
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283447950

Reviewing the Significance of Software Metrics for Ensuring Design Reusability

in Software Engineering

Article · September 2014

CITATIONS

3
READS

148

2 authors:

P. Mangayarkarasi Palaniswamy Velumani

New Horizon College of Engineering

7 PUBLICATIONS 47 CITATIONS

SEE PROFILE

R.Selvarani Rangasamy

Alliance University

66 PUBLICATIONS 296 CITATIONS

SEE PROFILE

All content following this page was uploaded by R.Selvarani Rangasamy on 03 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/283447950_Reviewing_the_Significance_of_Software_Metrics_for_Ensuring_Design_Reusability_in_Software_Engineering?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283447950_Reviewing_the_Significance_of_Software_Metrics_for_Ensuring_Design_Reusability_in_Software_Engineering?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/P-Mangayarkarasi-Velumani-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/P-Mangayarkarasi-Velumani-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_Horizon_College_of_Engineering?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/P-Mangayarkarasi-Velumani-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rselvarani-Rangasamy-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rselvarani-Rangasamy-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Alliance_University?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rselvarani-Rangasamy-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rselvarani-Rangasamy-2?enrichId=rgreq-c5d090a8026ba76c92dc3cda0506e5b8-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ0Nzk1MDtBUzoyOTE2MzM1ODIxMDA0ODFAMTQ0NjU0MjI3Mjc1MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Reviewing the Significance of Software Metrics for

Ensuring Design Reusability in Software Engineering
P. Mangayarkarasi Dr. R. Selvarani Professor CS/IT,

Research Scholar Alliance college of Engineering and Design,

Visvesvaraya Technological University Belgaum, India Alliance University, Bangalore

E-Mail: mangaivelu18@gmail.com E-Mail: Selvarani.riic@gmail.com

Abstract— with the rise of high competition to retain maximum

quality cost effective software application, the significance of

software engineering are enhancing in quite faster pace. The field

of software development is increasingly giving more emphasis on

the object oriented design as well as software metrics as essential

method to ensure the quality of software. There has been a quite

abundant of studies conducted in the past addressing to the issues

of object-oriented development, however, no studies were found

effectively for design reusability from software engineering

viewpoint. This paper therefore discusses about the essentials of

design reusability and its significant charecteristics, which has

potential features for cutting the cost of development. The paper

also discusses about the most frequently used software metrics till

date as well as less -used software metrics. Finally, the paper

discusses about the open issues from the studies.

Keywords: Component, Design Reusability, Design Pattern,

Software Metrics, CK Metrics, MOOD, etc

I. INTRODUCTION

 In the area of software development methodologies, object
oriented designs are considered as one of the significant
attributes to measure the quality aspects of the software [1]. It
was also seen that software projects of small/large scale uses
object oriented design methodologies for any software
development organization. Hence, object oriented designs can
be considered as a degree using which the system objects can
posses the specific attributes as well as required charecteristics.
The prime reason behind this large scale adoption is that object
orient methodologies basically visualize the problems and
tends to give solution based on all the micro and macro level
problems in terms of objects thereby ensuring better
adaptability, reliability, flexibility, and also reusability [2]. At
present, the software metrics are used by the engineers to
evaluate the required resources and design component for a
particular software project. Hence, the significance of software
metric is that it provides a better platform to evaluate the
design pattern as well as assist in testing the application in
quantitative manner. Such testing assists in ensuring better
software reliability too. Basically, when a company gets a new
requirement for any clients, they formulate a design of that
requirement, where the confirmed designed by technical
architect goes for production. Once the code is designed, the
applications are sold to customers. However, it is also
unethical to reuse the code of previous clients for the purpose
of developing new application for new clients [3][4]. Hence, a
production team has to go for new development from scratch,
which not only takes their effort, but also time and money.

Majority of the large scale organization now-a-days uses the
design pattern where the design patterns are subjected for reuse
without any ethical issues. However, a question also arise that
how much proportion of the old design for new requirements
can be reused? Answering this question requires to be seen
from the evidences from the literature survey, where various
other techniques pertaining to design patterns of object oriented
methodologies needs to be studied. The literature needs to be
also analyzed to see how many of such software metrics
existing in past and present that permits design reusability.

The prime purpose of design reuse [5][6] is to provide the
assistance to the developers to use it for the new production,
which drastically cut down the cost of new development from
the scratch. However, when software engineers are working on
design reusability, it is essential that the existing design
patterns to be optimally reused for the existing client as well as
for the future clients too. Adoption of design reuse also ensure
the production and delivery process to meet on time (or
sometimes before time), which gives lots of scope to the
development team to ensure the quality of their production.
Design reuse doesn‘t means that 100% of the design could be
reused. It means that possible 40% of the prior design could be
reused while it calls for fresh 60% of the designs should be
developed from base for meeting a particular requirement of
clients. Hence, the design team needs to ensure that the new
60% design should not be focused only for the existing client,
but even it should have minimum proportion of design
reusability for its future clients too. However, it is not so easy
to do, as client‘s upcoming requirements cannot be predicted.
Section 2 discusses about the fundamentals of design
reusability along with its considered attributes. Section 3
discusses about the desired charecteristics of the design
reusability. Section 4 discusses about the unconventional object
oriented metrics and Section 5 discusses about the conventional
object oriented metrics. Section 6 highlights about the most
frequently adopted software metrics called as CK metrics,
while Section 7 discusses about some of the significant studies
done most recently. Finally, Section 8 discusses about an open
issue and followed by summarization of the paper in Section 9
as conclusion.

II. DESIGN REUSABILITY

Design Reusability is the one of the critical requirements
for all the companies who is into product development [7][8].
Design reusability can be basically used as a framework in
design patterns as an extent of ease with which one can deploy

P Mangayarkarasi et al , International Journal of Computer Science & Communication Networks,Vol 4(6),208-213

208

ISSN:2249-5789

mailto:mangaivelu18@gmail.com
mailto:Selvarani.riic@gmail.com

priorly designed frameworks in the novel applications. The
design aspects can be reused in multiple different tasks on the
applications, which can be reused in the same system at the
multiple different level or it may be reused in many other
applications too. The outcome of the design reusability is
basically a design where the cost of new development is
lowered subjected the reusability factor of the resultant design
is higher. The development of new design is basically not
targeted only for the current consumer but also for future
consumers and requirements. Therefore, it is important that the
design architect should concentrate on the needs of large
proportion of customer rather than the existing customers only.
Hence, the importance is given on the design reusability for
existing as well as future clients too. Hence, anticipated return-
on-investment is proportionately high when the development
companies successfully implement design reusability.
Therefore for effective design reusability, following attributes
should be considered:

 The resultant design is anticipated to be highly generic and
should encapsulate the existing as well as the upcoming
need of anticipated customers. The system must also
consider the unique designing aspects apart from the
reusability part.

 For better risk management, design should be also focused
on unknown need of customers (to avoid requirement
volatility issues)

 Emphasis should be given on the design interface contract
to be more simplified and benchmarked for its
extendibility to multiple different customers in future (or
in present as well).

 Design comprehension and compatibility should be clear
and precise for the customers to adopt and operate easily.

 Operation and associated functionality of the anticipated
design should be highly enriched.

 The new design should have better exceptional handling.

 The design portability should have better scope.

 The reused design should be free from other design
process.

20 years back, design reusability was not emphasized much,
but with the upcoming cut-edge competition for retaining
maximum number of clients with cost effective human
resource, design reusability has found a peak position of
importance in every software development companies. It is one
of the media to foresight the future needs of anticipated
customers reducing the cost of new development. Hence, there
are multiple benefits of adopting design reusability e.g. i)
minimization of design duplication, ii) minimization of
development cost and duration, iii) Maximization of return of
investment and enhancement of productivity, iv) Non-trivial
maintenance, v) increases reliability and reduces risk.

III. CHARACTERISTICS OF DESIGN REUSABILITY

For making the design as a reusable one, the emphasis
should be given to both design and quality characteristics. At

the production stage the design should adhere to other design
characteristics which enhance design reusability. The essential
charecteristics of design reusability are as follows [9]:

 Loose Coupling: Design loose coupling enhances the
design reusability. The lower the dependency with other
design, the more easily it can be reused.

 Composability: Design composability is the key principle
for reusability. The composable design can easily integrate
with other design. Therefore the design composability
offers higher degree of design reusability.

 Autonomy: The reusable design should be independent. If
the design is independent from other design and business
logic and self governance, then the design will be more
reusable.

 Abstraction: Design abstraction hides the unnecessary
information from the design consumers. Also it reduces
the needless coupling between the design consumer and
design provider thereby increases the design reusability.

 Statelessness: Statelessness encourages design reusability.
Lesser the amount of state management responsibilities
increases its scalability and availability which are the
required qualities to enhance design reusability.

 Discoverability: Design discoverability promotes design
reusability. If and only if the design consumer can easily
find the required service, the design can be more reusable.

 Granularity: The design granularity may be fine grained
or coarse grained. Depending upon the type of design, the
granularity level may vary. The correct granularity level of
the design enhances the design re-use.

There is couple of studies done in the past for understanding
about pros and cons of design reusability, where effectively
majority of the studies has focused on the object oriented
software metrics. The next section will discuss about some of
the studied software metrics in object oriented development.

IV. UNCONVENTIONAL OBJECT ORIENTED METRICS

This section discusses about the unconventional object oriented
metrics that are considered in the development of software

projects. The unconventional terms is coined as such metrics were

although formulated was found very less to be adopted in
majority of the studies related to objected oriented development.

 Chen Metrics: Chen et al. [10] proposed software metrics,
through which it can define ―What is the behavior of the
metrics in object-oriented design‖. They may be described all

of the behaviors like: (i) CCM (Class Coupling Metric), (ii)

OXM (Operating Complexity Metric), (iii) OACM
(Operating Argument Complexity Metric), (iv) ACM

(Attribute Complexity Metric), (v) OCM (Operating

Coupling Metric), (vi) CM (Cohesion Metric), (vii) CHM
(Class Hierarchy of Method) and (viii) RM (Reuse Metric).

Metrics (i) and (iii) are very subjective in nature, Metrics (iv)
and metric (vii) mostly involve the count of features; and

metric (viii) is a Boolean (0 or 1) indicator metric. Therefore,

all of the terminologies in object oriented language, consider
as the basic components of the paradigm are objects, classes,

P Mangayarkarasi et al , International Journal of Computer Science & Communication Networks,Vol 4(6),208-213

209

ISSN:2249-5789

attributes, inheritance, method, and message passing. They

proposed all of that each object oriented metrics concept
implies a programming behavior.

 Morris Metrics: Morris et al. [11] proposed a metrics suite
for the object-oriented metrics systems and they define the

system in the form of the tree structure and the following are
the Morris‘s complexity and cohesion metrics. Morris

defined the complexity of the object oriented system in the
form of the depth of the tree. Depth of the tree measures the

number of the sub-nodes of the tree. The more the number of

sub nodes of tree the more complex the system. So,
complexity of an object is equal to the depth of tree or total

number of sub nodes.

 Lorenz & Kidd Metrics: Lorenz & Kidd [12] proposed a set

of metrics that can be grouped in four categories are size,
inheritance, internal and external. Size oriented metrics for

object oriented class may be focused on count of the metrics,
operations and attributes of an individual class and average

value of object-oriented software as a whole. Inheritance

based metrics is totally concentrated in which operations that
are reused through the class hierarchy. Metrics for the class

intervals are totally oriented towards the cohesion, while the
external metrics were used to examine and reuse. It divide

the class based metrics into the broad categories like size,

internal, external inheritance and the main metrics which are
focused on the size and complexity are class size (CS),

Number of operations overridden by a subclass (NOO),

Number of operations added by a subclass (NOA),
Specialization index (SI), Average operation size (OS),

Operation complexity (OC), Average number of parameters
per operation (NP).

V. CONVENTIONAL OBJECT ORIENTED METRICS

This section discusses in brief about the conventional object

oriented metrics. The term conventional object oriented metric

is coined as following metrics are found to used in majority of

the research work in past decade.

 MOOD: Abreu et al. [13] defined MOOD (Metrics for

Object Oriented Design) metrics. They evaluated that how

OO design mechanisms like inheritance, polymorphism,

information hiding and coupling can make an influence

on quality characteristics like defect density (a reliability

measure) and rework (a maintainability measure). They

also derived certain criteria like metrics should be

formally defined, dimensionless, obtainable early, down-

scalable, easily computable. They should be language and

size independent. MOOD metrics refers to a basic

structural mechanism of the object-oriented paradigm like

encapsulation (MHF and AHF), inheritance (MIF and

AIF), polymorphism (PF) and message passing (CF).

MOOD metrics are based on set theory and includes

simple mathematics. These are applicable as soon as a

preliminary design is available so the flaws can be

detected in the early phase. Subjectivity is avoided as

these are formally defined.

 QMOOD: QMOOD (Quality Model for Object Oriented

Design) was proposed by Bansiya and Davis [14]. It is the

comprehensive model that assesses quality attributes like

reusability, functionality, effectiveness, understandability,

extendibility, flexibility. There are four levels (L1 through

L4) and three mappings to connect these levels in

QMOOD. The four levels are: A. Design Quality

Attributes. B. Object oriented design Properties. C. Object

oriented design Metrics. D. Object oriented design

Components
However, some researchers [15] who have deeply evaluated
MOOD have contradicted that the majority of the metrics
involved in MOOD has high range of software defect.
However, the author has also commented that it is not
necessary to point out the demerits of MOOD or QMOOD as
they have other potential advantage features too. Hence, last
half decade has witnessed frequent adoption of CK metric
(although it has been evolved in 1994). According to various
researchers, CK metrics is better replacement of other
conventional and unconventional software metrics for object
oriented development. The next section will discuss about CK
metrics and its associated working principles.

VI. CK-METRICS

The pioneering of the potential software metrics was done by

Chidamber and Kemerer [16] in 1994 who have introduced a

standard software metrics for object oriented programs. CK

metrics or Chidamber and Kemerer metrics plays a significant

role to know the design aspects of the software and to enhance

the quality of software [16]. Previous studies [16][17] show

that the majority of the metrics suites are designed based upon

the original CK metrics suite. The prime purpose of CK metric

is to furnish a detailed evaluation of the cumulative quality of

the software programs for all the level of class. The metrics

are associated with each small segment of the software

providing in-depth information of the software and its quality.

The CK metrics suite proposes class-based six metrics that

assess different characteristic of object oriented programs,

having the following metrics: (i) Weighted Methods per Class

(WMC), (ii) Response for a Class (RFC), (iii) Lack of

Cohesion of Methods (LCOM), (iv) Depth of Inheritance Tree

(DIT), (v) Number of Children (NOC), and (VI) Coupling

between Object classes (CBO). Though the original suite of

CK design metrics has six metrics, the present paper will

consider five metrics. The five metrics of CK Suite are

described as follows:

1. Weighted Methods per Class: It is a number of an

effective method to that are implemented inside a

class where class may possess bigger quantity of

methods specific to applications [18]. This metric

minimizes the dependability and understandability.

2. Response for a Class: This metric is a number of

cumulative methods inside a set that can be called

upon in response to the message sent to an object for

carrying out a specific task [18].

3. Depth of Inheritance Tree: One of the frequently

used metrics, it estimates the extent of depth in the

hierarchy of any class. It also evaluates

maintainability and reusability.

4. Number of Children: It is a measure of the number

of classes associated with a specified class with an

P Mangayarkarasi et al , International Journal of Computer Science & Communication Networks,Vol 4(6),208-213

210

ISSN:2249-5789

aid of an inheritance relationship. A class having

many children is a bad class with a bad design [19].

5. Coupling between Object classes: It is defined as

the number of all the other set of classes to which it is

coupled. CBO is beneficial in judging the complexity

of testing and reusability [16]. Among the proposed

CK metrics, the effective metrics are WMC, RFC,

DIT, NOC and CBO.

6. Lack of Cohesion of Methods (LCOM): LCOM is

the difference between the number of methods whose

similarity is zero and the number of methods whose

similarity is not zero. The similarity of two methods

is the number of attributes used in common.

However, Basili et al. [20], Briand et al. [21] and

Kaur in [22] noted problems in the LCOM metrics, a

value of zero of LCOM is not an evidence of

cohesiveness and also very high value of LCOM does

not depict any inference. LCOM metric makes it

difficult, if not impossible, to define a unit and to

measure quality. LCOM does not quantify quality

accurately and is not a good measure.

Usually it was seen that approaches for designing software

metric frequently use single snapshot of a software project.

Evaluating a project over a longer time-frame permits the

consideration of other software quality facets, such as reuse

and maintainability. Across a wide variety of reported results

from using Object Oriented (OO) metrics in industrial settings

and using data from an assortment of countries and

applications, we can make several observations:

 OO metrics have been successfully applied in various

domains and programming languages in countries

worldwide.

 They have consistently demonstrated relationships to

quality factors such as cost, defects, reuse, and

maintainability—relationships that go above and

beyond that of size.

 Inheritance (measured by DIT or NOC) is apparently

used only sparingly in practical OO applications, and

thus its relationship to project outcomes is less

certain.

Here, the user is a software engineer or developer. Hence,

internal usability metrics are used for predicting the extent, to

which the software in question can be understood, learned,

operated, and is attractive and compliant with usability

regulations by integrating it with a larger software system.

Understandability is defined as the attribute of software that

bears on the users' efforts in recognizing the logical concept

and its applicability. Learnability is defined as the attribute of

software that bears on the users' efforts for learning its

application. The operability is defined as the attribute of

software that bears on the users' efforts for operation and

operation control. Attractiveness is defined as the attributes of

software that bear on the capability of the software product to

be attractive to the user. Table 1 shows the five CK metric

with respect to understandability, Learnability, Operability,

and attractiveness measures. It also shows that CBO, and RFC

are not addressed by Learnability and operability. Review of

some significant approach is stated below:
Table1 Facts of CK Metrics [23]

CK Metrics Understanda

bility

Learn

ability

Operability Attractiv

eness

WMC-Weighted

Methods per class
√ √ √ √

DIT-Depth of

inheritance Tree
√ √ √ √

NOC-Number of

Children
√ √ √ √

CBO-Coupling

Between Object

Classes

√ - - √

RFC-Response Set

for Class
√ - - √

LCOM-Lack of

Cohesion in methods
√ - - √

VII. RECENT STUDIES

This section discusses about the most significant studies

captured in the recent past related to the issues of design

reusability using software metrics in the area of software

engineering. Nair and Selvarani [24] proposed a framework

with a capability to forecast the reusability index considering

three metrics in Chidamber and Kemerer metrics viz.: DIT,

RFC and WMC. They exposed the strong relationship that

exists between the design parameters and reusability factors in

developing a reusability estimation model. Nair and Selvarani

[23] carried out a complete analysis of the relationships that

exist between internal quality attributes in terms of the

complete suite of Chidamber and Kemerer metrics and the

reusability index of software systems. The authors presented a

new regression technique for the purpose of mapping the

association between reusability and design metrics. Selvarani

[25] presented an empirical evaluation of the Chidamber and

Kemerer metrics for assessing prediction capability using data

driven techniques for mitigating defects in software. The

author has carried out the investigation considering Weighted

Methods per Class mainly. Selvarani [26] presented an

extensive evaluation framework for assessing the impact of

defects in software using data driven techniques. The study

was conducted in the direction of defect evaluation in the

design stage of Object Oriented programs. The final outcome

of the study shows better efficiency in the existing

development lifecycle of softwares. Neha Budhija et al. [27]

proposed an approach for identifying and qualifying reusable

software components with a few metrics like, index of

coupling, inheritance, external dependency, and

polymorphism. Kaur et al. [28] analyzed the standard MOOD

metrics along with assessing the Chidamber and Kemerer

metrics. The study presented a standard reusability metric

model with higher dimensional scope in metrics related to

object oriented programs. Gill and Sikka [29] presented a

framework of reusability and discussed Object Oriented

programs with a viewpoint of evaluating inheritance hierarchy,

for which purpose, the authors developed 5 novel metrics.

Using the reuse metrics, the authors performed precise

classification. Goel and Bhatia [30] elaborated the design of

P Mangayarkarasi et al , International Journal of Computer Science & Communication Networks,Vol 4(6),208-213

211

ISSN:2249-5789

the CK metric suite as well as performed an analysis on those

metrics for the purpose that these metrics should highlight

precise results for object oriented systems. Subramanyam and

Krishnan [31] provided empirical evidence that supports to

solve the complexities in the object oriented programs for

identifying defects. The primary finding of the study states

that the Chidamber and Kemerer metric support the flexibility

for amendments of mitigating defects in Object Oriented

programming

VIII. OPEN ISSUES

While performing random exploration for contributory work

in the same field, it was seen that the author has a higher set of

contributory work in the same field in which our research lies.

After Reading the article ‗A Critical Suggestive Evaluation of

CK Metric‘ [32], we came to know about the validation

criterion for CK Metric Suit that has 9 properties to measure

(Non-Coarseness, Granularity, Design Details, Monotonicity,

Non-Equivalence of interaction, Non-Uniqueness, Permutation

of elements, Renaming, Interaction increases complexity). The

author has also discussed demerits of CK metrics as tabulated

below:

 WMC-Weighted Methods per class:

o WMC break an elementary rule of measurement

theory.

o This is also not clear whether the inherited

method is to be counted in base class (which

defines it), in derived classes or in both.

 DIT-Depth of inheritance Tree:

o There is the inconsistency in the theoretical basis

and definition of the metric in case of multiple

inheritances.

o Deeper Inheritance produces hindrances in

maintenance. On the other hand it states that it is

better to have Depth than breadth in the

Inheritance Hierarchy Hence there is

contradiction in the statements of DIT metric.

 NOC-Number of Children:

o The definition of NOC metric gives the distorted

view of the system as it counts only the

immediate sub-classes instead of all the

descendants of the class

 CBO-Coupling Between Object Classes:

o -As Coupling between Object classes increases,

reusability decreases and it becomes harder to

modify and test the software system.

o For most authors coupling is reuse, which raises

ambiguity.

o Chidamber and Kermerer state that their

definition of coupling also applies to coupling

due to inheritance, but do not make it clear if all

ancestors are involuntarily coupled or if the

measured class has to explicitly access a field or

method in an ancestor class for it to count.

 RFC-Response Set for Class:

o Chidamber and Kermerer recommended only

one level of nesting during the collection of data

for calculating RFC. This gives incomplete and

ambiguous approach as in real programming

practice there exists ―Deeply nested call-backs‖

that are not considered here.

 LCOM-Lack of Cohesion in Methods:

o The definition of CK metric for LCOM is not

able to distinguish the more cohesive class from

the less ones. This is simple violation of the basic

axiom of measurement theory, which tells that a

measure should be able to distinguish two

dissimilar entities. So this deficiency offends the

purpose of metric.

Hence, it can be seen that even frequently adopted CK metrics

is not without flaws and hence, it can be concluded that CK

Metrics should be thoroughly amended for making it eligible

for incorporating design reusability in software development

methodologies. Hence, as a research gap, there are no studies

being explored till date to ensure design reusability in software

engineering.

IX. CONCLUSION

This paper discusses the evolution of design reusability, as well

as focus on conventional and unconventional software metrics.

The paper contributes to precise understanding of the design
reusability and its associated feature. It also states that some of

the metrics s like Chen‘s metrics, Morris Metrics, and Lorenz &

Kidd are less used metrics, where MOOD and CK metrics were
found very high. While visualizing the most recent significant

studies, it was found that majority of the researchers are more
inclined towards CK metrics. However, as a research gap, none of

the studies were explored to address the design reusability using

CK metrics.. Therefore, our future work formulates a
mathematical model using CK metrics that can show the

significance of adoption of design reusability from software

engineering viewpoint.

REFERENCES

[1] S. K. Dubey, A. Rana, A Comprehensive Assessment of Object-Oriented
Software Systems Using Metrics Approach, International Journal on
Computer Science and Engineering Vol. 02, No. 08, 2010, 2726-2730

[2] N. Mohammed, A. Govardhan, Comparison between Traditional
Approach and Object-Oriented Approach in Software Engineering
Development, International Journal of Advanced Computer Science and
Applications, Vol. 2, No. 6, 2011

[3] B.Jalender, A.Govardhan, P.Premchand, Designing code level reusable
software components, International Journal of Software Engineering &
Applications (IJSEA), Vol.3, No.1, January 2012

[4] P.Niranjan, P.Shireesha, M.Venugopal Reddy, Development of Reuse
Repository and Software Component Performance Analysis,
International Journal of Application or Innovation in Engineering &
Management, Volume 2, Issue 6, June 2013

[5] N Md Jubair Basha, and Salman Abdul Moiz, A Framework Studio for
Component Reusability, CoRR abs/1202.5609, 2012

[6] Florinda Imeri, Ljupcho Antovski, An Analytical View on the Software
Reuse, I ICT Innovations, ISSN 1857-7288, 2012

[7] R.L. Glass, Frequently Forgotten Fundamental Facts aboutSoftware
Engineering, IEEE SOFTWARE May/June 2001

[8] P. T. Devanbu, D.E. Perry, Jeffrey S. Poulin, Guest Editors‘
Introduction: Next Generation Software Reuse, IEEE Transactions on
Software Engineering, VOL. 26, NO. 5, MAY 2000

[9] Domingue, John; Gonzalez-Cabero, Rafael and Fensel, Dieter (2008).
SOA4All, enabling the SOA revolution on a world wide scale. In:

P Mangayarkarasi et al , International Journal of Computer Science & Communication Networks,Vol 4(6),208-213

212

ISSN:2249-5789

Second IEEE International Conference on Semantic Computing (ICSC
2008), 4-7 August 2008, Santa Clara, CA, USA

[10] Chen, J-Y., Lum, J-F.: "A New Metrics for Object-Oriented Design.",
Information of Software Technology 35,4(April 1993) :232-240

[11] K. Morris, ―Metrics for Object-oriented Software Development
Environments,‖ Masters Thesis, MIT, 1989..

[12] M. Lorenz, J. Kidd, ―Object Oriented Software Metrics‖, Prentice Hall,
NJ, (1994).

[13] B. F. Abreu: ―Design metrics for OO software system‖, ECOOP‘95,
Quantitative Methods Workshop, 1995.

[14] J. Bansiya, C. G. Davis, ―A Hierarchical Model for Object-Oriented
Design Quality Assessment‖, IEEE Transactions on Software
Engineering, 28, (1), (2002), 4–17.

[15] T. Mayer & T. Hall, Measuring OO Systems: A Critical Analysis of the
MOOD Metrics, Journal of Software Quality Control, Vol.8, iss.2, 1999

[16] S.R. Chidamber, C.F. Kemerer. 1994. A Metric Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, Vol.20,
No.6

[17] S. Singh, P. Singh, N. Mohan, P.S. Sandhu. 2012. Logistic Model Trees
based Approach for Prediction of Reusability of Object Oriented
Software Components. International Journal of Research in Engineering
and Technology, Vol. 1, No. 3

[18] M. Sharma, G. Singh, A. Arora, P. Kaur. 2012. A Comparative Study
of Static Object Oriented Metrics, International Journal of
Advancements in Technology, Vol. 3, No.1

[19] A. Chatzigeorgiou. 2003. Mathematical Assessment of Object-Oriented
Design Quality. IEEE Transactions on Software Engineering, Vol. 29,
No. 11

[20] Basili, V.L., Briand, L., and Melo, W.L., A Validation of Object-
Oriented Metrics as Quality Indicators, IEEE Transactions Software
Engineering, Vol. 22, No. 10, 1996

[21] Briand, L.C., Wust, J., Daly, J.W., and Porter, D.V., Exploring the
Relationship Between design Measures and Software Quality in Object-
Oriented Systems, Journal Systems and Software, Vol. 51, No. 3, 2000

[22] Kaur, S., Singh, S., Kaur, H., A Quantitative Investigation Of Software
Metrics Threshold Values At Acceptable Risk Level, International
Journal of Engineering Research & Technology, Vol. 2 Issue 3, March -
2013

[23] R. Selvarani, T.R.Gopalakrishnan Nair. 2009. Software Reusability
Estimation Model Using Metrics Governing Design Architecture,
International Book: ―Knowledge Engineering for Software Development
Cycles: Support Technologies and Applications‖, Engineering Science
Reference, IGI Publishing, USA, DOI: 10.4018/978-1-60960-509-
4.ch011

[24] T.R.Gopalakrishnan Nair and R. Selvarani. 2010. Estimation of
Software Reusability: An Engineering Approach, Association for
Computing Machinery (ACM) – SIGSOFT, USA, Vol.35, Iss.1

[25] R. Selvarani. 2010. Software Metrics Evaluation Based on Entropy,
Handbook of Research on Software Engineering and Productivity
Technologies: Implications of Globalization, DOI: 10.4018/978-1-
60566-731-7.ch011, 2010

[26] T.R. Gopalakrishnan Nair, R. Selvarani. 2012. Defect proneness
estimation and feedback approach for software design quality
improvement, Information and Software Technology, Elsevier, vol.54,
pp. 274–285

[27] N. Budhija, B. Singh, S.P. Ahuja. 2013. Detection of Reusable
Components in object Oriented Programming Using Quality Metrics.
International Journal of Advanced Research in Computer Science and
Software Engineering, Vol. 3, Iss.1.

[28] A. Kaur, S. Singh, K.S. Kahlon, P.S. Sandhu. 2010. Empirical Analysis
of CK & MOOD Metric Suite. International Journal of Innovation,
Management and Technology, Vol. 1, No. 5.

[29] N.S. Gill, S. Sikka. 2011. Inheritance Hierarchy Based Reuse &
Reusability Metrics in OOSD, International Journal on Computer
Science and Engineering, Vol. 3, No. 6.

[30] B.M. Goel, P.K. Bhatia. 2012. Analysis of Reusability of Object-
Oriented System using CK Metrics, International Journal of Computer
Applications, Vol.60, No.10, pp.0975 – 8887.

[31] R. Subramanyam, M.S. Krishnan. 2003. Empirical Analysis of CK
Metrics for Object-Oriented Design Complexity: Implications for
Software Defects. IEEE Transactions on Software Engineering, Vol. 29,
No. 4.

[32] P. Sandhu, H. Singh, ‗A Critical Suggestive Evaluation of CK Metric‘,
PACIS, 2005

P Mangayarkarasi et al , International Journal of Computer Science & Communication Networks,Vol 4(6),208-213

213

ISSN:2249-5789

View publication stats

https://www.researchgate.net/publication/283447950

