimental results are studied in a
comparison way with those found by using a BILP [17], [39].

DoOU is declared as a circumstance where any unobservant network node is connected with a
neighborhood consisting of buses being observable [17], [34]-[40]. The concept is to decrease the
PMU numbers related to the PMU number needed to succeed in fully observability conditions.

We desire to illustrate the optimal PMU numbers and their sites using mathematical and
evolutionary algorithms [45]-[48]. In this work, computer programming algorithms are put into effect
beneath the states of separate amounts of observability. An amount of observability means how many
times each power network node can be reachable by a synchronized measurements set collected by a
PMU number around the power grid [1]-[2]. Following the studies, we refer to the concept of DoOU
as the status where there is one bus not observable linking to two or more than two buses with phasor
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voltages measurements [17], [34]-[40]. The least PMU numbers for the system complete observability
or depth-one-unobservability (DoOU) can be detected using binary integer program (BIP) [17], [38].

@D PMU equipped bus Unobserved bus
& Directly observed bus @ Observed bus

Figure 1. Incomplete observability with degree one [39]

Table 1 gives adequate PMU numbers the complete system observability and DoOU obtained by
the BIP presented in [17]. The main issue of this study is that it gives only the PMUs number and not
the placement sites. The simulation results displayed in the table are used as a benchmark standpoint
for the utilization of mathematical and evolutionary algorithms employed to give placement sites.

As observed, a lesser PMUs number are detected than the CO [17]. It is a fact given that we state
an 0/1 integer program in which an unobservable node is adjacent with a neighborhood with
observable nodes by synchronized or traditional measurements.

This mathematical based model is declared in two stages. Initially an 0/linteger program is
declared and then we transform it to a polynomial optimization model with continuous variables [47]-
[48]. Hence, we use mathematical-based algorithmic schemes as well as evolutionary algorithms
handling the 0/1linteger program to find PMU set solutions for the concept of DoOU [17], [39]. Each
placement algorithmic scheme was tested on IEEE systems for depth-of-one unobservant region.

Table 1: The least PMU numbers required for the two observability states

IEEE Network # Number of # PMU numbers for # PMU numbers for
Branches complete observability (CO) DoOU

14-bus 20 4 2

30-bus 41 10 4

57-bus 80 17 11

118-bus 186 32 18
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As it is proven, all the algorithms are fully convergent and give optimum points satisfying
optimality conditions in discrete or continuous domains regarding to thedecision variables nature.

The leading algorithm once again for such kind optimization problems as the optimal sensor problem
is the branch-and-bound algorithm to get the optimality.

This algorithm executes the 0/1 integer program under a zero-gap tolerance spending reasonably
exploring nodes where relaxed problems is solved; infeasible regions are pruned and finally get a
globally optimal solution at the final explored root-node of the BBA’s tree [45]-[50].

The partial observability is presented, examined, solved and its effect on the placement sites related
to the resulting best objective value is evaluated. The concept of DoOU is the mainly studied topic and
it is related to the distance between one unobserved bus from its observed incidence buses.

When the power network observability is diminished from full condition to unobservability with
degree of one, the PMU devices are diminished in number with the trade-off of for power system
reliability and security [41].

Even if there is a reduced degree of unobservability, it is still possible to optimize the process using
the same method; however, the linear estimation will have a lower level of precision. This process
optimization helps a lot with the incremental installation of those devices in phases within a power
transmission network [40]. Note that the PMU set solutions derived by solving concepts of reduced
depth of unobservant regions is outside of this study.

We examine the DoOU as a benchmark approach and a similar procedure can be used in a future
work. Our impact on the PMU number and its placement related to partial observability with depth-of-
one unobservant regions is summarized in the following stages. Initially, we utilize graph theory using
a square matrix and an edge-vertex incidence matrix, multiplying them to introduce a suitable matrix
for appropriate calculations to compute the PMU's sites throughout the execution of integer program's
solvers [42], [49]-[52]. The integer model is tested on benchmark systems [56]-[57].

Genetic algorithms and binary particle swarm optimization are well performed in solving the
integer-constraint-program with binary nature [13]. The performance of partial observability and its
effect on the PMUSs number is continued with equivalent nonlinear programming solved by sequential
quadratic programming and interior-point methods or a branch-and-bound tree [45]-[49].

The evolutionary and nonlinear algorithms produce global solutions. This can be produced after a
comparative study with the integer programming solver’s optimality metrics [45], [49]-[52].

Also, the nonlinear program can be solved with the SCIP optimizer function towards a globally
optimum point [58]-[60]. The specific integer program’s solver linearizes the non-convexity nature,
spending a reasonable number of nodes in which relaxed problems are solved. Some infeasible regions
are pruned and finally a global optimum point can be found with a zero-gap tolerance [58]-[60].

We attack the nonlinear problems solved globally with precise possibility using a global nonlinear
branch-and-bound (BB) algorithm included in YALMIP program [54]. It gives an optimal solution
through calling general purpose optimizer functions to count the upper and lower bounds in BB tree.
Finally, the cost value is the upper bound for the minimization problem studied in this paper [70].

3. Novelty, Contribution and Consideration related to implementation tasks

A different approach to the optimal PMU localization problem is the incomplete observability
presented in [17], [34], and [39]. Incomplete observability means the power system state in which the
PMU numbers and their locations are not enough to define the calculation of the voltage phasor at
every network bus. The depth of unobservability is a quantity of the linear measure between a power
network bus not observed from a local area consisting of observable buses [17], [34], and [39].

The context of power network observability can be stated as those situations where a power
network is considered to be observable on occasion that the topology is given as well as measurements
being obtainable [15]-[17]. At the moment, PMUs are optimally posed at selected substations and they
work together with traditional measurements to achieve the wide-area data-driven monitoring [2]-[8].
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Graph theory performs an important part in analytics methodologies due to its capability to present
the power network topological arrangement of parts [42]-[45]. Hence, the graph theory is employed to
revisit the partial observability with DoOU. We take into account the vertex-edge incidence matrix as
well as a binary connectivity matrix [42]-[44]. Both matrices are based on the one-line diagram of the
power system in order to build the inequality constraints of the BIP program for that purpose [50].

Each power network being implemented In this work is considered to be a multigraph without
loops and multiple edges being present. A multigraph is a set of vertices and edges assigning to every
edge two vertices consisting of its ends [42]. We use the multigraph to represent each IEEE power
network, to form the binary connectivity matrix as well as the Branch to node incidence matrix for the
implementation of the binary integer program [42]-[44].

It must be declared that multigraphs are defined them as graphs or simple graphs [42]. Incomplete
observability state means the status where PMUs are installed in a restricted amount of number at
selected nodes. The context of depth-one-unobservability declares the linear measure of a power
network bus not being monitored from the closest bus being observable in an adjacent neighborhood
of observable buses [17], [34]-[40].

The depth of partial observability is declared and studied at a number of concepts namely depth-of-
one Unobservability, depth-of-two Unobservability and others [40]. More than one-depth-of-
observability means that the accuracy is to a smaller degree when the PMUs number is posed in the
state-estimator routine [2]-[7]. Hence, larger uncertainties could be calculated in getting the state of
power monitoring at present including traditional measurements and measurements collected by a
restricted PMUs number within a power grid [17], [34]-[40].

In this work, a graph-theory is used for PMU installation based on DoOU. For that purpose,
mathematical and evolutionary algorithms are used. It utilizes the edge-vertex incidence matrix of a
graph representing a standard IEEE power network as well as a square matrix with dimension equal to
the number of power network nodes [42].

Each IEEE power network is a simple graph which means that the implementation is easy in the
MATLAB [61]. The data line connections between the graph nodes can be found in MATPOWER
[54]. Hence, the square binary connectivity matrix as well as the edge-vertex incidence matrix is
formulated in the MATLAB platform to engage appropriate calculations [61].

Then, an integer program with binary decision can be executed giving a PMUs number sufficient of
the partial observability scenario with depth-one [17], [34]-[40]. This PMUs number can be used as a
benchmark solution for the purpose of the implementation of the evolutionary algorithms to our study
[13]. Evolutionary algorithms handle efficiently the integer program’s constraints giving an alternative
standpoint getting the optimum point [13].

Then, the entire integer program is transformed into nonlinear models seeking out locally optimal
solutions which are also globally solutions [45]-[52]. Then, this minimization problem is transformed
into an equivalent nonlinear programming model [30]-[48]. The nonlinear program is implemented by
using Sequential Quadratic Programming and Interior-Point methods getting the optimality [30]-[48].

Also, metaheuristic algorithms are studied for partial observability with level one by proper
handling of the constraint integer linear programming [13]. On the other side, we declare the concept
of unobservability in a 0-1 polynomial problem being implemented in YALMIP platform [69].

The remarkable remark of this study is that GAs and BPSO succeed in finding a global optimal
solution after a trial-and-error process optimization [13]. The concept of depth-of-one-observability
(DoOU) state leaves a number of power network nodes unobserved meaning unobserved regions
within the power grid [17], [34]-[40].

We utilize mathematical and derivative free algorithms as well as evolutionary algorithms to study
each impact to the convergence to an optimum point; a global solution point [45]-[50]. The feasibility
of our suggested algorithms has been validated via experimental tests with standard transmission grids
as their connectivity data-lines are found in [54]-[57].
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4. Application Tasks in Process Optimization Model

We strictly declare DoOU as those situations where all adjacent network nodes must be observably
connected to the power node not being observable [17], [39]. DoOU formulation presents the most
excellent estimate at this depth where the unobserved bus is linking to observed neighboring buses.

The depth of partial observability calculates the linear measure of a power network node not being
observable from its adjacent observed nodes [17], [34]-[40]. Based on this concept, the depth-of-one
unobservability (DoOU) is studied and some numerical results are derived towards optimality.

The decisive point is to permit us to estimate the buses not observed by PMUs underlying the
partial-observability using synchronized measurements [17], [34]-[41]. The power network can
bemonitored by a PMU limited number in conjunction with traditional measurements being derived by
the SCADA [4]-[5]. This work studies the DoOU to give us a restricted PMUs number and the
condition of buses not observable considering the neighboring observable buses [17], [34]-[41].

Greater than one-depth-of-observability leads to less accuracy in state-estimator process and larger
uncertainties to compute the current power network state based on synchronized and traditional
measurements [2], [34]-[40]. Also, we intend to do a concept to achieve where a restricted number of
PMU numbers can be selected to be placed at network buses [17], [34]-[41]. Then a larger PMUs
number can be added to attain complete observability for a power transmission grid [17], [34]-[41].

The PMUs are placed in power system substations to which transmission lines, loads, and
generators are connected. Zero-injection (ZI) buses are not taken into account in this work [10].

Power network buses are mainly substations in actual life, and on the inside consumption of the
substation is a fact that we cannot ignore it [10]. In the case of CO, we find optima by which we know
all the voltage phasors of power network nodes [15]-[17], [19]-[31]. Hence, the CO condition is totally
known for a successful run of the state estimator routine [2].

In the second stage, we find an optimum placement set in which an unobservant power node is
adjacent with a neighborhood of fully observed nodes by synchronized measurements. Such an
incomplete status, the figure 1 depicts the whole situation with an unobservable bus to be linked
together with a neighborhood of observable buses [39]. In this work, we analyze the performance of
mathematical and heuristic algorithms for process optimization in partial observability using PMUs.

Mathematical and population-based algorithms appear to be functional for the purpose of solving
on/off optimization problems in this area of Smart Grids (SGs) monitoring state [1].

First, we examine the utilization of state-of-the-art binary integer program, which gives the exact
PMUs number at specific power network nodes [50]. Then we proceed to implement the DoOU
scenario [17], [39]. As it is expected, the PMUs number for depth-of-unobservability of one (DoOU)
is lesser than the PMUs number for full observability (CO) [17], [39].

Also, Genetic Algorithms (GA) and a binary particle swarm optimizations manipulate the binary
integer program’s constraints to give the identical PMU nubmers but at not alike locations [14],
[49], [52]. Hence, an evolutionary standpoint is given for the implementation of this optimization
PMU localization task. Then, we proceed with a mathematical standpoint to give an acceptable and
workable optimum point at the same.

The optimization models are declared either in binary or continuous domain, for which this work
adopts algorithms with efficiency for getting optimum points with adequate computational tests. To
achieve this task, we suggest two frameworks, that is, a nonlinear problem with continuous decision
domain and a binary polynomial model.

The first model is solved using with sequential quadratic programming (SQP) [28]-[30] and
interior-point methods (IPMs) [27] to solve the nolinear problem. Both algorithms find a solution pool
of local optima points over the feasible set of the nonlinear programming model. Those local optima
can be characterized as globally found by using multi-start procedure [45]-[49].

On the other hand, the second model is solved using a global branch-and-bound algorithm included
in YALMIP calling external technology advanced nonlinear and integer programming solvers [68].
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Then, we test the applicability of alternative formulations to solve the DoOU which give an
acceptable accuracy whereas the state estimation tool is executed [2]-[7]. In all cases, the solution is
fully functional and agrees to those found by previous work [17], [39]. The process optimization is
performed and a global optimal solution is derived for each power network [56]-[57]. In all case
studies, we found a proper number of PMU that is lesser than the one delivered for CO scenario.

5.Optimum design model under the concept of complete observability and unobservability

Some well-known local algorithms in the continuous domain are adopted to solve the nonlinear prob-
lem. These algorithms are strongly convergent to non-unique local optima points; equivalent with
global optima derived by solving the binary integer linear program. The optimization problem is with-
in an interest where an objective function is minimized under a box-bound on the decision variables.

We solve it with SQP methods in the direction of getting an optimal solution [28]-[30]. Also, we
can utilize IPMs to solve the model with the absence of bounds defined on the decision variables [27].

The minimization model is applied to benchmark power systems and some experimental results are
presented [56]-[57]. As an innovative approach, we also use the Solve Constraint Integer Program
(SCIP) to solve the nonlinear problem consisting of a linear cost function subject to a polynomial con-
straint function and a box-constraint defined on the decision variables [56]-[57].

SCIP linearizes each polynomial constraint whereas the integrality is relaxed to a continuous do-
main [58]. Afterward, an optimal solution is found within a zero-gap tolerance [58]-[60]. This gap is
succeeded because the Primal and Dual Bounds are evaluated to be equal [58]-[60].

Additionally, the polynomial optimization problem can be programmed in a symbolic format using
the YALMIP program [69]-[70]. YALMIP global BBA finds a global solution for such a kind poly-
nomial problem with binary symbolic decision variables [68]-[70]. The target of this work is to deliver
the value of each optimization algorithm related to its capability to find the exact optimal solution.

The optimum point is the best possible solution and the well-known optimum point as well. Hence,
the global solution is achieved within a zero-gap [45]. Hence, technologies advanced solvers are
adopted to solve the incomplete observability either in continuous or binary domains [61]-[67]. The
optimal solutions are non-unique global optima for such a case optimization study [61]-[67].

To complete the whole picture for incomplete observability, we give a standpoint of complete
observability using Gurobi [64]-[66]. A Gurobi optimizer engine gathers a solution pool either for full
observability or maximum observability set solutions at a single run [64]-[66].

a. Full System Observability

For a complete picture of incomplete observability with less accuracy in state estimation, and
installation in phases of PMUs if it is possible, we present again the concept of the complete
observability in two stages [54]-[55]. Initially, an objective function with one criterion is declared in a
0 — 1 constraint integer program to gather an OPTIMA point for full observability [15]-[17].

In a second stage, we derive the objective function with two criteria optimized by Gurobi to gather
a solution pool of optimal points [64]-[66]. This tactic is also followed for accomplish the partial
observability with degree one.

The power system is fully observable if the voltage phasor is calculated for each node directly or
indirectly [39]. The prevailing design formulation is a constraint binary integer programming related
to the optimal PMU localization problem. For the n-bus power grid, the model formulation is as
follows [15]-[17]:

minZ?zl WiX; = ?:1 X, (Wi = l,l =1 n) (1)
s.t. A-x>1 )

10
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- T . . . . .
Where x = (xl,xz_,...,xn) is a binary design variable vector, whose aspects are declared in the
current yes or no decision investment [47].

X = {1 if a PMU is installed at bus i
t 0 otherwise

€)

Let us define the connectivity matrix of the power network with binay elements as follows [15]-[17]:
1 ifi=jorj€eA;

a;j = { . ' 4

Y 0 otherwise @)

The PMU arrangement problem is declared based on two statements being minimized under the

concept of full observability [54]-[55]. The achievement of maximum observation of synchronized
measurements is also studied. The declaration of this objective function is as follows [54]-[55].

i T _LleT. g) %
min (W —e A) X ®))
A-%=1 (6)
x € {0,1} (7)
Where W= (Wl, Wy, W")n*1 w, 18 the price of the PMU installed at bus j; the optimal model can

be implemented by Gurobi’ integer solver. The two optimization models are implemented by using the
Gurobi solver towards finding a solution pool for both case studies.

Gurobi ILP solver figures out a global optimum point within a zero-gap tolerance whereas the
iterative process is terminated with a satisfied relative gap [64]-[65]. The mixed integer solver returns
with an optimal solution when the gap between the upper and lower bounds on the cost function is less
than by the default setting equal with 1e-4. The relative gap is declared as follows [64]-[66]:

relative gap = 100 X |Zp — Zd|/Zp ®)

Zp is the primal bound on the objective, that is, the incumbent objective value, which is the upper
bound for minimization problem while Zd is the dual bound that is, the lower bound for minimization
models [64]. If the gap closes to zero, a global optimal solution is achieved [45].

b. Incomplete System Observability
This study suggests the context of partial observability to get a restricted PMUs number. The DoOU is
stated, studied and solved using a mathematical-based optimization model. We visit the partial observ-
ability with purpose to have an acceptable accuracy whereas the state estimation routine runs [2].

Our impact on the PMU number and its placement related to partial observability with depth-of-
one unobservant regions is summarized in the following phases. Initially, using graph theory an edge-
vertex incidence matrix and a square matrix and, multiplying them to introduce a suitable matrix for
appropriate calculations to compute the PMU's sites throughout the execution of integer program's
solvers is carried out.

A graph G = {V,E} consists of objects V = {vy,v,,..} called vertices, and another set E =
{eq,e3,..}, whose elements are called edges such that each edge eyis recognized with an unordered
pair {vi, vj} of vertices [42]-[44]. The vertices {vi,vj} associated with the edge e, are called the end
vertices of ey, [42]-[44]. The most frequent graph representative is by means of a diagram, in which
the vertices are depicted as points and each edge a line section joining its end vertices [42]-[44].

11
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Let G be the graph with n vertices, eedges, and no self-loops [42]-[44]. Given a graph Gof n verti-
ces and marcs, the incidence matrix of G is a matrix (n X m) [42]-[44] such as:

1if x; is the initial vertex of arc a;
cij = —1if x; is the final vertex of arc q; 9
0 if x; is not ter min al vertex of arc q;

If Gis a nondirected graph then the incidence matrix is defined as follows: all entries of —1 changes
to +1 [42]-[44]. Let us define, the "vertex-edge" or "node-arc" [42]-[44] incidence matrix or simply
incidence matrix as of non-directed graph G [42]-[44] whose n rows match to the n vertices and the m
columns to the m edges of the graph [42]-[44]: The [ci j] is as determined as follows [42]-[44], for a
graph with n vertices, eedges and no self-loops [42]-[44]:

L {1 if jthedge is incident on ith vertex v;
Y10 otherwise

(10)

Since each arc is adjacent to exactly two vertices, each column of the incidence matrix contains
only two elements, 0 and 1 [29]-[44]. Such a matrix is called a binary matrix or a (0,1)-matrix [42]-
[44]. Let us define a matrix B = [bi ]-] a matrix which is transpose of matrix CasB = CT, a matrix
which is a edge-vertex incidence matrix [42]-[44] or branch-to-node incidence matrix [42]-[44].

Under normal conditions, each element of the vector Apyyx indicates the number of times the
corresponding vertex of the graph is observed by PMUs [15]-[17], [19]-[31]. The degree of
unobservability of one can be formulated as a set of linear inequalities so as the element of the
resulting vector corresponding to two terminals of the branch to be larger than 1 (= 1) [17], [38]. The
design variable ¥ = [x1,x;,..,%,]7 is a column vector involved in this optimization problem [46].
Each integer variable must take x; € {0,1}" for a feasible minimum point in solving the minimization
model i.e., the solution guarantees the model's constraints [52].

So, the depth-of-one unobservability can be formulated in a 0/1 integer linear framework with
graph theoretic approach, using the branch to node incidence matrix of graph representing an electric
network and a square matrix with the dimension of the number of vertices of the graph [42]-[44].

There is a one on each diagonal and a one in the ij thposition if vertexi is connected to the vertex;j.
Let A be (n X n) matrix in which a;; = 1 if vertices i and jare adjacent, that is connected by an edge,
and Ootherwise. This matrix is symmetric for an undirected graph [42]-[44]. The adjacency matrix of a
graph Gwith n points i.e., nvertices and no parallel edges is a (n X n) symmetric binary matrix X =
[xl- j] over the ring of integers i.e., "vertex-node adjacency matrix" or adjacency matrix, which defines
the structure of the graph [42]-[44]:

v = {1, if there is an edge between i, and j,vertices, and
Y 7|0, if there is no edge between them

(11)

The binary connectivity matrix, Apyy as proposed in [15]-[17], results from the "vertex-node
adjacency matrix" for the matrix X = [xl- j], on which the elements along the principal diagonal of its
are set to 1, that is [Xi]-] = 1,Vi =j, since all the diagonal elements of the matrix are 1since every
vertex is "reachable" from itself by a path of cardinality 0; the set of x;which are reachable by x;along
a path of cardinality 1, i.e., the set of the arcs (xl-, xj) exist in the graph, as noted in [42]-[44].

Therefore, the binary connectivity matrix as formulated for solving of OPP problem is the
reachability matrix R = [ri j] as defined in [42]-[44]:

12
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_ (1if vertex xjis reachable from vertex x;

- 12
Tij {0 otherwise (12)

Obviously, all the diagonal elements of Rare 1 since every vertex is reachable from itself, by a path of
cardinality 0 [42]-[44]

1, if k = m, or k and m are connected
0, otherwise

Axm = Apyy = { (13)

A graph-theoretic process is proposed to implement the partial observability by placing a restricted
PMUs number around a power grid. It makes use a vertex-node adjacency matrix and an edge-vertex
matrix to locate the optimal arrangement of PMUSs relying on DoOU topological scenarios.

A dispersed PMUs number are placed around a power grid which guarantees the restricted linear
measure an unobservable network bus with observable buses including in a neighborhood adjacent to
the unobservable bus [17], [39]. The optimization model is declared in a mixed-integer program as
illustrated in Eqs.(14)-(15). The seven bus system is used to show the formulation.

min] (x) =wlix =Y wixy =2 xc (W =1,i=1..n) (14)

S.t.B X Apyy XX =>b
B:"edge — vertex" incidence matrix
x;, the designvar i ables
b =[11...1]],
lis the number of branches of power network
Apyyincidence matrix; a binary (0 — 1)matrix
X, <X<X,
x;Viinteger
s.t{xl =[00...017

x,=[11..1]T (15)

Let us study the partial observability, using the seven-bus system (Fig 2) [57]:

Fig. 2 IEEE-7 bus system

The graph for the "arc -node " or " edge-vertex" incidence matrix [42]-[44] for the 7-bus system is as:
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'l 1 0 0 0 0 O
o 1 1 0 0 0 O
0O 1 0 0 0 1 O
161 0 0 0 0 1
B= 0O 0 1 1 0 0 O (16)
O 0 1 0 O 1 O
0O 0 0o 1 1 0 O
0 0 0 1 0 O 14

For the seven-bus system displayed in Fig 2, the 0/1 mixed-integer-program is as follows:

mlTl] (f) = ZZ=1 Wi X; =Z?=1 Xi, (Wi = 1,l =1 Tl) (17)

(2X] + 2%, + X3 + x5 +%x;, =1

X1+ 2x, +2x3+ x4+ 2x5+%x, =1

Xy +2x, +2%x3 +2x5+x;, =21

o X1+ 2x, + X3+ x4+ X+ 2x;, 21
S'tf(x):<x2+2x3+2x4+x5+x6+x721 (18)
2%y + 2x3+ x4+ 2% =1

X3+ 2x4+ 2x5+ %7, 21

\xX, +x3 +2x, + x5+ 2x;, =1

0<x;<1 (19)

The above convex formulation where the binary variables are involved, is minimized by the branch-
and bound algorithm through the implementation of Gurobi [64]-[66]. The inequality relations are
"multiple choice" constraints [50]. The MIP routine locates the vectorX = {0,0,1,0,0,0,0}7, so as each

element of B X A X ¥ = corresponding to the two terminals of any edge of the graph is larger than

PR NN R NN P

1(>1).

As can be observed, each edge of the graph is reachable by at least one observable vertex (directly
or indirectly) [42]-[44]. BBA involved in Gurobi finds a solution for the above model. Gurobi
optimizer solves the BILP towards optimality as the log output shows [64]-[66].

Table 2: Process Optimization being derived by Gurobi Optimizer Engine

14
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Gurobi Optimizer version 10.0.0 build v10.0.0rc2 (win64)
Optimize a model with 8 rows, 7 columns and 41 nonzeros
Variable types: 0 continuous, 7 integer (7 binary)
Coefficient statistics:

Matrix range [1e+00, 2e+00]

Objective range [1e+00, 1e+00]

Bounds range  [1e+00, 1e+00]

RHS range [1e+00, 1e+00]
Found heuristic solution: objective 2.0000000
Presolve removed 8 rows and 7 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
Explored 0 nodes (0 simplex iterations) in 0.04 seconds (0.00 work units)
Thread count was 1 (of 4 available processors)
Solution count 2: 1 2
Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0000%
Elapsed time is 1.804717 seconds.
Optimal objective: 1.000000e+00

0 0 1 0 0 0 O

Elapsed time is 1.823886 seconds.

ans =

3

0.7 h

0.6 - h

0.5 4

04+ -

Incumbent solution

0.1r h

0 1 1 1 L 1 1
1 2 3 4 5 6 7

decision variable

Fig.3 Plot diagram with the IEEE-7 bus system
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Therefore, a PMU is installed at the bus 3 shown in Fig.3, so we have implemented the depth-of-one
unobservability [15], [39]. Let us study the inequality constraints for the 7-bus network. The constraint
function is based on logical methodology [47], and the logical equation x + x = x [51]-[52].

Based on this equation, the inequality constraint is further simplified and finally a nonlinear
function is achieved for further analysis. The nonlinear program is minimized under a continuous
domain to attain a local solution or a globally optimal solution via SCIP optimizer routine [58]-[60].

xX) =
]:(2_21+2x2+x3+x6+x7 >l 5> xi+x1+x+ x+x3+x5+x;, 21
X1+ 2%, +2x3+ x4+ 22X+ X721 > X+ X+ Xy X3+ X3t X, X6+ X6+ X, 21
X1+ 2%, +2x3 2 x5 +x7, 21 5> x1+ X+ X+ X3+ X3 +X+ X6 +x7 21
) X1+ 2%y + X3+ x4 X6 +2x7 21 5 x+x, + x5 +x3+ X4+ x5 +x7+x7 =1
Xy +2x3+2x, + X5+ X5 +%x7, 21 DX, +x3+x3+%x,+X,+X5+%x5+x,=>1
25+ 2x3+ X4+ 2621 o x,tx,t X3+ X3+ Xt X5 X 21
X3+ 2x4+ 2x5+ X721 > x3+Xx4+ X4+ X5 +x5+x7, =21
X+ X3+ 2x4 +x5T2x7 21 25X+ X3 +X4+ x4 +x5+%x7,+ x7, 21

(20)

The linear inequality constraints can be declared in a nonlinear convex format, as an equality
nonlinear equality constraint which has nonlinear structure [48], based on the consideration that these
constraints are multiple choice [52]. The constraint function is written as follows [48]:

(1—x)*(1 = x)*(A = x3)(1 —x5)(1 = x7,) = 0

(1= 2x)(1 = 2x)%(1 = x3)*(1 = x)(1 — x)*(1 —x7) = 0
(1= 2x)(1 = x)*(1 = x3)*(1 = x6)*(1 — x7,) = 0

(1 =2x)(1 = 2x)*(1 = x3)(1 = x)(1 = x6)(1 — x7)*> = 0
(1= 2)(1 = x3)*(1 = x4)*(1 = x5)(1 —x)(1 — x7) = 0
(1=2)*(1 = x3)*(1 —x4)(1 — x6)*> =0

(1=x3)(1 = x)*(1 = x5)*(1 —x;) =0

\(1—2x2)(1 = x3)(1 —x)*(1 = x5)(1 = x7)* = 0

The higher order terms can be simplified as and the nonlinear programming is as follows [51]-[52]:

g@) =4 21)

min] (X) = Yoy wix? =Y, xf, (w; = 1) (22)

91 =1 =x)A—x)(1 —x3)(1 —x)(1—x7) =0
g2 =1 —x)(1 —x)(1 —x3)(1 —x)(1 —x6)(1 —x7) =0
g3 =1 —x)(1 —x)(1 —x3)(1 —x6)(1 —x7) =0
ga =1 —x)(1 —2x)(1 —x3)(1 —x)(1 —x6)(1 —x7) =0

ID =1 gg = (1= 1)1 —x)(1 - 2)(1 —x) (A —x) (1 —x) =0 &
goe= (1 —2x)(1 —x3)(1 —x4)(1 —x6) =0
g7=(1—=x3)1—x)1—x5)(1—x,) =0
gs =1 —2x)(1—x3)(1 —x)(1 —x5)(1 —x7) =0

6SfST (24)

Each constraint is called as a "multiple-choice constraint”, since our choice of investments is to be at
least one of the available options [46]-[47]. The Weierstrass theorem ensures this even when specific
statess are desired, that is,{x;}r~, = X“has a limit point in the feasible region [46]. The nonlinear
programming model is defined on a closed and bounded set since it includes the boundary points.
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Then, the problem attains its minimum [48]. The experimental test being optimized by SQP method
is shown in the Table 3. As we can see, the step-length is equal to 1 avoiding the Maratos effect [53].

Using a totally arbitrary initial point for the purpose of starting the sequential quadratic
programming, the optimum point isX = {0,0,1,0,0,0,0}”. So, a PMU is installed on the bus 3 to be the
system "degree-of-one unobservability". Then, the minimization problem attains its minimum. Table
3&4 illustrated the optima points for the DoOU topological scenario [17], [39].

Table 3: Process Optimization being derived by MATLAB Optimizer Engine

Iter Func-count  Fval Feasibility  Step Length Norm of First-order
step optimality
8 4.000000e+00  0.000e+00 1.000e+00 0.000e+00  2.000e+00
19 3.921984e+00 9.604e-05  4.900e-01  1.960e-02 1.490e+00
28 4.411668¢+00 2.881e-05  7.000e-01  7.005e-01 1.428e+00
36 4.921934e+00 1.301e-14  1.000e+00 3.010e-01  1.980e+00
44 4.921913e¢+00  0.000e+00  1.000e+00 3.794e-02  1.980e+00
61 4.921632¢+00 0.000e+00 4.035¢-02  3.257¢-02  1.979e+00
69 4.918283e+00 0.000e+00 1.000e+00 1.200e-02  1.979¢+00
77 4.897419¢+00 0.000e+00  1.000e+00 2.038e-02  1.974e+00
85 4.786454e+00  0.000e+00 1.000e+00 4.289¢-02  3.468e+01
93 4.249772¢+00  0.000e+00  1.000e+00 1.435e-01  3.244e+03
10 101 2.298242¢+00  0.000e+00  1.000e+00  6.640e-01  2.933e+05
11 109 1.000812¢+00  0.000e+00  1.000e+00 1.120e+00 3.776e+06
12 117 1.000083e+00 0.000e+00  1.000e+00 2.993e-02  3.804e+06
13 125 1.000000e+00  0.000e+00  1.000e+00 9.135e-03  3.854e+06
14 133 1.000000e+00  0.000e+00  1.000e+00 1.313e-05 2.721e+03
15 141 1.000000e+00 0.000e+00 1.000e+00 3.274¢-06 2.229¢+03
16 149 1.000000e+00 0.000e+00 1.000e+00 9.808e-07 9.683¢-09
Local minimum found that satisfies the constraints.

O [XR0|QA| NN [R]|W(|— O

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

Elapsed time is 2.352601 seconds.

ans =

0 01 0 0 0 O

ans =

3
struct with fields:
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Table 3: Process Optimization being derived by MATLAB Optimizer Engine continued

iterations: 16
funcCount: 149
algorithm: 'sqp'
message: 'Local minimum found that satisfies the constraints Metric
Options relative first-order optimality = 4.84e-09  OptimalityTolerance = 1e-06 (de-
fault)<relative max(constraint violation) = 0.00e+00 ConstraintTolerance = 1e-06 (se-
lected)'
constrviolation: 0
stepsize: 9.8081e-07
Issteplength: 1
firstorderopt: 9.6829¢-09

As we observe, the PMU placement set isx ={0 0 1 0 0 O 0}. The PMU site is
displayed in the plot displayed in Fig.2. As we see, the bus 3 satisfies the depth-first-of-one partial
observability [17]. Bus 3 is linked together with observable buses by PMUs inside the power grid [17],
[39]. SQP spent reasonable function evaluations leading to a local optimum point avoiding any
constraint violation [61]. All optimality metrics are well-accepted and an optimal solution is reached.
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Step size
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First-order optimal
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Fig.4 Plot diagram with the IEEE-7 bus system

The experimental test being optimized by IPMs is shown in the Table 4 and the plot diagram
showing the convergence properties shown in Fig.5. An unbounded NLP program is solved by using
IPMs towards a localized point starting from an arbitrary starting point [45]. IPMs solve the NLP

model without the restriction 0 < ¥ < 1 to be present [27]. An optimal solution is achieved within
tolerances.

Table 4: Process Optimization being derived by MATLAB Optimizer Engine
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First-order =~ Norm of
Iter F-count f(x)  Feasibility optimality step
0 8 4.000000e+00 0.000e+00 2.000e+00
1 18 0.000000e+00 1.000e+00 1.490e-08 2.000e+00
2 26 9.999999¢-01  4.000e-08 1.000e+00
3 34 1.000000e+00 1.250e-09 7.388e-08  6.897¢-08
4 42 1.000000e+00 0.000e+00 4.470e-08  3.758¢-08

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the optimality tolerance,

And constraints are satisfied to within the selected value of the constraint tolerance.
<stopping criteria details>

Elapsed time is 3.340549 seconds.

ans =

0.0000 -0.0000 1.0000 0.0000 0.0000 -0.0000 -0.0000

ans =

3

Optimization completed: The relative first-order optimality measure, 2.235174¢e-08,
is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum con-

straint
Violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-16.
Optimization Metric Options

relative first-order optimality = 2.24e-08  OptimalityTolerance = 1e-06 (default)
relative max(constraint violation) = 0.00e+00 ConstraintTolerance = 1e-16 (selected)

output

struct with fields:

iterations: 4
funcCount: 42
constrviolation: 0
stepsize: 3.7581e-08
algorithm: 'interior-point'
firstorderopt: 4.4703¢-08
cgiterations: 0
message: 'Local minimum found that satisfies the constraints Optimization completed:
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Fig.5 Plot diagram with the 7 bus system

Moreover we can implement the nonlinear model in the YALMIP program [68]. We use the
YALMIP nonlinear BBA optimizer function to get an optimal solution. BMIBNB routine is called to
minimize the problem in a binary symbolic decision domain [69]-[70]. To construct the binary tree,
an LP solver is invoked for a suitable branch strategy [49]-[50]. The 7-bus system is used and t
binary polynomial formulation consists of a linear cost function subject to a polynomial constraint
whereas the decision variables are declared in a binary format as follows [47]-[49].

min] (X) =YX woa, =X 0, (w;=1Li=1..n) (25)
(91 = (1 —x)(A —x)(1 —x3) (1 —x5)(1 —x7) =0

gz =1 =x)1 —2x2)(1 —x3)(1 —x)(1 —x6)(1 —x7) =0

g3 = A —x)A—x)(1 —x3)(1 —x5)(1 —x,) =0

> ga= Q=2 —2x2)(1 —2x3)(1 —x)(1 —x6)(1 —x7) =0

9D =1 g5 = (1 - 2)(1 ~ 1)1 —x)(A —x)(A —x)A —x) =0 O
goe =1 —x)(1 —x3)(1 —x)(1 —x6) =0

g7 =1 —=x3)(1—x,)(1 —x5)(1 —x7) =0

\gs = (1 —x)(1 —x3)(1 —x)(1 —x5)(1 —x7,) =0

x € {0,1} 27

YALMIP’s global BBA solves the nonlinear problem involving binary decision variables towards
optimality. For that purpose, external optimization functions are invoked to get the optimality
[69]-[70]. The iterative process is displayed in Table 5, the PMUs sites are shown in Fig.6.

It is essential to detect an upper and a lower bound in this case, We can detect the upper bound

using any local optimizer solver [61], [63]. On the other side, the lower bound is obtained through a
convex relaxation or duality [61], [63]-[64]. The convex relaxations are solved through calling an
external integer linear programming solver. With this manner, the YALMIP BBA detects the global
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optimum point in reasonable computational time. SCIP performs as a lower solver to count the lower
bound whereas the FMINCON routine estimates the upper bound of the objective function value [61]-
[63]. MOSEK performs as an LP optimizer solver to solve the relaxed linear problems whereas the
binary tree is built for the purpose of getting an optimal solution; a global one within specific relative
gap and a zero-absolute gap [67].

Additionally, the upper bound is measured by an NLP solver whereas the lower bound is evaluated
using an ILP solver. The optimization problem is solved at a specific root node with zero-gap
tolerance and a relative gap being optimized [69]-[70]. The zero-gap appears because the difference of
those bounds is evaluated to be zero.

The upper bound is considered to be the cost value within specific tolerance gaps and the lower
bound is culprit to close the gap [69]-[70]. Hence, a global optimum point is attained within specific
tolerances being satisfied [46]. The optimum point is achieved within a zero-gap tolerance whereas the
entire process optimization is satisfied within an acceptable relative gap equal to 5e — 09% [68]-[70].
Based on the above criteria, an optimal point is achieved with a 0.00% certificate of optimality [45].

Table 5: Process Optimization being derived by YALMIP Optimizer Engine

I N A A N N A O A T T A A O I |
LI N e N B I I A B

| ID] Constraint| Coefficient range|

| #1| Equality constraint (polynomial) 1x1| 1to 1]
| #2| Equality constraint (polynomial) 1x1| 1to 1]
| #3| Equality constraint (polynomial) 1x1| 1to 1]
| #4| Equality constraint (polynomial) 1x1| 1to 1]
| #5| Equality constraint (polynomial) 1x1| 1to 1]
| #6| Equality constraint (polynomial) 1x1| 1to1]
| #7| Equality constraint (polynomial) 1x1| 1to 1]
| #8| Equality constraint (polynomial) 1x1| 1to 1]

I T N T A A A N U A A A A YN A A A A NN U A A A A A A A A A A B |
LI N N I N A N N N A I N I |

* Starting YALMIP global branch & bound.

* Upper solver  : fmincon

* Lower solver  : SCIP

* LP solver : MOSEK

* -Extracting bounds from model

* -Perfoming root-node bound propagation

* -Calling upper solver (no solution found)

* -Branch-variables : 7

* -More root-node bound-propagation

* -Performing LP-based bound-propagation

* -And some more root-node bound-propagation

* Starting the b&b process

Node  Upper Gap (%) Lower Open Time
1: 1.00000E+00 0.00 1.00000E+00 2 0s Solution found by heuristics

* Finished. Cost: 1 (lower bound: 1, relative gap 5¢-09%)

* Termination with relative gap satisfied

* Timing: 26% spent in upper solver (2 problems solved)

* 20% spent in lower solver (1 problems solved)

21



IC-MSQUARE-2023 IOP Publishing
Journal of Physics: Conference Series 2701(2024) 012013 doi:10.1088/1742-6596/2701/1/012013

Table 5: Process Optimization being derived by YALMIP Optimizer Engine continued

11% spent in LP-based domain reduction (14 problems solved)
1 % spent in upper heuristics (1 candidates tried)

yalmipversion: '20210331'
matlabversion: '9.4.0.813654 (R2018a)’

yalmiptime: 0.2259

solvertime: 0.6941

info: 'Successfully solved (BMIBNB)'
problem: 0

*| *

Elapsed time is 0.921325 seconds.

ans =

0 01 0 0 0 O

Linear scalar (real , binary, 7 variables)
Current value: 1
Coefficients range: 1 to 1

1 T T T T T T

09 .

0.8 J

0.7 4

0.6 .

05 7

0.4 1

03 h

current best function value

02r 7

01 J

O 1 1 ] ] Il Il
1 2 3 4 5 6 7

decision variable
Fig.6 Plot diagram with the IEEE-7 bus system

6. Experimental Tests and Resulting Simulation Run
Complete observability (CO) is a scenario which permits us to compute the voltage phasors at all
network buses [15]-[17]. In real-time monitoring, the operator can still misplace the observability if a
restricted PMU numbers are deployed at selected buses [34].

Incomplete or partial observability is a topological scenario where the PMU numbers and their
positioning sites are not adequate to declare the complete observability [17], [34]-[40]. The depth of
unobservability calculates the linear measure of a bus not being monitored from its nearby observed
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network nodes [17], [34]-[38]. In this work, we work the DoOU formulation in a 0/1constraint integer
linear program as well as in a nonlinear model. Some experimental runs are executed on standard
IEEE power systems, resulting in optima points being derived [54]-[57].

The binary integer linear program is easily implemented to get the global optimum solution [49]. A
systematic graph study is analyzed in getting its effect on PMU numbers and its set solution with
DoOU [17]. We make use of a branch to node incidence matrix representing the graph which reflects a
power system concluding transmission lines and nodes [42]-[44].

Also, a square matrix with dimension equal to the number of vertices is used. Both matrices are
multiplying to formulate the appropriate inequality constraint of the integer linear program in getting
the optimal solution within a binary integrality{0.1} [49]-[50]. We present the PMU placements for
CO and DoOU scenarios in order to display a solution pool for both case studies [64].

For that reason, we use a powerful optimizer engine as the Gurobi to run the constraint binary
integer programs for both case studies [64]-[66]. Gurobi finds with efficiency optimum points within a
zero-gap tolerance; meaning that globally optimal solutions are achieved for both studies.

Gurobi is a technology advanced and powerful optimizer engine capable of solving constraint
integer programs [64]-[66]. The integer linear solver embedded in Gurobi solves both case studies, and
succeeds to find the minimum integral solution without this to suffer from floating points (FPs).

Each optimal solution satisfies the binary integralx € [0, 1]} without affecting the existence of FPs
[48]-[52]. For the CO case study, we present optimum points which cover the power system
observability and in unison the maximum observability is attained [54]. The objective function
consists of a multiple-choice constraint function under decision variables to be either in binary nature
or in continuous declaration. Mathematical and evolutionary algorithms optimize the design
programming models with sufficient precision in finding binary optimum points [14].

On that condition, the best possible solution for each power network is considered to be the
optimum point within a zero-gap tolerance. The Primal Bound is the leader to achieve the best integral
and feasible solution. Constantly a Dual Bound is computed and compared to the Primal Bound.

Finally, Gurobi ILP solver founds iteratively a zero variation between them discovering a
reasonable number of nodes of the binary tree; hence a globally solution was found [64]-[66].

Whereas the Gurobi ILP finds out a verified optimum point to our model specific for complete ob-
servability [15], the optimizer engine permits us to change the setting parameters [64]. Using the
command namely PoolSearchMode parameter with syntax as params.PoolSearchMode=2 [64]-[66]; a
solution pool of optima points are gathered [66]. All optima points are globally solutions within a ze-
ro-gap tolerance [64]-[66]. We continue this tactic with incomplete observability with degree one. We
are interested in optima points within an absolute gap of the best possible solution found [45]-[50].

The solution points are illustrated as depicted in the above tables. If we set the tuning parameter
equal to 2; Gurobi seeks out the best solutions following a systematic way. As output, Gurobi delivers
the n best possible solutions with an indisputable gap which is defined as the absolute gap delivering a
globally optimal solution [64]-[66].

Table 6 displays the iterative process delivered by the ILP solver included in Gurobi optimization
library. Tables 7 &8 display the solution pool derived by Gurobi ILP solver for the purpose of getting
non-unique constraint optima points [64]-[66]. Table 8 gives those optima points which are convenient
with maximum measurement observability redundancy as proposed in our studies [54]-[55].
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Table 6: Process Optimization being derived by Gurobi Optimizer Engine

Set parameter TimeLimit to value 100

Set parameter Presolve to value 2

Set parameter PoolSearchMode to value 2

Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (win64)

Optimize a model with 14 rows, 14 columns and 54 nonzeros

Variable types: 0 continuous, 14 integer (14 binary)

Coefficient statistics:

Matrix range  [1e+00, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range  [1e+00, 1e+00]

RHS range [1e+00, 1e+00]

Presolve removed 6 rows and 0 columns

Presolve time: 0.03s

Presolved: 8 rows, 14 columns, 25 nonzeros

Variable types: 0 continuous, 14 integer (14 binary)

Root relaxation presolved: 8 rows, 14 columns, 25 nonzeros

Root relaxation: objective 4.000000e+00, 7 iterations, 0.01 seconds (0.00 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf| Incumbent BestBd Gap | It/Node Time
*0 0 0 4.0000000 4.00000 0.00% - Os

Optimal solution found at node 0 - now completing solution pool...

Nodes | Current Node | Pool Obj. Bounds | Work

| | Worst |

Expl Unexpl | Obj Depth IntInf| Incumbent BestBd Gap | It/Node Time

0 0 - 0 - 4.00000 - - Os

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 - 0 - 4.00000 - - Os
0 2 - 0 - 4.00000 - - Os

Explored 79 nodes (49 simplex iterations) in 0.26 seconds (0.00 work units)

Thread count was 12 (of 12 available processors)

Solution count 10: 444 ... 5

No other solutions better than 5

Optimal solution found (tolerance 1.00e-04)

Best objective 4.000000000000e+00, best bound 4.000000000000e+00, gap 0.0000%

Elapsed time is 0.779711 seconds.

Optimal objective: 4.000000e+00

01 0 0 001 00 0 1 01 0

Elapsed time is 0.821109 seconds.

2 7 11 13
2 6 7 9
2 6 8 9
2 8§ 10 13
2 7 10 13
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Table 7. The PMU Placement Results required for the complete observability

IEEE Net- CO PMU location (Bus #)
works
2 7 11 13
2 6 7 9
14 bus system 2 6 8 9
2 8 10 13
2 7 10 13
1 2 6 9 10 12 18 24 25 27
2 3 6 9 10 12 18 24 25 27
36 7 9 10 12 18 24 25 27
30 bus system 1 6 7 9 10 12 18 24 25 27
2 3 6 9 10 12 15 19 25 27
1 7 9 10 12 15 18 25 27 28
2 3 6 9 10 12 15 18 25 27
35 9 10 12 15 18 25 27 28
1 2 6 9 10 12 15 18 25 27
36 7 9 10 12 15 18 25 27
2 6 12 19 22 25 27 32 36 38 41 45 46 50 52 55 57
1 4 9 19 22 25 27 29 32 36 41 45 46 47 50 53 57
1 4 9 19 22 25 27 29 32 36 41 45 46 48 50 53 57
1 4 9 19 22 25 27 29 32 36 38 41 45 46 50 53 57
57 bus system 1 4 9 19 22 25 27 29 32 36 41 45 46 47 50 54 57
1 6 10 15 19 22 25 27 32 36 38 41 47 49 52 55 57
1 6 10 15 19 22 25 27 32 36 41 44 47 49 52 55 57
1 6 10 15 19 22 25 27 32 36 41 45 47 49 52 55 57
1 6 10 15 19 22 25 27 32 36 39 41 44 47 49 52 55
1 6 9 15 19 22 25 27 32 36 38 41 47 50 52 55 57

2 5 9 12 15 17 20 23 26 28 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 86 90 94 102 105 110 114
2 5 9 11 12 17 20 23 26 28 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 86 90 94 102 105 110 114
118 bus system 2 5 9 12 15 17 20 23 26 28 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 8 90 94 102 105 110 115
2 5 10 11 12 17 20 23 26 28 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 86 90 94 102 105 110 114
2 6 9 11 12 17 20 23 26 28 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 86 90 94 102 105 110 114
1 5 9 11 12 17 20 23 26 28 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 86 90 94 102 105 110 114
2 5 9 11 12 17 20 23 28 30 34 37 41 45 49 53 56
62 64 68 71 75 77 80 85 86 90 94 102 105 110 114
1510 11 12 17 21 24 26 28 34 37 40 45 49 52 56
62 64 73 75 77 80 85 87 91 94 101 105 110 114 116
2 5 10 11 12 17 21 24 26 28 34 37 40 45 49 52 56
62 64 73 75 77 80 85 87 91 94 101 105 110 114 116 |

Table 8. The PMU Placement Results required with maximum observability
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Each solution is an adequate optimum point to satisfy the real-time power monitoring system. As
we can observe, the solver solves exactly the classical 0 — 1 integer program within a zero-gap
tolerance. A solution pool of optima points is derived inside a zero-gap tolerance meaning that all are
non-unique constraint global optima points. The best bound is considered to be the optimal objective
value for the minimization problem [64]-[65]. The optimal solutions are derived for both case studies,

that is, full observability with one and two criterion and incomplete observability [39], [54]-[55].

Finally, we manage to gather the best possible solution with a best objective, a best bound within a
zero-gap tolerance [45]-[52]. All optima points presented in Table 8 have the maximum SORI
satisfying the maximum reliability of state of the power network [17]. All optima points are derived at
a single run [64]-[65]. Table 9 illustrates the optimization on the 57 bus system [56]. The online
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diagram and data lines information needed to build the matrices can be found in [56], [64]-[65]. Table
9 illustrates the iterative process produced by Gurobi ILP optimizer function in [64]-[66].

Gurobi attacks the constraint binary program with absolute precision finding an optimum point
inside a zero-gap tolerance [66].The log files produced by the Gurobi are shown in the Table 9.

Gurobi completes the optimization process when the MIP Gap is equal to a value within tolerance
criteria as declared by default settings. This solution may not be the optimal solution. In this worst
case, the incumbent solution is considered to be e-suboptimal. In this work, there is no issue about this
task. The gap is zero and the Gurobi returns a globally optimal solution as the above log file shows.
We illustrated the process optimization based on the 57 bus system [57].

Table 9: Process Optimization based on IEEE-57 bus system

Optimize a model with 80 rows, 57 columns and 480 nonzeros
Variable types: 0 continuous, 57 integer (57 binary)
Coefficient statistics:
Matrix range  [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range  [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
Found heuristic solution: objective 14.0000000
Presolve removed 20 rows and 0 columns
Presolve time: 0.00s
Presolved: 60 rows, 57 columns, 348 nonzeros
Variable types: 0 continuous, 57 integer (57 binary)
Root relaxation presolved: 60 rows, 57 columns, 348 nonzeros
Root relaxation: objective 1.100000e+01, 51 iterations, 0.00 seconds (0.00 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf| Incumbent BestBd Gap | It/Node Time
0 0 11.00000 0 8 14.00000 11.00000 21.4% - Os
H 00 13.00000 11.00000 154% - Os
H 00 11.00000 11.00000 0.00% - Os
00 - 0 11.00000 11.00000 0.00% -  Os
Optimal solution found at node 0 - now completing solution pool...
Nodes | Current Node | Pool Obj. Bounds | Work
| | Worst |
Expl Unexpl | Obj Depth Intinf | Incumbent BestBd Gap | It/Node Time
0 0 - 0 15.00000  11.00000  26.7% - Os
0 0 -0 15.00000  11.00000  26.7% - Os
0 2 -0 15.00000  11.00000  26.7% - Os

Explored 43 nodes (73 simplex iterations) in 0.13 seconds (0.00 work units)

Thread count was 12 (of 12 available processors)

Solution count 10: 11 11 11 ... 11

Optimal solution found (tolerance 1.00e-04)

Best objective 1.100000000000e+01, best bound 1.100000000000e+01, gap 0.0000%
Elapsed time is 0.170926 seconds.

Optimal objective: 1.100000e+01

Table 10: Optimal Results based on Gurobi optimizer
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Columns 1 through 15
0O 0 01 000 060 I 0 0 0 01

Columns 16 through 30

0 0 0o oo 1 001 00 0 01 0

Columns 31 through 45

01 06 0 0o 061 00 0 1 0 o0 00

Columns 46 through 57

0 061 00 00 1 0 0 0O

Elapsed time is 0.173968 seconds.

ans =

4 10 15 21 24 29 32 37 41 48 53

ans =

11

The optimal set solution is displayed in Fig.7 whereas the PMU sites are displayed in Table 11.
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Fig.7 Plot diagram with the IEEE-57 bus network

Table 11. Optimal Placement Outcome for IEEE-57-bus network

PMU locations with partial observability with depth-of-one degree
4,10, 15,21, 24,29, 32,37,41,48, 53
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Gurobi results in an optimal solution with a Gap equal to zero [64]-[66]. As we can observe, a set
solution is produced given in Table 12. As we see a solution pool is derived for the 57- and 118 bus
systems [56]-[57]. A set solution is derived by a number of PMU placements considering the DoOU
topological scenario. All solutions are appeared to be adequate for the DoOU scenario [17].

Gurobi gives a set solution X = {4,6} for the 14-bus system whereas it gives a set solution X =
{2,10,15,27} for the 30-bus system. This is an adequate optimum point for that power system [64]-
[65]. For the 57- and 118- bus systems, a solution pool of optima points is derived. For each case
study, a set of 10 placements are given covering the topological scenario of DoOU [17], [39].

The optimal results reveal that the straight solution of DoOU, on that condition, does not gives the
CO but the partial observability with level one [34], [39]. Each optimum point ensures a minimum
linear measure between an unobservable power network and the adjacent observable buses including
in a local area [17], [39].

The location of PMUs is selected based on a DoOU topological scenario [15], [39]; to such an
extent the power network is unobservable with a level of one. The distance between an unobservable
power network node with a local area consisting of observable bus is minimized [15], [39].

Table 12: The PMU Placement Results required for the incomplete observability

IEEE Power PMU location
Network (Bus #)

14 bus system

9

, 10, 15,27

30 bus system

, 15,20, 24,29,32,37,41, 48, 53

9

6
10,1

, 10, 15, 21, 24, 29, 32,37, 41, 48, 53
10,1
10,1

, 10, 15, 20, 24, 29, 32,37, 41, 48, 53

,10, 15, 20, 24, 29, 32, 37,41, 48, 53
9,10, 15,21, 26, 31,36, 48, 52,56

9

57 bus system

, 20,24, 28,32,37,41, 48, 53

9 b

, 20,24, 29,32,37,41, 48, 54

5 3

, 20,24, 29,32,37,41, 48, 55

5 b

,20,24,27,32,37,41, 48, 53
,20,24,29,32,37,41, 48, 54

9 b

,17,22,27,34,37, 49, 54, 61,71, 77, 80, 85, 92,105,111, 116

5

,17,21,27,34,37,49, 54, 61,70, 77, 80, 85,92,105, 111,116

9

10,1
10,1
10,1
10,1
10,1
12,1
12,1
12

,12,17,22,27,34,37,49, 54,61, 65,71,77, 82, 85, 92,103, 105

,12, 17,22, 27,34, 39, 49, 54, 61, 68, 70,77, 80,85, 92,105,110

118 bus system 12, 17,21, 27, 34, 39, 49, 54, 61, 68,70, 77, 80,85,92, 105,110

12, 17,21, 27,37, 45, 49, 54, 61,70, 77, 80, 81, 85, 92, 105, 110

12,17, 22, 27, 34, 37,49, 54, 61,70, 77, 80, 81, 85, 92, 105, 110

12,17,21,27,37,43, 49, 54, 61, 70, 77, 80, 81, 85, 92,105,110

4
2
4
6
4
5
4
6
5
5
6,
4
8
8
8
8
8
8
8
8
8
8

,12,17,22, 27, 34, 40,49, 54, 61, 68, 70, 77, 80, 85,92,105, 110

12,17, 22,27, 34,37,49, 54, 60, 65, 70,77, 80, 85, 92,105, 110

We are able to solve the Nonlinear Program (NLP) Optimization related to partial observability
with DoOU using the open-source optimizer function Solve Constraint Integer Programming (SCIP)
[48]-[50]. The specific function solves the NLP model towards a globally optimal solution being
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derived within a zero-gap tolerance [49]-[50]. SCIP solves the Nonlinear Program (NLP) Optimization
towards getting an optimal solution exploring a number of BBNodes as displayed in Tables 13 and 15.

As the output illustrates, a trivial time is spent by the Spatial Branch-and-Bound using IPOPT and
Soplex algorithmic schemes. The desired outcome is that the optimizer function gets the globally
optimal for both case studies.

To solve the nonlinear problem with SCIP optimization function, a linearization methodology is
first coming into being to give the primal bound to calculate the global minimum point [48]. The
relaxed problems are solved by the linear solver (LP) embedded in the SCIP optimizer function [52].

As we observe in Tables 13 & 15, an optimal solution is derived within a zero-gap tolerance
justifying in this way the achievement of getting the global solution [45]-[50].

Hence, a globally optimal solution is given even so; the programming model is characterized by
non-convexity in the constraint function. The non-convexity is suitable to linearize during the iterative
process [45]. The binary enumeration tree counts a reasonably explored node to get the optimality
within a zero-gap tolerance. The Primal and Dual bounds are evaluated to be equal giving the
optimality at the final root node [45]-[50].

As we can observed Primal and Dual bounds are produced at each explored node and finally the
two bounds are found to be equal giving a global optimality certificate [47], [49]-[50]. This product is
a crucial outcome because it justifies that a globally optimal solution is finally attained [45], [48]-[49].
In such an iterative process, the benchmark output is the primal bound as observed in the above table.

The calculation of dual bound is following and we get the difference of them to be found equal
[45]. For minimization models the primal bound is considered to be the desired outcome while the
lower bound is culprit for the minimization of the gap. Hence, a global optimum point is reached
within an absolute gap zero whereas the iterative iteration is satisfied within a relative gap tolerance.

Hence, the Primal Bound is the leader certificate of optimality constantly compared to the Dual
bound. The zero difference of those bounds is an adequate certificate that gives the global solution.

Also, Table 13 displayed the iterative process produced by solving the nonlinear program with
SCIP optimizer for the 14 bus system whose data lines’ information can be found in MATPOWER
[56]. The optimal solution is a restricted PMU numbers at selected power system nodes that is, X =
{4,6} for the 14 bus system [17], [34]-[38]. The incomplete observability condition and gives a
feedback to the state estimation routine as noted in [36].

The set solution is displayed in the following plot-diagram. As we can see, the SCIP optimizer
minimizes the algorithmic scheme, gives the optimal solution without suffering from the existence of
floating points. The optimal solution strictly satisfies the binary restriction ¥ € {0.1} [45]-[50].

The difference between the primal and dual bounds are evaluated and found equal to zero [50].
Hence, the global solution is delivered by the SCIP optimizer function meaning that the optimizer
routine handles the nonlinear program and its non-convexity with adequate efficiency towards
optimality meaning that this solution is a global one being succeeded within a zero-gap [45]-[50].

The placement set solution is displayed in Table 13 where the PMU sites are shown in the plot
diagram shown in Fig.8. Also, Table 15 illustrates the iterative process produced by solving the
nonlinear program with SCIP optimizer for the 30 bus system whose data lines’ information can be
also found in MATPOWER [56]. The set solution isx = {5, 10, 15,27} as found in [39]. BBA is using
a primal or dual simplex during the iterative process problem solving [49]-[50].

A global optimal solution is achieved as the log file is shown in Table 13. BBA utilizes a tree
search strategy to unquestioningly calculate all solutions that can exist to the given minimization
problem, using pruning rules to get rid of regions of the search space that cannot give a high degree
solution point. SCIP utilizes three options to construct the binary tree such as search and branching
strategies and rules to prune infeasible regions to find a feasible and optimal solution point. We find
out that if the binary tree is small in size, the solving process is fast. The solving time is 0.42 s and
SCIP returns an optimal solution without the entire optimization process being computational heavy.
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That enumeration tree has been implemented without computation complexity as the algorithmic
scheme's experimental outcome shows. That optimal result consists of a desired outcome in the
direction of getting a feasible and global solution in a robust way without computation burden.

As we observed, the optimal solution for each power network is a pure binary point without
suffering from the floating points. The final position is an outcome produced by an appropriate
algorithm to the optimization problem either in combinatorial format a continuous domain [45]-[52].

We assign positive feedback to the minimization problem solving and successfully terminate the
iterative process with a global minimum point. SCIP optimizer solver executes a powerful branching
regulation which results in a small-sized B&B tree without producing many branching decisions.

The routine calculates the upper and lower bounds in the b&b tree’s development where it
terminates with the best incumbent solution [49]-[50], [62]-[64].

SCIP successfully closes the optimality gap. Gap zero means that no better possible solution can be
found [58]-[60]. Hence, SCIP gives a global optimal solution and the minimization model has been
solved exactly avoiding being trapped into a local solution or a sub-optimal solution [62]-[64].

That enumeration tree is solved without computation complexity as the algorithmic scheme's ex-
perimental outcome illustrates [45]. Table 13 displays the results where a simulation run is successful
because the Primal and Dual Bounds are found to be equal [58]-[60].

The Primal and Dual Bounds are equal; hence, the optimization problem has been solved as shown
in the status log file. The Primal Bound is considered the optimal solution whereas the Dual Bounds
closed the gap. Hence, an optimal solution is achieved within a zero-gap tolerance; a global solution
was found within a 0.00 % optimality criterion [58]-[60].
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Table 13: Process Optimization by SCIP optimizer function

Nonlinear Program (NLP) Optimization
min f(x)
s.t.lb<=x<=ub

cl<=c(x)<=cu

Problem Properties:

# Decision Variables: 14
# Constraints: 37
# Bounds: 28
# Nonlinear Equality: 9

Solver Parameters:
Solver: SCIP
Objective Gradient: @(x)mklJac(fun,x)
Constraint Jacobian: @(x)mklJac(nlcon,x)
Jacobian Structure: Supplied

presolving:
(round 1) 0 del vars, 0 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 1 upgd conss, 0 impls, 0 clgs
(round 2) 1 del vars, 1 del conss, 0 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 1 upgd conss, 0 impls, 0 clgs
(round 3) 1 del vars, 1 del conss, 22 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 1 upgd conss, 0 impls, 0 clgs
(round 4) 1 del vars, 1 del conss, 22 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 32 upgd conss, 0 impls, 0 clgs
(round 5) 1 del vars, 1 del conss, 22 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 41 upgd conss, 0 impls, 0 clgs
presolving (6 rounds):
1 deleted vars, 1 deleted constraints, 22 added constraints, 2 tightened bounds, 0 added holes, 0 changed sides, 0 changed coefficients

0 implications, 0 cliques
presolved problem has 36 variables (0 bin, 0 int, 0 impl, 36 cont) and 31 constraints

9 constraints of type <bounddisjunction>

22 constraints of type <quadratic>
Presolving Time: 0.03

time | node |left [LPiter |LP it/n |mem |mdpt [frac [|vars |cons |cols [rows | cuts  |confs |strbr | dualbound [primalbound | gap
0Is| 1 | O] 2 | - 284k | 0 | 0 |36 [31 [36 |50 |0 |0 | 0 ]0.000000e+000 | - | Inf
uodsf 1] 0] 2 | - [293k | 0 | 0 [36]31 [36 |50 |0 |0 | 0 ]0.000000e+000 [4.000000e+000 | Inf
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This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open-source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt
*k skokokk skokokk skokokk skokokk

02s| 1| O 14| -[296k|] O] 0| 36| 32| 36| 58] 8 | 0 | 0]0.000000e+000 [4.000000e+000 | Inf
02s| 1| O 19] -[299k| O] 0| 36| 32]36] 63| 13| 0 | 0]0.000000e+000 [4.000000e+000 | Inf
02s| 1| O 22| -[301k] O] 0| 36| 32|36] 66| 16 | 0 | 0]0.000000e+000 [4.000000e+000 | Inf
03s| 1| 2| 45| -|304k| O] 0] 36| 32| 36| 66| 16 | 0 | 01]0.000000e+000 [4.000000e+000 | Inf
*04s|11] 7| 64 [421290k| 5| -]36] 3236|2521 | 0 | 0[2.000000e+000 [3.000000e+000 | 50.00
*04s/20] 0] 72 |2.6]286k| 5| -]36]32(36]25]21 | 0 | 0]2.000000e+000 |2.000000e+000 | 0.00
SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) :0.42

Solving Nodes : 20

Primal Bound : +2.00000000000000e+000 (3 solutions)

Dual Bound : +2.00000000000000e+000

Gap :0.00

ans =

o0 0 1 0 1 0 0 0 0 0 O0 0 O

ans =

4 6

percentage relative gap = 100 * |primal — dual|/MIN(|dual|, |primal|) ; Termination criteria: Gap = 0 and Solving Time=0.42s;
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Figure 8. Plot diagram of Placement Result for IEEE 14-bus network

Table 14. Optimal Placement Outcome for IEEE-14-bus network

PMU locations with partial observability with depth-of-one degree
4,6

The utilization of the SCIP has enabled the resolution of NLP optimization issues associated with
partial observability, specifically those involving a DoOU topological scenario following the study
published in [17]. The output can be considered a desired outcome [63].

Therefore, a constraint integer linear programming algorithmic shceme is utilized to obtain a
strong, non-unique global solution point within a zero-gap [63].

As we observed, the primal bound takes the lead in the optimization process, with an equal dual
bound estimated to achieve zero-gap tolerance [45]. The dual bound close the gap so the solution is
achieved within 0.00 % optimality [69]. Therefore, the solution is characterized as a global one [70].

The relative gap is a benchmark termination criterion which shows if the B&B terminates to a
global solution or to a suboptimal solution [58]-[60]. This study gives an inventive model of
unambiguous global optimal solutions either in a combinatorial domain or continuous nonlinear
programming. Both algorithmic schemes deliver solutions within a 0.00 % criterion [49].

The optimal objective function is the best possible with the one derived in Gou’s work [17] and
some placement results related to that objective function have been calculated with accuracy due to
zero-gap as claimed in previous studies [17], [34], [39]. An optimal solution is given within a zero-gap
tolerance as the log output shows in Table 15 [63].

Table 15: Process Optimization by SCIP optimizer function
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Nonlinear Program (NLP) Optimization

min f(x)
s.t. Ib<=x <=ub
cl<=c(x)<=cu

Problem Properties:

# Decision Variables: 30
# Constraints: 79
# Bounds: 60
# Nonlinear Equality: 19
Solver Parameters:
Solver: SCIP
Objective Gradient: @(x)mklJac(fun,x)

Constraint Jacobian:

@(x)mklJac(nlcon,x)

Jacobian Structure:

Supplied

presolving:

(round 1) 0 del vars, 0 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 1 upgd conss, 0 impls, 0 clgs
(round 2) 1 del vars, 1 del conss, 0 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 1 upgd conss, 0 impls, 0 clgs
(round 3) 1 del vars, 1 del conss, 76 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 1 upgd conss, 0 impls, 0 clgs
(round 4) 1 del vars, 1 del conss, 76 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 96 upgd conss, 0 impls, 0 clgs
(round 5) 1 del vars, 1 del conss, 76 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 115 upgd conss, 0 impls, 0 clgs

presolving (6 rounds):
1 deleted vars, 1 deleted constraints, 76 added constraints, 2 tightened bounds, 0 added holes, 0 changed sides, 0 changed coefficients
0 implications, 0 cliques

presolved problem has 106 variables (0 bin, 0 int, 0 impl, 106 cont) and 95 constraints
19 constraints of type <bounddisjunction>

76 constraints of type <quadratic>
Presolving Time: 0.03

time | node| left |LP iter [LP it/n| mem |mdpt |frac |vars |cons |cols [rows |cuts |confs|strbr| dualbound | primalbound | gap
0lIs|] 1 | O] 12 ] - [553kl 0 | 0|106]| 95|106]167| 0 | O | O [0.000000e+000|  -- | Inf
02s] 1 | O] 30| - [585k| 0 | 0|106| 96]106|184] 17 | 0 | O [0.000000e+000|  -- | Inf
02s] 1 | O 42 ] - [592k| 0 | 0]106]| 96]106]196]29 | 0 | O [0.000000¢+000|  -- | Inf
02s] 1 | O] 52| - [598k| 0 | 0]106]| 96]106]206] 39 | 0 | O [0.000000e+000|  -- | Inf
02s] 1 | O] 60 | - [602k] O | 0]106]| 96]106]214|47 | 0 | 0 [0.000000e+000| -- | Inf
02s] 1 | O] 65| - [605k] 0 | 0]106]| 96]106]219] 52 | 0 | O [0.000000e+000| -- | Inf
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02s] 1 | O] 67 | - [606k 0 | 0[106]96|106]221] 54 | O | 0 [0.000000e+000| -- | Inf
03s] 1 | 0] 170 | - |616k 0 | 0]106]| 96/106/223| 56 | 0 | 0 [0.000000e+000| - | Inf
03s] 1 | O] 172 - [617k 0 | 0]106]| 96|106]225] 58 | 0 | 0 [0.000000e+000| -- | Inf
03/ 1 | 0] 174| - |618k 0 | 0][106] 96|106(227| 60 | 0 | O [0.000000e+000| -- | Inf
03 1 | 0] 175| - |619 0 | 0]|106] 96|106]228| 61 | 0 | O [0.000000¢+000| -- | Inf
03] 1 | 2] 175| - |619%] 0 | 0]106] 96|106(228| 61 | 0 | O [0.000000e+000| -- | Inf
*0.5s] 79| 61| 374 | 3.8 |598k 11 | -[106 | 96|106| 86121 | O | 0O [4.000000+000 [5.000000¢+000 | 25.00
0.5 100] 50| 389 | 3.2 |595k| 11 | -|106 | 96| O | 0 [121 | 0 | O |4.000000¢+000 |5.000000¢+000 | 25.00
*0.5s] 193] 0] 533 | 2.4 |557k| 11 | -[106 | 94]106] 79146 | O | 0 [4.000000e+000 [4.000000¢+000 | 0.00
SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.50
Solving Nodes 1193

Primal Bound : +4.00000000000000e+000 (2 solutions)
Dual Bound : +4.00000000000000e+000
Gap :0.00

ans =

Columns 1 through 17

o0 001 0O0O0O0OT1UO0O0OUO0OTO0OT1 0O
Columns 18 through 30

0O 0000000 0O I 0 0 0

info =

BBNodes: 193
BBGap: 0
Time: 0.5885
Algorithm: 'SCIP: Spatial Branch and Bound using IPOPT and SoPlex'
Status: 'Globally Optimal'

ans =

5 10 15 27
percentage relative gap = 100 * [primal — dual|/MIN(|dual|, |primal|) ; Termination criteria: Gap = 0 and Solving Time=0.50 s;
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Figure 9. Plot diagram of Placement Result for IEEE 30-bus network

Table 16. Optimal Placement Outcome for IEEE-30-bus network

PMU locations with partial observability with depth-of-one degree
5,10, 15,27

SCIP optimizer routine executes a powerful branching regulation which leads to a small-sized B&B tree.
The solver calculates the upper and lower bounds in the b&b tree’s development where it results in the
best incumbent solution [57]-[59].

Thus, an optimal solution is attained within a zero-gap tolerance; a global solution was figured out
within a 0.00 % optimality criteria. SCIP successfully closes the optimality gap. Gap zero means that no
better possible solution can be found. Therefore, SCIP returns a global optimal solution and the problem
have been solved exactly avoiding being trapped into a local solution or a sub-optimal solution [57]-[59].

We assign a positive feedback to the optimization problem solving and successfully terminate the
iterative process with a global minimum point [57].

As we observed, we solved the Nonlinear Program (NLP) Optimization related to partial observability
with DoOU using the open-source optimizer function Solve Constraint Integer Programming (SCIP)
(Tables 13 & 15). [58]-[60]. The specific function solves the NLP model towards a global optimal
solution being derived within a zero-gap tolerance [59]-[60].

To solve the polynomial (nonlinear) problem with SCIP optimization function, a linearization
methodology is first coming into being to construct the branch strategy [45]-[50].

Additionally, a Dual bound is considered at each node where the relaxed problems are solved, the
regions are explored [49]-[50]. Regions that give objective value larger than the Primal bound are pruned
[49]-[50]. At the final stage of the iteration, the two bounds are evaluated to be equal thus a zero-gap is
computed. Hence, the global optimal solution is attained within 0.00 % optimality.

At this point we clearly declare that this output is a desired outcome from the point of view of global
optimality view [45]-[50]. It is a strong innovation of this paper separating from the local solution being
achieved by SQP and IPMs [27]-[30], [45]-[49]. The 14-bus and 30-bus systems are utilized as
benchmark experimental tests and some results are derived in Tables 13 & 15 [56]-[57].

The non-convexities declared in the constraint function give us a nonlinear program can be solved by
the SCIP optimizer function [58]. A spatial branch-and-bound algorithm is an algorithm that composed
of some kind of building an enumeration tree in the direction of getting an optimal solution dependently
by the gap at the given root node [58]-[60].
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SCIP optimizes the nonlinear program (NLP) optimization based on the 14 — and 30- bus systems [56]-
[57]. SCIP finds the optimality using linear relaxations solved at each explored node (Tables 13 & 15)
[49]-[52]. These experimental tests are working as benchmark systems to show that SCIP optimizer leads

to a global optimal solution; as optimization function claims in its output [58]-[60].

To solve any integer program, a deeper relationship between integer programming with linear
programming is built [58]-[60]. The binary integrality X € {0,1} is relaxed to a continuous domain that
is,X € [0,1] [45]-[50]. A number of nodes are explored where a linear problem is solved as follows:
min{wTx: Ax < b,X € R}} through a linear programming (LP) solver [45]. Finally, the optimizer
function will give a feasible and binary solution in the following format X € {0,1} [45]-[50].

The relaxation’s tightness relies on the variable bounds; hence the tightness methodology is very
important for a well-performing SCIP optimizer in getting the optimality within zero-gap toleration [49]-
[52]. SCIP optimizer function is applied to continuous and discrete global optimization problems [58].

The optimizer function delivers the optima point within a zero-gap tolerance for each power network.
Hence, we use a convergent ILP algorithm in getting a strong non-unique global solution point with a
zero-gap being achieved [49]-[50]. Our validation output is that the gap claims a globally solution has
been found [49]-[50]

The solutions don’t appear to be floating point’s phenomenon [45]-[50]. Also, it is characterized as a
globally optimum point since the percentage relative gap goes to zero. The best cost function value is
equal to the upper bound of the B&B tree while the lower bound minimizes the absolute gap. Hence, the
global certificate of optimality is verified.

Optima points are achieved within a zero-gap difference between the Primal and Dual Bounds. SCIP
estimates that difference equal to zero; a global solution is attained using reasonable explored nodes in
the construction of the enumeration tree [45]. The nonlinear problem is approached by a polyhedron and
it is solved through the SCIP optimizer function which constructs the enumeration tree [58].

The entire process optimization is reached when a globally optimal solution is found. The dual bound
is considered to be the desired outcome within a zero-gap tolerance at the explored and given root node
[58]-[63]. The optimizer SCIP function can be found in OPTI-toolbox [63].

SCIP is able to detect a best integral solution at the initial stage that is the primal bound relying on
decision values declared by the program’s user for all variables [58]-[60]. Also, a dual bound is
constantly evaluated so as the difference of those bounds to lead to zero justifying the approach and
finding of a globally optimal solution [58]-[60].

As observed, SCIP optimizer function linearized each polynomial equality constraint, solved the
process optimization through a construction of a branch-and-bound tree and finally delivered a globally
optimal solution [48]. At each node where the relaxed problems are solved, the regions are explored and
infeasible regions are pruned [45]-[50].

At the final stage of the iteration, the two bounds are evaluated to be equal thus a zero-gap is
computed [45]-[50]. As we can see the primal bound is the leader in this optimization process, an equal
dual bound has been evaluated that leads to zero-gap toleration [49]-[50].

The standard IEEE systems are used and some results are derived displayed in Tables 13 &15 [46]-
[47]. These experimental tests are working as benchmark systems to show that spatial branch-and-
bound embedded in the open-source SCIP optimizer leads to a globally optimal solution; as the output
of the solver claims [58]-[60], [63]. Hence, we use a convergent ILP algorithm in getting a strong non
unique global solution point with a zero-gap being achieved [61]-[67].

Our validation output is that the gap claims a global solution has been found. The optimizer SCIP
function can be found in OPTI-toolbox [52]. SCIP optimizer function is able to detect a best integral
solution at the initial stage that is a primal bound relying on decision values declared by the
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Program’s user for all variables and then a dual bound is reached [48]-[50]. The optimal best
objective function is the primal bound and some placement results are derived within 0.00%
optimality [45]-[50].

Then, we execute the binary polynomial problem with YALMIP global nonlinear branch-and-
bound algorithmic (BBA) scheme to get the optimality [70]. YALMIP BBA utilizes external routines
to count the upper and lower bounds whereas the binary tree is constructed [68]. To test this
optimization model, the 14-bus, 30-and 57-bus systems are used to find out the optimality [S6]-[57].

This global optimizer function is performed by calling external integer linear as well nonlinear
optimization functions to build the enumeration tree for the purpose of getting an optimum point
within a zero-gap tolerance [68], [69]-[70].

During the iterative process, the upper and lower bounds are evaluated by an Upper solver and
Lower solver respectively [70]. Meanwhile an LP solver takes care of solving the relaxed problems to
get an optimum point [69]. The difference of those bounds gives the certificate of global optimality
[70]. For minimization problems as the proposed problem studied in this work, the upper bound is
considered to be the best possible solution whereas the lower bound is culprit to close the gap [50].
Hence, optimality is achieved within a 0.00% gap tolerance [45].

As an upper solver is used the FMINCON to get the first feasible integral solution and based on
this optimum, the lower solver is evaluated to get the lower bound [47]. We use SCIP optimizer
function [58] as well as Gurobi solver [64] to solve the relaxed problems during the branch strategy
and to estimate the lower bound [45]-[50]. An optimum point is found to be within a zero-difference
between those bounds. Hence, a global optimum is attained within a satisfied relative gap.

Then, increasing the PMUs number, a complete PMU arrangement can be implemented. The
incremental PMU quantity starts with a few numbers of synchronized phasor devices, in phase if it is
required until the entire complete observability can be calculated [40]. The iterative process is shown
in the Table 17 for the benchmark IEEE-14 case study [56].

For a 30-bus and 57-bus system, we can find an optimal solution under the concept of
incomplete observability [17], [39]. Table 19 illustrates the iterative process derived by YALMIP
BBA [70]. YALMIP BBA is proved to be scalable since it can give an optimum point; a globally
optimal solution is found within a zero-gap tolerance [69]-[70].

External optimization functions such as FMINCON or Gurobi can be invoked for the purpose of
counting upper and lower bounds respectively. Gurobi also performs as an LP solver to build the
branching strategy and to implement relaxed problems in getting the optimality [45]-[50], [64].

Table 17: Process Optimization by YALMIP BBA optimizer function

N T N AN A A N U A A A A Y A A A AN N A A A A A A A O A I |
LSS, L L N N N N N N O N O I N N N N N N O N N N N B B B |

| ID| Constraint| Coefficient range|

| #1| Equality constraint (polynomial) 1x1| 1to 1]
| #2| Equality constraint (polynomial) 1x1| 1to 1]
| #3| Equality constraint (polynomial) 1x1| 1tol]
| #4| Equality constraint (polynomial) 1x1| 1tol]
| #5| Equality constraint (polynomial) 1x1| 1tol]
| #6| Equality constraint (polynomial) 1x1| 1tol]
| #7| Equality constraint (polynomial) 1x1| 1tol]
| #8| Equality constraint (polynomial) 1x1| 1 to 1]
| #9| Equality constraint (polynomial) 1x1| 1 to 1]

Table 17: Process Optimization by YALMIP BBA optimizer function continued
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* Starting YALMIP global branch & bound.

* Upper solver  : fmincon

* Lower solver : GUROBI

* LP solver : GUROBI

* -Extracting bounds from model

* -Perfoming root-node bound propagation

* -Calling upper solver (no solution found)

* _Branch-variables : 14

* -More root-node bound-propagation

* -Performing LP-based bound-propagation

* -And some more root-node bound-propagation

* Starting the b&b process

Node  Upper Gap (%) Lower  Open Time

1: 2.00000E+00 0.00 2.00000E+00 2 1s Solution found by heuristics

* Finished. Cost: 2 (lower bound: 2, relative gap 3.3333e-09%)

* Termination with relative gap satisfied

* Timing: 26% spent in upper solver (2 problems solved)

* 6% spent in lower solver (1 problems solved)

* 10% spent in LP-based domain reduction (28 problems solved)
* 1% spent in upper heuristics (1 candidates tried)

sol =

yalmipversion: '20210331'

matlabversion: '9.4.0.813654 (R2018a)'

yalmiptime: 0.2703

solvertime: 1.1047

info: 'Successfully solved (BMIBNB)'

problem: 0

Elapsed time is 1.385076 seconds.

ans =

0 0 o 1. 601 0 0 0 0 0 0 00

ans =

4 6

Linear scalar (real , binary, 14 variables)

Current value: 2

Coefficients range: 1 to 1
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Figure 10. Plot diagram of Placement Result for 14-bus network

current best function value

T
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Table 18. Optimal Placement Outcome for 14-bus network

PMU locations with partial observability with depth-of-one degree

4,6

Table 19: Process Optimization by YALMIP BBA optimizer function

|* Starting YALMIP global branch & bound|.

* Upper solver  : fmincon

* Lower solver : GUROBI

* LP solver : GUROBI

* -Extracting bounds from model

* -Performing root-node bound propagation

* -Calling upper solver (no solution found)

* -Branch-variables : 30

* -More root-node bound-propagation

* -Performing LP-based bound-propagation

* -And some more root-node bound-propagation

* Starting the b&b process

Node  Upper Gap (%) Lower  Open Time
1: 4.00000E+00 0.00 4.00000E+00 2 438s Solution found by heuristics

* Finished. Cost: 4 (lower bound: 4, relative gap 2e-09%)

* Termination with relative gap satisfied

* Timing: 48% spent in upper solver (2 problems solved)

Table 19: Process Optimization by YALMIP BBA optimizer function continued
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* 1% spent in lower solver (1 problems solved)
* 1% spent in LP-based domain reduction (60 problems solved)
* 1% spent in upper heuristics (1 candidates tried)
k

1% spent in lower solver (1 problems solved)

sol =

yalmipversion: '20210331'

matlabversion: '9.4.0.813654 (R2018a)'

yalmiptime: 1.6874

solvertime: 438.9766

info: 'Successfully solved (BMIBNB)'

problem: 0

Elapsed time is 240.868845 seconds.

ans =

4

ans =

Columns 1 through 17

1 0 0 000000 1 0 00

Columns 18 through 30

0 0 0o 00 0o0o 00 1T 0 00

ans =

1 10 15 27

Linear scalar (real , binary, 30 variables)

Current value: 4

Coefficients range: 1 to 1

FMINCON is invoked to count the upper bound, the Gurobi solver estimates the lower bound and
an LP solver solves the relaxed problems [61]-[64]. Finally, the optimization problem is completed at
one root node is explored where an optimal solution is reached within a zero-gap tolerance [49]-[50].

Using the 30 bus system, the upper bound is considered to be the cost value within a zero-gap
tolerance and a relative gap equal to 2e — 09% [69]-[70]. The iterative process is terminated within a
relative gap satisfied [69]-[70]. The optimal solution is displayed in Fig.11 and Table 20.
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Figure 11. Plot diagram of Placement Result for 30-bus network

Table 20. Optimal Placement Outcome for 30-bus network

PMU locations with partial observability with depth-of-one degree
1, 10, 15, 27

Afterward, we carried out our model on the 30 bus system using SCIP as a lower solver [56], [57].
The iterative process is shown in Table 21. The FMINCON solver can count the upper bound which is
the best integral solution; also, a leadership to give optimality [70].

SCIP solver develops a branch strategy, exploring nodes where linear problems are solved and
some infeasible regions are pruned. The relaxed problems are solved by the linear programming (LP)
solver embedded in the SCIP optimizer function [63]. Also, SCIP estimates the lower bound [70].

YALMIP BBA estimates the difference between those bounds equal to zero and a global solution is
given within a zero-gap tolerance [69]-[70]. Hence, the cost value was found equal to the upper bound.
The binary tree results in an optimum point within a zero-gap justifying its global nature [58]-[60].

Table 21: Process Optimization by YALMIP BBA optimizer function

I TN N N A A A N T A A A A TN A A A A AN AN A A A AN O A A A
LS L L L L L N N N N I N N N N N N I N N N N N N N I N N N N B B |

* Starting YALMIP global branch & bound.
* Upper solver  : fmincon

* Lower solver  : SCIP

* LP solver : SCIP

* -Extracting bounds from model

* -Perfoming root-node bound propagation
* -Calling upper solver (no solution found)

Table 21: Process Optimization by YALMIP BBA optimizer function continued
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* -Branch-variables : 30
* -More root-node bound-propagation
* -Performing LP-based bound-propagation
* -And some more root-node bound-propagation
* Starting the b&b process
Node  Upper Gap (%) Lower Open  Time
1: 4.00000E+00 0.00  4.00000E+00 2 207s Solution found by heuristics
* Finished. Cost: 4 (lower bound: 4, relative gap 2¢-09%)
* Termination with relative gap satisfied
* Timing: 50% spent in upper solver (2 problems solved)

* 2% spent in lower solver (1 problems solved)
* 17% spent in LP-based domain reduction (60 problems solved)
* 1% spent in upper heuristics (1 candidates tried)
sol =
struct with fields:

yalmipversion: '20210331'
matlabversion: '9.4.0.813654 (R2018a)'
yalmiptime: 0.9389
solvertime: 207.8221
info: 'Successfully solved (BMIBNB)'
problem: 0

Elapsed time is 208.985846 seconds.

ans =

4

ans =

Columns 1 through 16

0 0 oo 1 00 0 0 1 0 0 00 1 0

Columns 17 through 30

0O 0 0o o o000 0O 1 0 00
ans =

5 10 15 27

Linear scalar (real , binary, 30 variables)
Current value: 4
Coefficients range: 1 to 1
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Figure 12. Plot diagram of Placement Result for IEEE 30-bus network

Table 22. Optimal Placement Outcome for IEEE-30-bus network

PMU locations with partial observability with depth-of-one degree
5, 10, 15, 27

The iterative process is shown in the Table 23 for the 57 network [57].

Table 23: Process Optimization by YALMIP BBA optimizer function

I TN T A A A N U A A A A TV A A A AN A A NN O A A A
LI A O N N N N N A N N N A N I I N I B |

* Starting YALMIP global branch & bound.
* Upper solver : fmincon
* Lower solver : SCIP
* LP solver : SCIP
* -Extracting bounds from model
* -Perfoming root-node bound propagation
* -Calling upper solver (no solution found)
* -Branch-variables : 57
* -More root-node bound-propagation
* -Performing LP-based bound-propagation
* -And some more root-node bound-propagation
* Starting the b&b process
Node  Upper Gap (%) Lower Open  Time
1: 1.10000E+01 0.00 1.10000E+01 2 153s Solution found by heuristics
* Finished. Cost: 11 (lower bound: 11, relative gap 8.3333e-10%)
* Termination with relative gap satisfied
* Timing: 19% spent in upper solver (2 problems solved)
* 21% spent in lower solver (1 problems solved)
* 23% spent in LP-based domain reduction (114 problems solved)

45



IC-MSQUARE-2023 IOP Publishing
Journal of Physics: Conference Series 2701(2024) 012013 doi:10.1088/1742-6596/2701/1/012013

Table 23: Process Optimization by YALMIP BBA optimizer function continued

* 1% spent in upper heuristics (1 candidates tried)

sol =

struct with fields:

yalmipversion: '20210331'
matlabversion: '9.4.0.813654 (R2018a)’
yalmiptime: 0.1411
solvertime: 153.0649
info: 'Successfully solved (BMIBNB)'
problem: 0

Elapsed time is 153.208162 seconds.

ans =

Columns 1 through 16

0 0 o0 1. 06000 1 00 00 10

Columns 17 through 32

0 0 o1 060 0 1 0 0 0 0 1T 0 01

Columns 33 through 48

0 0 oo 1 00 01 0 0 0 0 0 01

Columns 49 through 57

0 0 0o 00 0o 1 00

Linear scalar (real , binary, 57 variables)
Current value: 11
Coefficients range: 1 to 1

ans =

11

ans =

5 10 15 20 24 29 32 37 41 48 55
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Using the 57 bus system [56]-[57], the upper bound is considered to be the cost value within a zero-
gap tolerance and a relative gap equal to 8.3333e — 10% [69]-[70]. The iterative process is
terminated within a relative gap satisfied [69]-[70]. The relative gap is meaningless.

The optimum set solution is tabulated in Table 24 whereas the Fig. 13 shows the placement sites.
The PMU configuration is in full agreement with those published in Bei Gou’s [17] and Rohit
Babu’s works [39]. This fact reveals the truth that our algorithmic scheme delivers true solutions.
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Figure 13. Plot diagram of Placement Result for IEEE 30-bus network

Table 24. Optimal Placement Outcome for IEEE-57-bus network

PMU locations with partial observability with a depth-of-one degree
5,10, 15,20, 24, 29, 32,37, 41, 48, 55

Mathematical and evolutionary algorithms give non-unique optimum points by which the DoOU is
clearly satisfied. In that case, the context of all nearby nodes of any observable node must be observed
[17], [34]-[40]. Itis observed that the methodologies consider a graph theoretical approach reflecting
the one-line diagram with a binary connectivity matrix and an incidence matrix [42]-[44].

The discrete mathematical model is solved by BBA and algorithms based on population like
genetic algorithms and binary particle swarm optimization are also adopted to find optimality.

BBA solves a binary linear integer program with guaranteed zero-gap optimality [49]-[52]. Using
this solution as a benchmark study model, GAs and BPSO result in a globally optimal solution. Both
evolutionary algorithms are proved to be convergent to a PMU placement under the concept of partial
observability with low level equal to 1 [17], [39].

After the discrete standpoint of optimization problem solving, we solve it using nonlinear
algorithms such as SQP and IPMs [27]-[29], [45]-[49]. Both algorithms found locally solutions which
are global in unison since they are in full agreement with standard BBA's optimality output.

They satisfy the DoOU and accordingly less accuracy whereas the linear estimation runs checking
the power system observability [6]. For a specific IEEE power system, a PMU placement set solution
is derived within a pre-given tolerance criterion [45].

Such a placement remarks that we can find an unobservable bus within the power grid which is
immediately adjacent with observable power network nodes. This method has a factor leading to
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success in a manner as it guarantees a least distance between an unobservant power network node by
either traditional or synchronized measurements with a neighborhood consisting of observable buses.

Complete observability as well as partial observability is two topological scenarios to choose
appropriate PMUs in numbers, their locations around a power transmission grid aiming at complete or
incomplete power system monitoring [17], [39]. Also, through the run of state estimation tool, we can
examine when we lose the observability in any contingency or abnormal situation occurring during the
performance of the power grid operation [1]-[2].

DoOU is stated as the situation in which do not permit buses not monitored to link together as
declared in [17], [38]. This means that an unobservable bus is linked to observable buses. Based on
this statement, we develop a binary integer linear program as well as a nonlinear model to return the
appropriate PMU numbers and their locations for such a condition [45]-[52].

This study suggests a programming procedure being solved by mathematical and evolutionary
algorithms that relies on the context of the situation of unobservability with degree one [17], [34]-[40].

In order to get optimality, the BIP model into a nonlinear model is converted after analyzing
convergence to desirable outcomes from an evolutionary perspective. A discrete, continuous, and
evolutionary approach is presented to demonstrate that achieving partial observability using only
PMUs can be accomplished exactly within a reasonable runtime.

GAs and BPSO are employed to address this combinatorial optimization problem. Let us examine
the performance of BPSO on 30, 57 and 118-bus systems.

Table 25 displays the last iteration of BPSO to get the best possible optimum point. BPSO is an
extended version of PSO presented in [23] that results in an optimum solution point where the cost
function is minimized [17], [39]. The heuristic algorithm leads to an optimal solution where the
objective function is the least value. The optimum solution point is found to be as follows: X =
{2,10,15,27} which agrees to the one found in [39]-[40]. This solution is a constrained non-unique
global optimum point.

Table 25. Iterative Process produced by the execution of BPSO on IEEE-30 bus system

Iteration  Best particle Objective function

1 1 13.0000
2 1 11.0000
3 1 10.0000
4 1 10.0000
5 1 10.0000
6 1 7.0000
7 1 7.0000
8 1 7.0000
9 1 7.0000
10 1 7.0000
11 1 6.0000
12 1 4.0000

Elapsed time is 0.670224 seconds.

PMU =

2 10 15 27
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Figure 14. Plot diagram of Placement Result for 30-bus network

Table 26. Optimal Placement Outcome for 30-bus network

PMU locations with partial observability with a depth-of-one degree
2,10, 15,27

A plot diagram illustrated the PMU sites derived by PSO [23] using the 57-and -118 bus systems [56].
The PMU sites are displayed in the following tables and the plot diagrams. This set solution is an
adequate configuration under the DoOU [39]. PSO is executed on the 57 bus system and the last
iteration is displayed in Table 27. The objective function results in a least value at specific PMU
locations (Fig.15). Tables 28 illustrate the PMU sites for the DoOU related to the 57-bus system.

PSO also gives the adequate PMU numbers for the 118 bus system. The last iteration is given in
Table 29. A plot diagram illustrating the PMU sites derived by PSO [23], [55] is given in Figure 16
whereas the PMU localization sites are included in Table 30. All optima points satisfy the DoOU
scenario for both case studies without constraint violation to exist [46].

As the BPSO algorithmic scheme is based on a population strategy, it mainly depends on the
behavior of the particles in the population to define a solution with a promising quantity and quality as
noted in [14], [23]-[25], [55]. They search the entire feasible region executing the solution space
globally as well as using a local search to find the best possible solution [14], [55].

Two inertial weight parameters are used to get a proper tuning between the local and global best of
particles at each iteration. Each inertia weight helps a lot to derive a precise optimum point. The
optimum point satisfies the model’s feasibility based on the given inertia parameter. Specifically we
use either Random Inertia Weight that is displayed in the Esq. (28) [23], [55].

w =05+ 220 (28)
Or the Linear Decreasing Inertia Weight that is in Esq. (29) [55]:

= — (Wmnax=Wmin)XJ
W= Wmax ( maxiter
(29)
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Table 27. Iterative Process produced by the BPSO on 57 bus system

Iteration  Best particle Objective function

1 1 30.0000
2 1 24.0000
3 1 23.0000
4 1 21.0000
5 1 20.0000
6 1 20.0000
7 1 18.0000
8 1 16.0000
9 1 16.0000
10 1 16.0000
11 1 15.0000
12 1 15.0000
13 1 14.0000
14 1 14.0000
15 1 12.0000
16 1 12.0000
17 1 11.0000
18 1 11.0000
19 1 11.0000
20 1 11.0000

Elapsed time is 0.619065 seconds.
PMU =

4 9 15 21 26 31 36 48 51 52 56

min(BIMA*GBEST(:.j+1))

ans =
1

As we can be observed, the DoOU scenario is formulated as a linear inequality function so as
the element of the resulting vector corresponding to two terminals of the branch to be larger
than 1 (= 1) [42]-[44]. The minimum output is 1 and presented in Table 27.

Table 27. Iterative Process produced by the BPSO on IEEE-57 bus system continued

(BIMA*GBEST(:,j+1))’
ans =

Columns 1 through 15
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1 2 3 2 2 1 2 2 3 2 2 3 3 3 2
Columns 16 through 30
1 1 3 2 2 2 1 3 3 3 1 1 2 11
Columns 31 through 45
2 2 1 1 1 1 2 2 1 1 1 1 2 21
Columns 46 through 60
1 12 2 2 1 3 2 2 2 1 1 2 1 1
Columns 61 through 75
2 2 2 2 3 3 2 2 1 1 1 1 3 2 2
Columns 76 through 80

1 2 2 2 2
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Figure 15. Plot diagram of Placement Result for 57-bus network

Table 28. Optimal Placement Outcome for S7-bus network

PMU locations with partial observability with a depth-of-one degree
4,9, 15,21, 26,31, 36,48, 51, 52, 56
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Table 29 shows the log file produced by the BPSO to give an optimal solution. A PSO has been used
to find the global minimum, applied to the 118 bus system [14], [23], [S5]. The optima results are
shown in Table 30. We confirm the total PMUs number for incomplete observability and their relative
sites around the power grid. So, the accelerated BPSO has the capability to execute global search and
local search of the solution region [13], [14], [23], [55]. A solution pool of optima points is derived by
BPSO and they are illustrated in Table 31.

Table 29. Iterative Process produced by PSO applied to 118 bus system

Iteration  Best particle Objective function

1 1 70.0000
2 1 70.0000
3 1 68.0000
4 1 56.0000
5 1 51.0000
6 1 51.0000
7 1 49.0000
8 1 47.0000
9 1 40.0000
10 1 40.0000
11 1 38.0000
12 1 34.0000
13 1 34.0000
14 1 34.0000
15 1 30.0000
16 1 30.0000
17 1 27.0000
18 1 24.0000
19 1 24.0000
20 1 24.0000
21 1 24.0000
22 1 24.0000
23 1 24.0000
24 1 23.0000
25 1 19.0000
26 1 18.0000
27 1 18.0000

Elapsed time is 33.531342 seconds.

PMU =

Columns 1 through 17

8 12 17 22 27 34 42 49 54 60 65 70 77 85 92 94 105

Column 18

109
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Figure 16. Plot diagram of Placement Result for 118-bus network

Table 30. Optimal Placement Outcome for 118-bus network

PMU locations with partial observability with a depth-of-one degree

8,12,17,22,27, 34,42, 49, 54, 60, 65,70, 77, 85,92,94, 105, 109

Table 31. PMU Locations for Incomplete Observability using BPSO

Test Sys- PMU PMU location (Bus #)
tem
IEEE 14 5 4.6
bus
IEEE 30 4 2, 10, 15, 27
bus
4,9,15,21, 26,31, 36,48, 49, 52, 56
4,9,15,21,26,31,36, 48, 51, 52, 56
4,9,15,21,26,31,36, 48, 50, 52, 56
6, 10, 15, 20, 24, 29, 32, 37, 41, 48, 54
4,10, 15, 21, 24, 29, 32, 37, 41, 48, 55
5,10, 15, 20,24, 29,32,37, 41, 48, 53
IEEE 57 11 5,10,15,20,24,29,32, 37, 41, 48, 54
bus 5,10, 15,20, 24, 29, 32, 37, 41, 48, 55
4,10, 15,21,24, 29,32,37, 41, 48, 54
4,10, 15,21,24, 29,32,37, 41, 48, 54
4,10,15,21, 24, 29, 32, 37, 41, 48, 53
6, 10, 15, 20, 24, 29, 32, 37,41, 48, 54
6, 10, 15, 20, 24, 28, 32,37,41, 48, 54
6, 10, 15, 20, 24, 29, 32, 37, 41, 48, 55
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Table 31. PMU Locations for Incomplete Observability using BPSO continued

Test Sys- PMU PMU location (Bus #)
tem

, 17,21, 27, 34, 40, 49, 54, 61, 68, 70, 77, 85, 92, 96, 105, 111

, 17,21, 27,34, 40, 49, 54, 61, 68, 70,77, 82, 86,92, 105, 111
, 17,21,27,37,45,49, 54, 62, 65, 70, 77, 85, 92, 96, 105, 111

, 17,22,27,34,37,49, 54, 61, 68, 71, 77, 80, 85,92, 105,110
7,21,27,37,45, 49, 54, 61, 65, 70, 77, 85, 92, 96, 106, 110
7,21,27,34,37, 49, 54, 61, 68, 70, 77, 85, 92, 95, 106, 110
7,21,27,37, 44, 49, 54, 61, 69, 70, 77, 85, 92,96, 106, 110
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In that case, the objective function has non-strict global minimizer [14]; to contrast with the
statement: an optimum point X* € 2 is a strict global minimizer; strong global minimizer over feasible
region £ of the problem minge, J (X) if Vx € 02,(X # x*) = (f(X*) < f(¥)) (30) [13], [45]-[52].
This solution covers the case where nodes being not monitored have been connected with observable
adjacent nodes by synchronized measurements as firstly presented in [14], [17], [34]-[41].

GA is implemented for solving mixed integer constrained optimization problems [13]-[22], [61].
GA solver uses a set of starting points called population and iteratively generates better points from
the population. The optimal results obtained by the GA solver are illustrated in Table 32 [22], [61].

Table 32 displays the PMU set solution delivered by GA solver included in MATLAB Global
Optimization library [62]. Using the trial-and-error process, we gather a solution pool of optima points
over the feasible region constituted by the objective function, constraints and binary restriction.

The stopping criteria of the algorithm include the number of generations, the computation limit and
the function evaluations within a certain tolerance [13]-[22], [61]. Also, GAs collects a solution pool
of optima points; all characterized as globally solutions shown in Table 32 [13]. Each set solution is
produced after a trial-and-error effort to find an acceptable constraint; function fitness limits [13].

Table 32. PMU Locations for Incomplete Observability using GA
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Test System | PMU PMU location (Bus #)

IEEE 14 bus 2

(o)}

IEEE 30 bus 4 , 15,27

>

, 15,20, 24, 29,32, 37,41,48, 53

-

OO O

, 15,20,24,29, 32, 37, 41, 48, 54

-

, 9,15, 21, 26, 31, 36, 48, 50, 52, 56

-

, 10, 15,21, 24,29,32,37,41,48, 53

, 10, 15, 20, 24, 29, 32, 37, 41, 48, 53

IEEE 57 bus 11 , 10, 15,20, 24, 29, 32, 37, 41,48, 53

, 10, 15, 20, 24, 29, 32,37,41, 48, 54

1
1
1
9
9, 15, 21, 26,31, 36, 48, 49, 52, 56
1
1
1
1
1

, 10, 15, 20, 24, 29, 32, 37,41, 48, 55

, 9,15,21,26,31, 36,48, 51, 52, 56

15,21, 26, 31, 36,47,49, 52, 56

15, 20, 24, 28,32, 37,41, 48, 54

[

[

9,
10,

10, 15, 20, 24, 28, 32,37,41,48, 53

12,17, 21, 27, 34, 37, 49, 54, 61, 65, 70, 77, 80, 85, 92, 105, 109

[

, 12,17,22,27, 34,37, 49, 54, 61, 68, 71, 77, 80, 85, 92,105, 110

,17,21,27, 34, 37, 49, 54, 61, 65, 70, 77, 80, 85, 92, 105, 110

[
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>

, 17,22,27, 34,41, 49, 54, 61, 65, 70, 77, 80, 85,92, 105,110

>

2
2
2
2,17,22,27,34,37,49, 54, 61, 65, 70, 77, 85, 92, 96, 105, 110

>

1
1
1
1
IEEE 118 bus 18 ,12,17,21,27,34, 37,49, 54, 61, 65, 70, 77, 85, 92, 96, 105 110

,12, 17,21, 27, 34, 37, 49, 54, 61, 65, 70, 77, 82, 85, 92, 105,110

,12,17,21,27,34, 37, 49, 54, 61, 65,70,80, 85, 92,103,105,118

,12,17,22,27, 34, 37, 49, 54, 61, 65, 70, 77, 80, 85, 92, 103, 105

>

OOOOOOOOOOOOOOOOOOOOOOOOO\O\:R-R-&UIUI-&-&-&-&-&#N#

>

12
12,17,21,27,34, 42,49, 54, 61, 65,70, 77, 85, 92, 97, 105, 109
12,17,21,27,34,37,49, 54, 62, 65,70, 77, 85, 92, 94, 105, 110

Let us examine the performance of GA on 30-, 57- and 118-bus systems. A plot diagram illustrated
the PMU sites derived by GA using the 30 bus and 118- systems [61]. The PMU sites are displayed in
the table following the plot diagrams. Each individual is a PMU site including in the placement result.

We get each individual and the fitness function in combination with the previous run of the
algorithmic model running in the MATLAB platform [61]-[62]. Finally, an optimal solution is reached
with the best penalty value as well as a mean penalty value as displayed in Figures 17 & 18.

The optimization is terminated with an average change in the penalty fitness value which was
found less than the tolerance related to the function evaluations [61]-[62]. Also, the constraint
violation is less than the certain limit [61]-[62]. Each chromosome included in the placement set
displays the binary nature of the optimization problem [13], [61]-[62]. An optimal solution is derived
within satisfied termination criteria at the end of the optimization [14].

There exist power nodes not being observable; although its neighborhood includes observable
network nodes being monitored by synchronized measurements as displayed in the Fig.l. As a
benchmark system, we firstly use the IEEE-30 bus system, produced by GA solver [56]-[57]. The GA
delivers an optimum point solution by using the tuning operators [22], [62].

As a case study, we use the IEEE-30 bus system as found in [56]-[57]. GA optimizes the constraint
binary program and the set solution is ¥ = {2,10, 15,27} under the concept of DoOU. That optimal
solution was found in Rohit Babu’s work [39]. This is an extra validation for our implementation of
partial observability from different algorithmic standpoints. An unobservable node can be found which
is adjacent with a neighborhood of observable buses by PMUs posed at a selected power network.
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This justifies the fact that a lesser PMUs number is found than the case study of complete
observability conditions [39]. The optimal solution displayed in Fig.17 and Table 33. As shown in
Fig.17, the fitness function is minimized and each individual is an optimum point [55].

Best: 4 Mean: 4
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Figure 17. Plot diagram of Placement Result for 30-bus network

Table 33. Optimal Placement Outcome for IEEE-30-bus network

PMU locations with partial observability with a depth-of-one degree
2,10,15,27

Using the 57-and -118 bus system [56], some plot diagrams are produced by GA [22], [62]. The
PMU sites are displayed in following tables and the plot diagrams. This set solution is an adequate
configuration under the concept of partial observability with degree one [39]. The last iteration for GA
executed on the 57 bus system is displayed in Table 34. GA optimizer function is a derivative free
optimizer spending relatively a large amount of function evaluations to get an optimum point [14].

We select an appropriate population to avoid a convergence to a local optimum point too soon.
Additionally, we properly tune the Elite Count to optimize the best individual of a defined population,
which creates the new population using the next generation [14].

Hence, GA gives a global optimal point with high probability. Initially we start the iterative process
selecting the population in a double vector where each row represents a vector consisting of bit strings
[62]. The fitness function is minimized under tolerances, including a penalty parameter to penalize
infeasible individuals. Hence, infeasible individuals are rejected.

By default, the initial population is created by MATLAB's command called CreationFcn [22], [62].
Otherwise, an initial population can be built. The default parameter to build a population in a double
vector is the selection uniform.The GA optimizes an initial starting point based on a population of
individuals while the fitness function is optimized.

Hence, a measure of how optimal the solution is finally got. The fitness function is minimized
within tolerances and includes a penalty term; this methodology penalizes infeasible individuals and
refuses those that are infeasible during successive generations in the iterative process [22], [55], [62].
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We use a population in a double vector including vectors consisting of individuals in a binary format.
With a large population size, the GA returns a global solution point with high probability [19]-[22],
[62]. The CreationFcn command creates the initial population for the GA optimizer function for the
purpose of starting the iterative process towards optimality [62].

A new population is delivered as an output of crossover scattered operators [19]-[22], [62].
Scattered operator delivers a random binary vector and selects the genes where the vector is a 1 from
the first parent, and then genes where the vector is a 0 from the second parent, and combines the genes
to form the child [22], [55], [62].

Taking into account these parameters tuned by the user, the GA minimizes the constraint binary
program by properly adjusting its constants for the purpose of getting the optimality [22], [62]. The
entire procedure is minimized until a specific stopping tolerance criterion is found.

The GA optimizer delivers an optimum point whereas the model's feasibility is satisfied within pre-
given tolerances, that is, function and constraint tolerances shown in Table 34.

Table 34 displays the iterative process produced by GA to find optimality using the IEEE-57 as a
case study. As observed, GA results in the best possible solution as those found by BBA algorithmic
scheme [14]. GA results in an optimal PMUs number lesser than the CO topological observability. GA
terminates the whole optimization process and returns an optimal solution within pre-defined tolerance
criteria. Those solutions are considered to be non-strict global minima [17], [39].

We consider the power system size; we conclude that a suitable population size is selected taking
into account it is equal to a PopulationSize equal to 1000. The last Generation, function evaluations
are displayed within a pre-given stall generation. GA solver succeeds to attack the constraint integer
models towards a global optimality. The optimization is terminated within the best fitness value
without constraint violation [14], [19]-[22], [55], [62].

Both case studies leads to the least PMUs number which agree to those presented in [17] & [39] but
the PMUs are placed in different sites within the set configuration solution. The optimal solution is
displayed in Fig.18 and Table 35. Then another plot diagram is given using the IEEE-118 bus system.
The optimal solution is displayed in Fig.19 and Table 36.

Each individual represent a PMU in the PMU placement set under the concept of DoOU. This
optimum point covers that state where an unobservable bus is linked together with a neighborhood
consisting by only observable network buses by PMUs [39]. Fig 18 illustrates the best individual
representing PMU locations for the DoOU implementation wide-area monitoring scenario [34].

Each individual's fitness function is obtained by combining the results from the previous run of
the algorithmic model, which is executed on the MATLAB platform [14], [62]. This paper presents
also nonlinear programming algorithms for recognizing placement locations for PMUs in a power
network under the concept of complete and incomplete observability.

Table 34. Iterative Process produced by GA tested on the IEEE-57 bus system

Best Mean Stall

Generation  f-count  Penalty Generations
90 91000 11 11 47
91 92000 11 11 48
92 93000 11 11 49
93 94000 11 11 50

Optimization terminated: average change in the penalty fitness value less than op-
tions.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

fval =
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Table 34. Iterative Process produced by GA tested on the 57 bus system continued

11

ans =

4 10 15 20 24 29 32 37 41 48 53

Elapsed time is 12.082298 seconds.

output =

problemtype: 'integerconstraints'

rngstate: [1x1 struct]

generations: 93

funccount: 94001

message: 'Optimization terminated: average change in the penalty fitness value less

than opti...'

maxconstraint: 0

Set properties:

CreationFcn: @gacreationuniform

CrossoverFen: @crossoverscattered

Display: "iter'

EliteCount: 10

FunctionTolerance: 1.0000e-08

PlotFen: {@gaplotbestf @gaplotbestindiv}

PopulationSize: 1000

SelectionFen: @selectionstochunif
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Figure 18. Plot diagram of Placement Result for 57-bus network

Table 35. Optimal Placement Outcome for 118-bus network

PMU locations with partial observability with a depth-of-one degree
4,10, 15,20,24,29,32,37,41,48, 53
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Figure 19. Plot diagram of Placement Result for 118-bus network

Table 36. Optimal Placement Outcome for 118-bus network

PMU locations with partial observability with a depth-of-one degree
8,12,17,21,27,34,37,49, 54,61, 69, 72, 77, 82, 85, 92, 103, 105

The model is then transformed into a nonlinear problem with either a quadratic or linear objective
function. The minimization model is well optimized based on the FMINCON optimizer routine
included in MATLAB optimization library [61]. FMINCON utilizes either SQP methods or [PMs to
find an optimal solution.

Optima points are delivered by executing the nonlinear program with FMINCON [61]. As a
consequence, all minima point of the objective declared in a quadratic format as follows J(X) =
Ynx?, %% €0,1] (31) are accepted [45]-[52]. All optima points are located at the same optimal
objective function value. They are interpreted as non-strict global optimum points; SQP and IPMs
locate non-strict local minimizers at the same optimal objective function value [45]-[52]. SQP and
IPMs locate non-strict local minimizers over the feasible set [48]-[49].

An NLP solver needs the differentiation of the objective and constraint functions to start the
iterative process [61]. A program is utilized to analytically derive the objective function gradient and
the constraint function Jacobian matrix within the MATLAB language [61]. Termination criteria are
applied by default, or the parameter settings are adjusted as needed [61]-[62]. Hence, the optimization
is terminated in less time avoiding computational burden [61]. Both nonlinear algorithms result in

optimal solutions; weak global optima with the same computational complexity [45]-[52].
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A weak global minimizer isif J(X) = ] (x*), V¥ € R™ (31). So, the objective function delivers non-
strict global minima [45]-[52]. IPMs optimize the nonlinear objective function consisting of the same
constraint function over an unbounded region on the decision variables [45]-[52]. These nonlinear
algorithms locate an alternative solution at the optimal objective cost value [45]-[47].

The SQP and IPMs are executed on the IEEE-57 and 118- bus systems as a benchmark study to
prove the validation of the above optima points. Table 37 & 38 and plot diagrams displayed in Fig.20
and Fig.21 display the placement set solution derived by SQP methods. Also, IPMs result in the same
least objective function with different location sites displayed in Table 39 & 40 and Fig.22 & Fig.23.

SQPs and IPMs spent function evaluation for the purpose of getting optimality within certain
optimality tolerances and criteria [45]-[52]. Both algorithms locate a local minimum point satisfying
the constraints counting reasonable function evaluations required to locate it [45]-[52].

The optimization process is considered to be completed because the objective function is non-
decreasing in feasible directions. Each optimum point satisfies criteria such as tolerances, constraint
violation, relative first-order optimality, optimality Tolerance and constraint Tolerance [45]-[50].

Each solution point is also a global one within a certain stopping criterion. Relative Figures
illustrate the adequate convergence properties needed to deliver a locally optimal solution by either
SQP or IPMs. The cost function value is the least as the minimization requires. The current point
illustrates a binary PMU set solution derived within no constraint violation [46].

Also, the number of function evaluations is shown within an adequate step-size during the descent
direction in the direction of a locally optimal solution with First-order optimality [45]-[48]. Although
these solutions are locally found, we can characterize them globally [14], [45]-[50]. Nonlinear
algorithms adopt penalty methods to accept the step size without rejecting it [45]-[46], [48]-[49], [53].

Using the SQP methods to attack the nonlinear model, the penalty function doesn’t reject the unity-
step during the iterative process. Hence, the Maratos effect is avoided [45]-[50], [53]. SQP and IPMs
spend a reasonable amount of function evaluation to get optimality within certain optimality tolerances
and criteria [61]. More details about the performance of the SQP and IPMs methods in NLP solving
can be found in [45], [48]-[49]. So, the local minima obtained by SQP and IPMs are acceptable since
the constraint function feasibility is found to be satisfied by the simulation results [61]-[63].
Thus, no constraint violation exists, confirmed by the message on the termination of the iterations
generated by the optimizer FMINCON for getting the purpose to reach an optimal solution; a locally
optimum point [61]. Each optimal solution is locally found by the optimizer function characterized
globally after a comparative study with branch-and-bound standard optimality metrics [45]-[52].

Using a suitable MATLAB code which is compatible with the MATLAB environment, we give a

solution pool about the partial observability with degree one [17], [39]. Hence, the global optimal
solution is attained [14], [45]-[49], [52].
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Figure 20 Plot diagram of Placement Result for 57-bus network

Table 37. Optimal Placement Outcome for S7-bus network

PMU locations with partial observability with a depth-of-one degree
4,9,15,21, 26,31, 36, 48, 50, 52, 56
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Figure 21. Plot diagram of Placement Result for 118-bus network

Table 38. Optimal Placement Outcome for 118-bus network
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PMU locations with partial observability with a depth-of-one degree
8,12,17,22,27,34,37,49, 54, 61, 69, 72, 76, 80, 85, 92, 103, 105
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Figure 22. Plot diagram of Placement Result for 57-bus network

Table 39. Optimal Placement Outcome for S7-bus network

PMU locations with partial observability with a depth-of-one degree
4,9,15,21, 26,31, 36, 48, 50, 52, 56
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Figure 23. Plot diagram of Placement Result for 118-bus network

Table 40. Optimal Placement Outcome for 118-bus network
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PMU locations with partial observability with a depth-of-one degree
8,12,17,21,27,37,45, 49, 54, 61, 68, 70, 77, 85, 92, 95, 105, 112

Table 41. PMU Locations for Incomplete Observability using SQP and IPMs

, 10, 15, 20, 24, 29,32, 37, 41, 48, 54
, 10, 15,21,24,29, 32, 37, 41, 48, 54
, 10, 15, 21, 24, 29, 32, 37, 41, 48, 55
, 10,15,21,24,29, 32, 37, 41, 48, 53
, 10, 15, 20, 24, 29,32, 37, 41, 48, 53
, 10, 15,20, 24, 29, 32, 37, 41, 48, 54

Test System PMU PMU location (Bus #)
IEEE 14 bus 2 4, 6
IEEE 30 bus 4 1,10, 15, 27
2,10, 15,27
4,9,10,15,21, 26, 31, 36, 48, 52, 56
4,9,15,21,26,31, 36, 48, 49, 52 56
4, 9,15,21,26,31, 36,47, 49, 52 56
4,9,15,21, 26,31, 36, 46, 49, 52, 56
4,9,15,21, 26,31, 36, 48, 49, 52, 56
4,9,15,21,26,31,36, 48, 51, 52, 56
IEEE 57 bus 11 4,9, 15,21,26, 31,36, 48, 50, 52, 56
4,1
4,1
4,1
4
4
5

Table 41. PMU Locations for Incomplete Observability using SQP and IPMs continued

Test System PMU PMU location (Bus #)
4,10, 15, 20,24, 29,32, 37, 41, 48, 53
5,10, 15,20, 24, 29, 32, 37, 41, 48, 54
5,10, 15,20, 24, 29,32, 37, 41, 48, 55
6,10, 15, 20, 24, 29, 32, 37, 41,48, 54
IEEE 57 bus 11 6,10, 15, 20, 24, 27, 32, 37, 41, 48, 53
6,10, 15, 20, 24,29, 32, 37, 41, 48, 53
6,10, 15,20, 24, 28,32, 37, 41, 48, 54
6,10, 15, 20, 24, 28,32, 37, 41, 48, 53
6,10, 15, 20,24, 29,32, 37, 41, 48, 55
8,12,17,22,27, 34, 40, 49, 54, 61, 68, 71,77, 80, 85, 92
105, 111
8,12,17,22,27, 34, 40, 49, 54, 62, 65, 71,77, 80, 85,92
105, 111
8,12,17,22,27, 34, 40,49, 54, 62, 65, 71, 77, 85, 92, 96
105 111
IEEE 118 bus 18 8,12,17,22,27, 34,40, 49, 54, 61, 65, 71, 77, 80, 85, 92
105, 110
8, 12,17,22,27, 34, 40, 49, 54, 61, 68, 71, 77, 80, 85, 92
105, 110

8,12,17,22,27, 34, 40, 49, 54, 62, 65, 71, 77, 85,92, 96, 105
110
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Test System PMU PMU location (Bus #)
8,12, 17,22,27, 34,40, 49, 54, 61, 68, 71,77, 85, 92, 96
105, 110
8,12,17,22, 27, 34,40, 49, 54, 61, 65, 71,77, 85,92, 96
105, 110
8, 12, 17, 22, 27, 34, 40, 49, 54, 62, 65, 71, 77, 80, 85,92
105, 110
8,12, 17,22, 27, 34,40, 49, 54, 61, 65, 71, 77, 80, 85
92, 105, 109
8, 12,17,22,27, 34, 40, 49, 54, 61, 68, 71, 77, 80, 85 92,
105, 109

IEEE 118 bus 13 8, 12, 17, 22, 27, 34, 40, 49, 54 , 62, 65, 71, 77, 80, 85, 92
105, 109
8,12, 17, 21, 27, 37, 44, 49, 54, 60, 65, 70, 76, 80, 85, 92
103, 105
8,12,17,21,27,37, 44,49, 54, 60, 65, 70, 80, 85, 92,103
105, 118
8,12, 17,22, 27,34, 37,49, 54, 62, 65, 71, 77, 80, 85, 92
105, 112
8, 12, 17, 22, 27, 34, 40, 49, 54, 62, 65, 71, 77, 85, 92, 96
105, 112
8,12,17,22, 27, 34,37,49, 54, 61,71,77, 80, 85, 92,105
109, 116

The objective value could be interpreted as a weak global minimizer provided that the results agree
with those found in solving the 0/1 MILP model [49]. A solution pool constituted by a number of
optimal solutions is presented in Tables 41. All solutions have the same quantity. Also, we can solve
the constraint 0/1 integer program through open-source integer solvers embedded in OPTI-toolbox
[63]. Different ILP solvers are utilized such as SCIP, GLPK, CBC, LPSOLVE and Bonmin [63].

Also, MOSEK can be used for the incomplete observability with degree one [67]. Gurobi
optimization engine uses a branch-and-bound algorithm to find an optimal solution to the global
optimization problem solving [64]. As can be observed, Gurobi and MOSEK comes across the exact
optima points; globally optimal solution found inside a zero-gap tolerance [64]-[67].

Tables 42 & 44 illustrate the optima points for the concept of DoOU using the ILP solvers included
in OPTI-toolbox [17], [39], [63]. The constrained 0/linteger programming is solved using
commercial or open-source integer linear programming (ILP) optimizer functions [61]-[67].

All solvers find a globally optimal solution within a zero-gap tolerance and a relative gap within a
pre-given tolerance criterion equal to zero [61]-[65].Tables 42-44 summarizes the simulation results
for incomplete observability with degree one [17]. Table 44 illustrates the PMUs number and their
placement locations for an implementation of state estimation in real-time produced by Gurobi and
MOSEK [36]. Gurobi and MOSEK optimizer engines find the identical PMU nubmers but in different
locations within a zero-gap tolerance. This happens because a different branching strategy is followed
in order to construct the binary tree and finally to result in an optimal solution [45]-[50].

MOSEK adopts an interior-point method in combination with a primal-dual-simplex algorithm to
solve the constraint binary model. As the simulation results shows, primal dual interior point methods
have been proved useful to solve the relaxed problem during the iterative process where nodes are
explored and infeasible regions are pruned [67].
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The LP solver solves the relaxed problems, prunes infeasible regions where objective values are
found bigger than the upper bound [45]. An optimal solution has been located satisfying the relative
gap tolerance whereas the absolute gap is equal to zero [67]. Hence, a global solution is achieved.

Table 42. Optimal Placement Outcome for Incomplete Observability with degree one

ILP routines for solving the 0-1 Incomplete observability with degree one
IEEE SCIP INTLINPROG GLPK LPSOLVE
system
Optimal PMU locations
14 bus 4,6 4,6 4,6 4,6
30 bus 2,10, 15, 27 2,10, 15,27 2,10, 15, 27 2,10, 15,27
4,10,15,20,24,29 | H10.15,21 14,9, 15,2126 ) g 45 51 96 31 36, 48
57 bus 32 37 41. 48, 54 24,29, 32,37 31, 36, 48, 51 50.52. 56
T 41, 48, 54 52,56 T
8,12,17,21 8, 12,17,21
485’ 1429 1;; 2611’ 2675’ 3770 27,37,45, 49 27, 34, 37,49 8,12,17,21, 27,37, 43,49, 54
118 bus 7’7 8’5 9’2 9’6 12)6 54,61, 69, 70 54, 61,69,72 61, 69,72, 76, 80, 85,92
> 116 ’ 80, 85,92,107 77, 80, 85, 92 105,110
110, 118 103, 105
Table 43. Optimal Placement Outcome for Incomplete Observability with degree one
ILP routines for solving the 0-1 Constraint Integer Program under
IEEE - .
Svstems Incomplete observability with degree one
y CBC bonmin
14-bus 4,6 4, 6
30-bus 2,10, 15,27 2,10, 15,27
57- bus 4,9,14, 15, 21, 26, 31, 36, 49,52, 56 6,10, 15, 20, 24, 29, 32, 37,41, 48, 53
118-b 8, 12, 17, 21, 27, 34, 40, 49, 54 8,12,17,21, 27,37, 43, 49, 54, 61, 69
“ous 61, 68 70, 77, 85,92, 96, 105, 111 72,76, 80, 85,92 105, 110
Table 44. PMU placement locations for DoOU implemented by GUROBI and MOSEK
Test System PMU PMU location (Bus #)
GUROBI MOSEK
IEEE 14 bus 2 4,6 4,6
IEEE 30 bus 4 2, 10, 15, 27 2, 10, 15, 27
4,10, 15, 21, 24, 29, 32, 37, 41 5,10, 15, 20, 24,29, 32,37, 41
IEEE 57 bus 11 18, 53 48, 53
[EEE 1sbus | 18 | 61,65, 70, 77, 80, 85, 02 | 51217 21:27.37.43.49.54.
“ > 165 1’10 > 65, 72, 75, 80, 85,92, 103, 105

7. Study’s Impact on the PMU number related to DoOU
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Partial observability means the state where the PMUSs posed at selected sites by appropriate algorithms
cannot give all the needed information for all system buses. Incomplete observability determines the
underlying idea in which we measure the distance between unobservable buses from the closest bus in
attendance in a local area [17], [39]. The related basis of the idea focuses on a methodical procedure of
placing PMUs within a power grid, in stages if it is required [34].

Hence, the regions not being observable to decrease little by little up to point in time allows the
power system to be fully observable by a sufficient PMUs number optimally placed within the power
grid. We employ the depth-of-one-unobservability in this work. Bigger in quantity depths of
unobservability brings about less close to true state of the unobservable power system buses and more
uncertainties on margins produced by system state estimation [34].

We deal with DoOU where all of the neighbouring buses of any unobservable bus must be
observable. Less unobservability situation results in less accuracy when we execute the state
estimation tool in real-time [39].

Discrete, continuous and evolutionary algorithms were executed to get the optimum point under
this circumstance. Thus, the capability of monitoring the power network under DoOU was assumed
and became real when an appropriate PMUs number was found [17], [39].

Displaying some placement result, observed regions within one unobserved network node are
adjacent with power nodes being monitored by lesser PMUs than those in complete. The optimum
point is attained minimizing a linear or a quadratic objective function in binary as well as in
continuous decision domain.

More than one depth observability leads to lesser accuracy of the state estimation routine. We
analyze and study the DoOU concept where a distance of one depth between a power network node
not being observed and observed adjacent nodes is taking into account for implementation.

The suggested model is successfully carried out on standard power networks in finding an
appropriate PMUs number not satisfied by a full condition of power observability but on occasion
where an unobserved network node is adjacent with observable power nodes. Hence, the partial
observability with one degree is a topological scenario with robust results. We make use of discrete as
well as nonlinear algorithms to strictly show the robustness of our model to detect an appropriate
PMUs number. The PMU number and its related solution set at the DoOU can be easily extended to
the immediately after lower depth of unobservant regions within a power grid [17].

Lower degree of unobservability results in less accuracy of state estimation routines for the purpose
of getting the real state of a power grid [2]-[5]. The robustness of our models to detect optimality is
shown even for this situation with a limited PMUs number being present within a power grid.

Experimental results are produced by mathematical and evolutionary algorithms to prove their
robustness from different algorithmic schemes. The constraint binary integer model is solved through
relaxed problems on explored nodes [13], [45]-[52]. The relaxed problems (LP) are attained by
relaxing the binary restriction on the decision variables. When the BBA finds a binary solution during
the iterative process, this can be considered as a global optimum point [58]-[67].

Otherwise, the binary tree is constructed with implementations of LP sub-problems towards
optimality [49]-[50]. The LP objective value is the upper bound and the root node is separated into two
sub problems by suitable branching. Hence, an ILP problem can be reached and solved as a linear
program, in the way that solving it with the integrality to remove means that a binary solution will be
detected [49]-[50]. Those mathematical models are solved by SQP or IPMs considering a scientific
standpoint without being an implementation in real situations as studies claim [9]-[10].

SCIP solves the nonlinear programming model with efficiency towards a globally optimum point.
SCIP linearized each polynomial equality constraint, solved the process optimization through a
construction of a branch-and-bound tree and finally delivered a globally optimal solution [58]-[60].

As we can see the primal bound is the leader in this optimization process, an equal dual bound has
been evaluated that leads to zero-gap toleration [50]. This study gives an inventive model on
unambiguous local optimal solutions either in either in binary or continuous domain [47].
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We use branch-and-bound algorithms, primal and dual simplex, genetic algorithms and binary
particle optimization to attack the combinatorial optimization problem.

Then, we transform the model into a nonlinear problem with either quadratic or linear objective
function. SQP and IPMs are used to attack such a kind of optimization model [45]-[49]. Two case
studies are presented, analyzed and some benchmark solutions are produced for two cases namely full
condition observability and the idea of incomplete observability with degree one.

As we expected, the PMUs number needed for this condition is lesser than those needed to serve
the complete observability. This optimal solution serves the condition where an unobservable bus is
adjacent to a neighborhood of observable buses by PMUs installed at selected power network nodes.

8. Discussion about the research work with adequate concluding remarks
This paper introduces programming algorithms for recognizing locations for phasor measurement
units (PMUs) within a power network under the concept of complete and incomplete observability.

The full observability is accomplished by sensors capable of synchronization through the wide-area
monitoring system. Incomplete observability is a basic context because it delivers a systematic
approach of installation of synchronized sensors, arranging gradually, to such an extent the parts of an
electric graph not being monitored are decreased until the power network will be completely
monitored.

Examining the depth of unobservability with degree one, which is a measurement of the distance
that separates an unobservant network node from a neighborhood that contains observable buses, is the
focus of this research. Our approach to tackling the BIP model involves adopting an evolutionary
perspective, followed by transforming the model into a nonlinear program. The nonlinear problem is
solved by nonlinear algorithms or a innovative BBA scheme.

The algorithms proposed In this work are well-analyzed on the observability topic and deliver well-
accepted optimal solutions for complete and incomplete observability with one degree. Practically the
installation of a PMU at a bus or not fully depends on the system requirements, substation availability
and the whole budget for massive installation of PMUs in a power grid. Mainly, In this work, depth of
unobservability with level one is considered for the OPP problem implementation. The methodology
makes use of an edge-vertex incidence matrix representing a graph constituted by branches and nodes.

Also, a square matrix is built based on the dimension of graph’ vertices. The methodology of the
PMU localization problem based on partial observability is a principal contribution because it gives a
systematic way of placing PMUSs within a power network, in stages if it is necessary.

In this work, graph theory modeling is employed to examine and find the suitable number and
placement of PMUs concerning the DoOU concept. Mathematical, derivative-free, and evolutionary
algorithms are utilized to analyze the impact of each approach on achieving convergence to a global
solution point.

The mathematical programming model was considered solely synchronized measurements. The
algorithmic model is tested on the classical IEEE power systems. MATPOWER gives the line-data
connections between the power network nodes to get the edge-vertex and square matrix incidence
matrix. Multiplying these matrices, a product matrix is derived.

Based on this matrix, a constraint 0 — 1 integer linear program is built. Using an integer solver,
the optimum point is derived. Thus, it can be characterized as a global one given that the zero-gap is
found and the iterative process is terminated within a satisfied relative gap. The algorithmic model
being presented In this work is tested on the classical IEEE power systems.

Hence, the unobservant regions are gradually decreased until the entire power network is fully
observable. All the algorithms involving mathematical as well as population-based algorithms solve
exactly the partial observability leading to optimal points spending reasonable function evaluations in
reasonable runtime.

It calculates a PMU placement set where a minimum distance linear measure between one
unobservable bus and its adjacent observable power nodes is a permit situation. The observation of
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the power grid operation can be evaluated by the system operator, which helps a lot to give an
opinion about the current power network state.

The essential idea of this study is a system of placing a limited PMUs number within a power
grid. This procedure is implemented in stages if it is required, so regions not being unobservant little
by little decrease up to a point in time where the whole power network is fully observable.

Developing mathematical and heuristic algorithms that yield results for the absence of
observability with depth-one based on collecting synchronized measurements. Those measurements
are gathered by a limited number of PMU devices posed at selected power network nodes. Then,
feedback is given in linear estimation routines for the unobservant power regions.

Even so, programming models have been constructed in MATLAB using efficient nonlinear
algorithms embedded in optimizer functions included in the MATLAB optimization library or Opti-
toolbox. For the purpose of testing the validity of such kinds of computer programming models, the
binary -integer-linear program is also solved by the Branch-and-Bound algorithm (BBA).

BBA succeeds in coming across an optimum point within a zero-gap tolerance. Hence, the
optimization problem is solved under optimality conditions which lead to solving it globally. The
optimization problem is studied through a nonlinear model implementedby a SQP and IPMs.

From the trial efforts of the SQP and IPMs, global convergence has been achieved, in the sense
that, from an arbitrary point of view, an optimal solution point will be given. Also, IPMs are proved
to be convergent algorithms since they are able to deliver an acceptable optimum point in a runtime
comparable with the one elapsed by the SQP methods.

SCIP optimizer function solves the nonlinear model in getting the global optimality. SCIP solves
exactly the nonlinear problem giving an optimal solution within a zero-gap tolerance which is the
variation between the Primal and Dual bounds.

Additionally, DoOU is declared as a binary polynomial problem and solved by a global nonlinear
branch-and-bound algorithm embedded in YALMIP. This global integer routine invokes exterior
integer and nonlinear programming solvers to construct the binary tree to find a global optimum
point. The NLP solver counts the upper limit whereas the ILP estimates the lower bound. Moreover,
the ILP solver performs as an LP solver to construct the branch strategy that leads to a globally
optimum point. The upper bound is considered to be the best optimization function value for the
minimization problem. Additionally, the lower bound closes the gap. That optimum point is a global
solution given that the upper and lower bounds are evaluated to be equal by the optimizer function.

Hence, a global solution point is reached within a zero-gap tolerance. This mathematical
methodology allows us to escape local optimal solutions, and it can be identified as the global
optimal solution points with a good enough convergence speed.

GAs and BPSOs are also implemented in solving the optimization problem. They are getting the
optimality using a metaheuristic standpoint of knowledge. Each algorithm results in non-unique
constraint local and global minima simultaneously. The comparative study makes visible that the
efficiency of the proposed mathematical and evolutionary algorithms has been proved by the
circumstances of DoOU in studying that globally.
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