
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 230 (2023) 493–502

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Evolutionary
Computing and Mobile Sustainable Networks
10.1016/j.procs.2023.12.105

10.1016/j.procs.2023.12.105 1877-0509

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Evolutionary Computing and
Mobile Sustainable Networks

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Evolutionary Computing and
Mobile Sustainable Networks

3rd International Conference on Evolutionary Computing and Mobile Sustainable
Networks (ICECMSN 2023)

Security Implementation on IoT using CoAP and Elliptical
Curve Cryptography

Rathnakar Achary1, Chetan J Shelke1, Kavin Marx1, Aishwarya Rajesh1

1Dept. Computer Science and Engineering, Alliance College of Engineering and Design

Alliance University, Bangalore, India
rathnakar.achary@alliance.edu.in, chetan.shelke@alliance.edu.in, mkavinbtech20@ced.alliance.edu.in, raishwaryabtech20@ced.alliance.edu.in

Abstract

IoT devices typically encompass objects or devices equipped with software and internet connectivity, allowing them to collect data.
They have limited processing power, memory, and storage. These limitations can make it difficult to secure these devices, as
traditional security measures may not be practical. Implementing security for IoT devices can be challenging due to these
characteristics, but several steps can be taken to mitigate these challenges. Elliptic Curve Cryptography (ECC) can secure resource
constrained IoT devices by providing a more efficient method of encryption and authentication than traditional methods such as
RSA. In this paper, we analyzed the lightweight cryptographic algorithm ECC for securing resource-constrained devices such as
IoT and evaluated its performance compared to the RSA cryptosystem. The analysis result indicates that ECC is considered to
provide stronger security than RSA for the same key length. The CoAP protocol is applied to devices with limited resources, and
an examination of its impact is conducted, considering three key performance metrics: CPU usage, bandwidth efficiency, and
message communication latency.

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Evolutionary
Computing and Mobile Sustainable Networks

Keywords: IoT, OSCORE, CoAP, Elliptical Curve Cryptography, RSA, Resource-constrained devices

1. Introduction

IoT technology has become important in industry because it allows for collecting and analyzing data from connected
devices and equipment, which can be used to improve efficiency, reduce costs, and increase revenue. Some of its areas
of implementation are; predictive maintenance, smart building, smart supply chain operation, and smart cities.
However, the implementation of IoT technology in the industry is not without its challenges.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Evolutionary Computing and
Mobile Sustainable Networks

3rd International Conference on Evolutionary Computing and Mobile Sustainable
Networks (ICECMSN 2023)

Security Implementation on IoT using CoAP and Elliptical
Curve Cryptography

Rathnakar Achary1, Chetan J Shelke1, Kavin Marx1, Aishwarya Rajesh1

1Dept. Computer Science and Engineering, Alliance College of Engineering and Design

Alliance University, Bangalore, India
rathnakar.achary@alliance.edu.in, chetan.shelke@alliance.edu.in, mkavinbtech20@ced.alliance.edu.in, raishwaryabtech20@ced.alliance.edu.in

Abstract

IoT devices typically encompass objects or devices equipped with software and internet connectivity, allowing them to collect data.
They have limited processing power, memory, and storage. These limitations can make it difficult to secure these devices, as
traditional security measures may not be practical. Implementing security for IoT devices can be challenging due to these
characteristics, but several steps can be taken to mitigate these challenges. Elliptic Curve Cryptography (ECC) can secure resource
constrained IoT devices by providing a more efficient method of encryption and authentication than traditional methods such as
RSA. In this paper, we analyzed the lightweight cryptographic algorithm ECC for securing resource-constrained devices such as
IoT and evaluated its performance compared to the RSA cryptosystem. The analysis result indicates that ECC is considered to
provide stronger security than RSA for the same key length. The CoAP protocol is applied to devices with limited resources, and
an examination of its impact is conducted, considering three key performance metrics: CPU usage, bandwidth efficiency, and
message communication latency.

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Evolutionary
Computing and Mobile Sustainable Networks

Keywords: IoT, OSCORE, CoAP, Elliptical Curve Cryptography, RSA, Resource-constrained devices

1. Introduction

IoT technology has become important in industry because it allows for collecting and analyzing data from connected
devices and equipment, which can be used to improve efficiency, reduce costs, and increase revenue. Some of its areas
of implementation are; predictive maintenance, smart building, smart supply chain operation, and smart cities.
However, the implementation of IoT technology in the industry is not without its challenges.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2023.12.105&domain=pdf

494 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–5022 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000

Corresponding author:
E-mail address: rathnakar.achary@alliance.edu.in

Which include lack of standardization, limited resources like computing power and memory, complexity due to the
heterogeneous nature of the devices, Data management and analysis, lack of software updates, scalability, and security.
Security implementation is a paramount requirement in IoT for several reasons. First, IoT devices collect and transmit
enormous amounts of confidential data, such as personal information and location data, which can be exploited by
malicious actors if not properly secured. Second, these devices are also connected to other systems and networks, such
as home automation systems and industrial control systems, which can be compromised if the IoT devices are not
secure. This can result in serious consequences, such as loss of data, damage to equipment, or even physical harm.
Third, IoT devices are susceptible to a wide-ranging range of cyber-attacks, including hacking, malware, and denial
of service attacks, which can cause outages and service disruptions. Lastly, the increasing popularity and use of IoT
devices have made them a prime target for cybercriminals. Ensuring the security of IoT devices is therefore crucial for
protecting individuals, organizations, and critical infrastructures from these risks. Security implementation is a main
challenge for IoT because the devices that make up the IoT are often small and have limited resources, making it
difficult to implement robust security measures. Additionally, these devices are connected to the public network and
may be remotely monitored, which increases the risk of hacking and other forms of cyber-attacks. Furthermore, many
IoT devices are manufactured by different companies, which can make it difficult to ensure that all devices are secure.
Lastly, IoT devices are often used in critical infrastructures and personal data that could be targeted by malicious
actors, making security of paramount importance.

1.1. Possible security attacks on IoT Devices

IoT devices are vulnerable to various types of cyber-attacks that can be launched remotely. These attacks include;
hacking, malware, denial of service (DoS) attacks, man-in-the-middle (MitM)attacks, eavesdropping, physical attacks,
data breaches, device spoofing, command injection, and exploiting firmware

These are a few examples of security attacks that can be launched against IoT devices. It is important to note that IoT
security threats are constantly evolving, and new attack methods are emerging regularly.

1.2. RSA algorithm and challenges of its implementation on IoT

The RSA system is a public-key cryptography method that employs separate keys for encryption and decryption.
The intricacy of the RSA algorithm is rooted in the mathematical characteristics of sizable prime numbers and the
challenge of factorizing extensive composite numbers. The mathematical representation of the RSA algorithm involves
three main steps:
Key generation: To generate the keys select two large prime numbers, p, and q, and then compute n = pq. The
private key is then calculated by selecting a number, d, that is relatively prime to (p-1)(q-1) and then finding the
modular multiplicative inverse of d modulo (p-1)(q-1).
Both e and (p-1)(q-1) have no common factor other than 1. Select e such that 1<e< Ø(n), where e is prime to
Ø(n). gcd(e(d(n))=1. The public key is then calculated by selecting a number, e, that is relatively prime to (p-
1)(q-1) and then finding the modular multiplicative inverse of e modulo (p-1)(q-1).
Encryption: The sender uses the receiver’s public key (n, e) to encrypt the message m. The ciphertext is obtained
by encrypting the message m as, c = me (mod n).
Decryption: The original plaintext message is regenerated by using the receiver’s private key, d, and obtains the
plaintext message as, m = cd (mod n).

Using RSA the security level relies on the fact that factoring large composite numbers is a computationally difficult
problem. As long as the prime numbers used to generate the keys are large enough, it would take an attacker an
infeasible amount of time to factor n and determine the private key. The RSA cryptosystem is a widely used method
for secure data encryption and digital signature, but it may not be the best choice for the security of IoT for several
reasons such as, resource constraints nature of the devices, scalability for large scale deployments, latency in
communication between the IoT devices, and Quantum computing threats. This could make RSA encryption
vulnerable to attacks soon. Other encryption algorithms, such as ECC and AES are more lightweight and efficient, and

 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–502 495 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000 3

therefore more appropriate for these resource-constrained devices. These algorithms are more scalable and can handle
many devices with less computational power and memory. The rest of this paper is structured in the following manner.
Section II the literature review: This section reviews relevant literature on the topic, including previous studies and
theories. In section III we explained the new IoT protocol OSCORE. Section IV analyzed the performance of RSA
and ECC: This section describes the research methods used in the study, including the design and analysis procedures
and in section V we summarize the main findings and conclusions of the study.

2. Literature Review

 The researcher Kothmayr T et.al [1] proposed security implementation using RSA, the most used public key
encryption method. The objective was to provide better interoperability and minimized overhead. However, DTLS
handshake consumes a substantial amount of resources, which is an implementation challenge of this algorithm.
Authors Raza et.al [2] used a combined technique, which integrates the features of DTLS and CoAP together. This
allows to access the CoAP automatically. The result analysis shows a significant decrease in processing time and a
reduction in packet size by DTLS compression. The authors Branchmann et.al in [3] proposed end-to-end
encipherment using secure IP-based IoT for many IoT devices. This mechanism will secure the communication
between HTTP and CoAP using DTLS and 6LowPAN using DTLS and Border router which acts as a proxy. A single
session key is used to establish a secret connection among a group of devices using DTLS. A top-down systematic
method proposed by Alghandi et.al in [4] to analyze the cyber risk in an IoT Network. For the implementation, the
author analyzed DTLS and IPSec protocol. This process is not completely an optimized method hence they are not
advised for resource constraint devices. In [6] the author proposed a lightweight 128-bit AES algorithm and
lightweight security for CoAP. The limitation of this proposed method is that it is still suited for tracking the location
of a vehicle in GPS network and other applications, this method may not be suitable for an IoT network. Authors
Bhattacharyya A, et.al in [7] proposed a session security mechanism using the approach using CoAP and DTLS known
as lightweight establishment of a secure session (LESS). This mechanism provides better results only in unicast
security, but not for multicast security.

3. Object Security For Constrained Restful Environments (OSCORE): A Look At The New IoT Security
Protocol

OSCORE is a new security mechanism for IoT, developed to address the security challenges faced by constrained
devices in RESTful (Representational State Transfer) environments. OSCORE is designed to provide a lightweight,
easy-to-use, and secure communication mechanism for these devices, which often have limited resources and
capabilities. One of the key features of OSCORE is that it uses artificial intelligence (AI) to help secure
communications between devices. Specifically, OSCORE uses machine learning algorithms to dynamically adapt to
the changing security environment and to identify and mitigate potential threats. This allows OSCORE to provide
strong security protections without requiring significant resources or processing power from constrained devices.
OSCORE is a secure communication protocol for IoT devices, and it has the potential to significantly improve the
security of these devices in the future. The CoAP protocol is specially designed for resource-constrained devices and
networks, such as those found in IoT systems. OSCORE is designed to protect the request/response message
communication between endpoints corresponding to the application layer. This is developed not only to secure the
data part of a specific resource, but also the request method, the resource identifier, and the content format of the data
part. In this way, application-relevant data and endpoint communication semantics can be protected in a way that is
separate from message passing and is also light on overhead, because the size of the original CoAP message can only
be 11-13 bytes.

Fig.1. OSCORE Layer-wise protocols

496 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–5024 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000

3.1. CoAP and IoT communication security

 CoAP is a communication protocol designed for use in IoT networks. It is like HTTP in that it allows for the transfer
of resources and is based on the insecure UDP protocol. CoAP provides some basic security features such as message
integrity, confidentiality, and endpoint identity protection using DTLS (Datagram Transport Layer Security).
However, it is important to note that CoAP alone is not sufficient for securing IoT communications and additional
security measures such as authentication and access control should be implemented. However, a secured endpoint
communicating with IoT devices should be determined by business logic instead of transport protocols and endpoint
availability as in figure (1). This is possible by protecting the message passing through different network layers, even
with low-power radio devices without impacting the performance. The other security protocols CoAP support are,
OAuth, IPSec, TLS(transport layer security), and JWT(JSON web token). Resource-constrained devices require a
dedicated protocol for secure communications, which minimizes performance impact while flexibly supporting
different trust models. A gateway in the communication path between the thing and the cloud may perform important
functions to support end-to-end communication, but still cannot be trusted to access application layer data.

Design of ECC Algorithm

The design of a secured communication protocol to communicate between the IoT devices and the next higher layers
of the IoT network is explained in this section. The implementation steps are presented in the algorithm as in figure
(2) which represents the key generation (private and public) and data encryption and decryption to secure CoAP.

Key generation and message encryption using ECC.

 In Secure CoAP to communicate the data between IoT networks, we need message encryption by using a public-
private key pair. Let G be a point on an elliptic curve as in figure (2)A point within the ECC is regarded as a public
key, while its corresponding private key is represented as a scalar value. Use the following steps to generate the key
pair.

1. Choose a suitable elliptic curve and a finite field to work with. Let the curve be over the field GF(p) can be
used. In which p is a prime number.

2. Choose point G on the curve as the generation point. This point is publicly known and is used to generate all
other points on the curve.

3. Choose a random integer between 1 and the order of G and consider it as a private key.
4. Calculate the public key Q = d*G, which is a point on the curve. Here both d and Q form the public-private

key pair.
5. Encryption and decryption
6. ECC is an end-to-end public key cryptosystem to secure the information. The public key Q and a random

number k are used to encrypt the message m. The following steps can be taken to cipher a message m, as
explained in the following steps.

 Fig. 2. Elliptical Curve Fig. 3. ECC Algorithm for key generation and encryption

 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–502 4974 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000

3.1. CoAP and IoT communication security

 CoAP is a communication protocol designed for use in IoT networks. It is like HTTP in that it allows for the transfer
of resources and is based on the insecure UDP protocol. CoAP provides some basic security features such as message
integrity, confidentiality, and endpoint identity protection using DTLS (Datagram Transport Layer Security).
However, it is important to note that CoAP alone is not sufficient for securing IoT communications and additional
security measures such as authentication and access control should be implemented. However, a secured endpoint
communicating with IoT devices should be determined by business logic instead of transport protocols and endpoint
availability as in figure (1). This is possible by protecting the message passing through different network layers, even
with low-power radio devices without impacting the performance. The other security protocols CoAP support are,
OAuth, IPSec, TLS(transport layer security), and JWT(JSON web token). Resource-constrained devices require a
dedicated protocol for secure communications, which minimizes performance impact while flexibly supporting
different trust models. A gateway in the communication path between the thing and the cloud may perform important
functions to support end-to-end communication, but still cannot be trusted to access application layer data.

Design of ECC Algorithm

The design of a secured communication protocol to communicate between the IoT devices and the next higher layers
of the IoT network is explained in this section. The implementation steps are presented in the algorithm as in figure
(2) which represents the key generation (private and public) and data encryption and decryption to secure CoAP.

Key generation and message encryption using ECC.

 In Secure CoAP to communicate the data between IoT networks, we need message encryption by using a public-
private key pair. Let G be a point on an elliptic curve as in figure (2)A point within the ECC is regarded as a public
key, while its corresponding private key is represented as a scalar value. Use the following steps to generate the key
pair.

1. Choose a suitable elliptic curve and a finite field to work with. Let the curve be over the field GF(p) can be
used. In which p is a prime number.

2. Choose point G on the curve as the generation point. This point is publicly known and is used to generate all
other points on the curve.

3. Choose a random integer between 1 and the order of G and consider it as a private key.
4. Calculate the public key Q = d*G, which is a point on the curve. Here both d and Q form the public-private

key pair.
5. Encryption and decryption
6. ECC is an end-to-end public key cryptosystem to secure the information. The public key Q and a random

number k are used to encrypt the message m. The following steps can be taken to cipher a message m, as
explained in the following steps.

 Fig. 2. Elliptical Curve Fig. 3. ECC Algorithm for key generation and encryption

 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000 5

Encryption.
1. Calculate the point R = k*G, where G is the generator point.
2. calculate the point S = k*Q, where Q is the receiver’s public key.
3. Calculate the ciphertext c = (R, S, m).
Decryption
1. Calculate the point S1 = c[1]-c[0]*d, where d is the receiver’s private key and c[0] and c[1] are the

two points in the ciphertext.
2. Calculate the message m1 = c[2]*S1^(-1), where c[2] is the message and S1^(-1) is the inverse of S1

modulo the order of G.
4. Comparative Analysis -ECC vs RSA

RSA and ECC are two popular algorithms used in public-key cryptography. Figure (4) represents some of the main
differences that are compared here.

Table.1 Comparison of ECC and RSA in terms of key size

Symmetric key
Size (bits)

RSA Size (bits) ECC key Size
(bits)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Key size: The smaller key size of ECC will enable it to perform faster than RSA to achieve an identical security level.
If the ECC key size is 256 bits, the equivalent key size in RSA is 3072 bits in terms of security. This means that ECC
is more efficient in terms of key size and is suitable for applications that need to exchange larger amounts of data.

Performance: The performance of ECC is much better than RSA encipherment, especially for smaller key sizes.
However, RSA has better performance for larger key sizes.

Implementation: The cryptanalysis of RSA is due to the large key size and factorization of these large composite
numbers, while in ECC it is due to the complexity of finding the discrete logarithm of a point on an elliptic curve. As
a result, ECC may be more suitable for implementation on constrained devices, such as smart cards and embedded
systems.

Fig. 4. Security Level (in bits)

Security: Both RSA and ECC are considered secure if implemented properly. However, ECC has the potential to be
more secure due to its complexity of solving the elliptic curve discrete logarithm challenge, as compared to the
difficulty of factoring large composite numbers in RSA.

ECC is generally faster and more efficient than RSA, especially for smaller key sizes. However, RSA may be faster
for larger key sizes and is widely used in many applications. Both algorithms are secure and suitable for different use

498 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–5026 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000

cases.

Table. 2. RSA vs ECC: Encryption and Decryption for 8-bit input

Input = 8 bits
Security
Bit-level

Encryption Decryption Total Time
ECC Enc.
Time

RSA Enc.
Time

ECC Dec.
Time

RSA Dec.
Time

ECC Total
Time

RSA Total
Time

80 0.4885 0.0307 1.3267 0.7543 1.8152 0.7850
112 2.2030 0.0299 1.5863 2.7075 3.7893 2.7375
128 3.8763 0.0305 1.7690 6.9409 5.6453 6.9714
144 4.7266 0.0489 2.0022 13.6472 6.7288 13.6962

 (a) (b)
Fig. 5 (a) and (b). RSA vs ECC Encryption and Decryption Fig. 6. RSA vs ECC Processing Time

Encryption and Decryption of 8-bit data using ECC and RSA
ECC and RSA are two different algorithms used for encryption and decrypting data. The implementation of ECC is
mainly related to the elliptical curve and its algebraic structure it, while RSA is based on the mathematical concept of
prime factorization. Both ECC and RSA can be used for symmetric and asymmetric encryption, but they differ in their
performance, security level, and key size.

64 bits – Encryption, Decryption, and Total Time (in seconds)

 From the analysis result the security level of ECC is better than RSA for a given key size, due to the inherent
difficulty of the underlying mathematical complexity. However, ECC requires less computation and has faster
encryption and decryption times compared to RSA, especially for smaller key sizes. For 8-bit and 64 bits, ECC may
have significantly faster encryption and decryption times compared to RSA. However, as the key size increases, the
difference in performance between the two algorithms becomes less significant. The performance of an encryption
algorithm depends on various factors, including the hardware and software being used, the size and complexity of the
data being encrypted, and the specific implementation of the algorithm. As such the relative performance of ECC and
RSA may vary in different scenarios as in Tables 2 and 3 and Figures 5 and 7 respectively by taking 64 bit data for
encryption and decryption. The physical network setup for the implementation of CoAP protocol is shown in Figure
(8). The network includes components such as a network switch which will isolate the network from the rest of the
Internet, and a Raspberry Pi working on a server. This IoT device is connected to multiple sensors and fetches data
from these sensors. Network traffic is emulated by a network emulator, which is a virtual machine, and a broker
integrates the functionalities of the CoAP client and server.

Table 3. Time for Encryption and Decryption

Input = 64 bits
Security
Bit-level

Encryption Decryption Total Time
ECC Enc.
Time

RSA Enc.
Time

ECC Dec.
Time

RSA Dec.
Time

ECC Total
Time

RSA Total
Time

 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–502 499
 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000 7

80 2.1685 0.1366 5.9099 5.5372 8.0784 5.6738
112 9.9855 0.1635 6.9333 20.4108 16.9188 20.5743
128 15.0882 0.1672 7.3584 46.4782 22.4466 46.6454
144 20.2308 0.1385 8.4785 77.7642 28.7093 77.9027

Given this, the logical network scenario segregates this network segment, compelling network traffic between servers,
clients, and brokers to traverse the network emulator. The security requirement of the message transmission process
using CoAP protocol is achieved by using TLS cryptosystem. The analysis of CoAP is performed only after
configuring the network scenario. This implementation covers both client.c and server.c for CoAP client and
server respectively. The CoAP server provides access to two resources, 'time' and 'asyns,' enabling the comparison of
piggybacked and separate responses. Specifically, 'asyns' serves to investigate the time difference between sending
the ACK and sending the separate response. When the request for these two resources is received, the sensors
connected to the IoT must read the value. This data is received by the CoAP server using TLS 1.2 cyber suit to encrypt
the message.

Fig. 7 (a) and (b). RSA vs ECC Encryption, Decryption and Total Time for 64-bit input

Fig.8 Implementation of CoAP Protocol Fig. 9. Scenarios representing CoAP Information retrieval

Analytical Study of CoAP Protocol and Result Analysis

The performance of the CoAP protocol on a network with no packet loss determines the amount of data needed to
retrieve sensor information without encryption. Considering this, the table below presents the count of packets and
the data shared between the client and server. In all cases, the message communication delay is almost the same. The
total delay is due to the delay in capturing sensor data and the time taken to exchange the data in the network. The IoT
used in the experimentation functions as a server, it takes about 720 msec to read the data from the sensor. CoAP uses
UDP protocol for message communication, a loss of message may be detected at the application layer. This is
performed in a confirmed mode and the possible scenarios I, II, and III represent the CoAP information retrieved is
shown in Figure (9).

Scenario I II III
Packets 2 4 2
Bytes 134 258 134

500 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–502
8 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000

In this operational mode, the retransmission of ACK_TIMEOUT occurs after a two-second interval following the
transmission of the CON message. If the timer expires without receiving an ACK, it is transmitted again with a level
of randomness introduced after ACK_RANDOM_FACTOR to mitigate potential collisions. The likelihood of packet
loss resulting from network congestion is expressed as the probability that a message is received successfully, denoted
as 'q' and computed as 'k = 1 - p.' Additionally, accounting for the time required for sensing, reading the sensor,
and network RTT, the usual delay in receiving a response when employing a CON message is as follows:

Delay = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘2 + 𝑅𝑅𝑇𝑇𝑇𝑇 + (1 − 𝑘𝑘2)𝑘𝑘2 × (𝑅𝑅𝑇𝑇𝑇𝑇 + 𝐴𝐴𝐴𝐴𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) +
(1 − 𝑘𝑘2)2 + 𝑘𝑘2 + (2𝑅𝑅𝑇𝑇𝑇𝑇 + 𝐴𝐴𝐴𝐴𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + (1 − 𝑘𝑘2)3 +

 𝑘𝑘2(3𝑅𝑅𝑇𝑇𝑇𝑇 = +𝐴𝐴𝐴𝐴𝐾𝐾_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) +….
Neglecting the RTT against T_sensing and ACK_TIMEOUT and if this sum has infinite terms we have.

Delay = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘2 + 𝐴𝐴𝐴𝐴𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + ∑ 𝑛𝑛(1 − 𝑘𝑘2)𝑠𝑠∞
𝑠𝑠=1

Considering ∑ 𝑛𝑛𝑥𝑥𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐾𝐾_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇∞
𝑠𝑠=1 [1−𝑘𝑘2

𝑘𝑘2]
If T_sensing = 720msec ACK_TIMEOUT = 2000msec
The delay for different probability of packet loss p is shown in table (4)

Table 4. Protocol Delay against probability of packet loss
T_Sensing = 720 msec
ACK TIMEOUT = 200msec

P Delay msec
0 720

0.05 936
0.1 1,189

0.15 1,488
0.2 1,845

 The performance analysis of CoAP protocol when applied to a resource-constrained device such as IoT, obtained
from the experimental results are analysed focusing on the following three performance indicators, such as CPU
utilization, bandwidth efficiency and latency of message communication. CPU utilization is an important indicator of
performance in two different aspects. CPU utilization is important for finding the average number of packets employed
per message communication. It is also an important indicator for energy efficient message communication. Higher the
number of CPU cycle implies a large amount of energy consumption; this also requires larger processing capabilities.
The energy consumption is a fixed component per packet transmitted but it varies as several bytes packet transmission
due to retransmission problems. CPU utilization varies by adopting different types of ciphering modes. Among the
three scenarios in scenario III there is a decrease in the number of CPU cycles. This is due to the increased packet loss
and retransmission of the packets. So, the CPU usage has reduced in the server side.
 The bandwidth utilization depends on the total number of bytes transferred per message communication. Bandwidth
utilization is analyzed based on the three scenarios I, II, and III. In scenarios I and III the results obtained are practically
indistinguishable for a secured communication both in PSK mode and PKI mode, whereas in scenario II loss rate
increases as we change from no securing-to-securing mode. The experimental results obtained are shown in the table.

CoAP Bandwidth Utilization
Scenario No Securing

(Bytes)
Securing (Bytes)
PSK PKI

I, III 134 1769 2299
II 258 1854 2453

 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–502 501 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000 9

Fig.10 Bandwidth usage by Scenario I, II, III

The energy consumption in scenario I is more compared to scenarios II and III. The distinction between Scenario I
and Scenario II lies in Scenario I's need for an immediate response, which entails extra server-side effort. In contrast,
the contrast with Scenario III arises from the absence of a relationship, eliminating the need for a retransmission timer
and managing large number of requests. The greater number of retransmissions in this context will raise the energy
consumption of the network interface, consequently affecting the overall energy consumption.

5.1 CoAP Latency

Fig.11 Time delay per Message Transmission Scenario I,II, III

Latency is assessed in the experiment by measuring the time gap between the initial and final packet exchanges. In
the case of IoT or resource-limited devices, this duration encompasses the time taken by an IoT device to capture the
temperature data. The latency varies across the three scenarios mentioned. In the case of lossless networks, scenario
II the average delay is 720.02msec under no securing mode and 723.1432 and 728.2249msec for PSK and PKI modes
respectively. In the non-secure scenarios, I and II exhibit similar behavior as the loss rate rises. However, the time
delay in Scenario II is slightly higher than that in Scenario I due to a greater number of packets per message. In the
case of PKS and PKI encryption modes in Scenarios I and II, they follow an alike pattern as there is a rise in the loss
rate, being more affected by losses compared to the non-secured scenario.

Fig. 12 CPU Usage Scenario I, II, III

502 Rathnakar Achary et al. / Procedia Computer Science 230 (2023) 493–502
10 Rathnakar Achary / Procedia Computer Science 00 (2019) 000–000

5. Conclusion

To ensure the security of CoAP protocol in IoT, two prominent protocols proposed are DTLS and IPSec. This article
explores the analysis and the provision for the implementation of CoAP. The analysis highlights the point that CoAP
did not fulfil the security requirements of IoT devices and networks of IoT devices. In addition to this application of
DTLS and IPSec, may not be possible due to the resource limitations in IoT devices. The article, therefore, claims the
need for new trivial, security approaches such as elliptical curve cryptography for the secure version of CoAP.
Comparing the ECC and RSA algorithms related to performance, speed of operation, and security level, the
experimental result proves that ECC is much suited for low-resource devices such as IoT with smaller key sizes for
the same level of security.

References
[1] Kothmayr T., “Security Architecture for Wireless Sensor Networks Based on DTLS,” M.S. Thesis, the University of Augsburg, 2011.
[2] Raza S., Shafagh H., Hewage K., Hummen R., and Voigt T., Lithe: “Lightweight Secure CoAP For The Internet Of Things,” IEEE Sensors

Journal, vol.13, no.10, pp. 3711-3720, 2013.
[3] Brachmann M., Garcia-Morchon O., and Kirsche M., “Security For Practical CoAP Applications: Issues And Solution Approaches,”

Technical Report, 2011
[4] Alghamdi T., Lasebae A., and Aiash M., “Security Analysis of The Constrained Application Protocol In The Internet Of Things,” in

Proceedings of Second International Conference on Future Generation Communication Technology, London, pp. 163-168, 2013.
[5] Ukil A., Bandyopadhyay S., Bhattacharyya A., Pal A., and Bose T. “Lightweight security scheme for IoT applications using CoAP,”

International Journal of Pervasive Computing And Communications, vol. 10, no. 4, pp. 372-392, 2014
[6] Bhattacharyya A., Bose T., Bandyopadhyay S., Ukil A., and Pal A., “LESS: Lightweight Establishment of Secure Session: A Cross-Layer

Approach Using CoAP and DTLS-PSK Channel Encryption,” in Proceedings of IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops, Gwangiu, pp. 682-687, 2015.

[7] Liu Yuxuan Research on FPGA-based High-performance Elliptic Curve Cryptography Acceleration Technology>, 2021-05, Hefei University
of Technology.

[8] Gao Wei, Luo Yixuan, Li Jiakun, Wu Haixia High-Performance Hardware Implementation of Elliptic Curve Cryptography Point
Multiplication over GF(ｐ), 2021-09, Beijing Institute of Technology, Transaction of Beijing Institute of Technology.

[9] Wei Wei, Chen Jiazhe, Li Dan, Zhang Baofeng Research on the Bit Security of Elliptic Curve Diffie-Hellman, 2020-04-24, Journal of
Electronics & Information Technology.

[10] C. A. Lara-Nino, A. Diaz-Perez, and M. Morales-Sandoval, ‘‘Elliptic curve lightweight cryptography: A survey,’’ IEEE Access, vol. 6, pp.
72514–72550, 2018, doi: 10.1109/ACCESS.2018.2881444.

[11] P. Gupta, D. K. Verma, and A. K. Singh, ‘‘Improving RSA algorithm using multi-threading model for outsourced data security in cloud
storage,’’ in Proc. 8th Int. Conf. Cloud Comput., Data Sci. Eng. (Confluence), Jan. 2018, pp. 14–15.

[12] A. Rawat, K. Sehgal, A. Tiwari, A. Sharma, and A. Joshi, ‘‘A novel accelerated implementation of RSA using parallel processing,’’ J. Discrete
Math. Sci. Cryptogr., vol. 22, no. 2, pp. 309–322, Feb. 2019, doi: 10.1080/09720529.2019.1582864.

[13] X.-L. Huang, Y.-X. Dong, K.-X. Jiao, and G.-D. Ye, ‘‘Asymmetric pixel confusion algorithm for images based on RSA and Arnold
transform,’’ Frontiers Inf. Technol. Electron. Eng., vol. 21, no. 12, pp. 1783–1794, Dec. 2020, doi: 10.1631/FITEE.2000241.

[14] RSA-232 Number Has Been Factored—HBM PAH [Internet]. Accessed: Oct. 11, 2021. [Online]. Available:
https://www.inm.ras.ru/math_center_en/rsa-232-number-has-been-factored-5/

[15] S. Shin, K. Won, and S. Shin, ‘‘Size efficient pre-processed symmetric RSA for wireless body area network,’’ ACM SIGAPP Appl. Compute.
Rev., vol. 20, no. 1, pp. 15–23, Apr. 2020, doi: 10.1145/3392350.3392352.

[16] A. S. V. Nair and R. Achary, "Social Engineering Defender (SE.Def): Human Emotion Factor Based Classification and Defense against Social
Engineering Attacks," 2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference
(ATCON-1), Bangalore, India, 2023, pp. 1-5, doi: 10.1109/ICAIA57370.2023.10169678.

[17] R. Achary, R. R, R. K and P. V, "Effect of Temperature and Relative Humidity on Onion farms and its Monitoring by using IoT Based Smart
Farming System," 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 2022, pp.
1-6, doi: 10.1109/IC3IOT53935.2022.9767884.

[18] C. J. Shalke and R. Achary, "Social Engineering Attack and Scam Detection using Advanced Natural Langugae Processing Algorithm," 2022
6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2022, pp. 1749-1754, doi:
10.1109/ICOEI53556.2022.9776697.

[19] R. Achary and C. J. Shelke, "Fraud Detection in Banking Transactions Using Machine Learning," 2023 International Conference on
Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India, 2023, pp. 221-226, doi:
10.1109/IITCEE57236.2023.10091067.

