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Abstract 
 
Study and investigate a class of separation axiom namely gg-Tk space (k=0, 1, 2), gg-regular and gg-normal space. Meanwhile, some of 
their properties are obtained. 
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1. Introduction 

From the literature survey on separation axiom, we observed that 
there has been significant work on T0 space, T1 space, T2 space, 
regular space and normal space. In 1980, R. C. Jain [5] introduced 

a new class of separation axioms namely δTi space (i=0, 1, 2).  
Since then different types of separation axioms are investigated. 
Using g-closed sets of Levine [6], T. Noiri and Papa [7] and Sheik 
John [8] contributed their work in the field of separation axiom. 
Recently, Basavaraj M. Ittanagi [1], studied basic properties of gg-
closed sets, gg-continuous functions and gg-closed maps in topo-
logical spaces. In present paper, gg-T0, gg-T1 and gg-T2 spaces are 
studied. The relation with existing separation axioms is discussed. 

2. Prerequisites 

In study, (X, T1), (Y, T2) (or X, Y) denote topological spaces. Let 
g:X Y (or simply g) always denote map. For B X, int(B), cl(B), 

X-B or Bc represent interior, closure and complement of B respec-
tively. The basic definitions required for this research work are 
listed below.  
 

Definition 2.1 Let B   X. Then B is said to be 

i) g-closed [5] if cl(B)   W whenever B   W and W is open. 
ii) gg-closed [1] if gcl(B)   W whenever B   W and W is regular 

semiopen. Also, ggC(X) (resp. ggO(X)) always denote family of 

gg-closed (resp. gg-open) sets in X. 
iii) δT0 space [4] if for every explicit points p, q of X, q   M, p   
M, or p   M, q   M, where M is a δ -open set of X. 

iv) δT1-space [4] if for every explicit points p, q of X, q   M, p   
M  and p   N, q   N where M and N are two δ-open sets  of X. 

v) δT2 -space [4] if for every explicit points p, q of X, q   H1, p   
H1 and p   H2, q  H2 where H1, H2 are two δ -open sets with H1   
H2. 

 

Definition 2.2 A map g is known as gg-continuous [2](gg-

irresolute[2]) if f-1(F)  ggC(X),   closed(gg-closed)set F in Y. 

3. gg-T0,  gg-T1 and gg-T2 Spaces 

Definition 3.1 Let X be 

i) gg-T0 if for every explicit points p, q of X, q   M, p   M or p  

M, q  M where M is an open set of X. 

ii) gg-T1 space if for every explicit points p, q of X, q   M, p   M 

and p   N, q  N where N, M   ggO(X) . 

iii) gg-T2 space (gg-Housdorff space) if for every explicit points p, 

q of X, q  H1, p   H1 and p   H2, q   H2 where H2, H1   ggO(X)  

  H2   H1. 

 

Theorem 3.2 
i)    If X is T0, then X is gg-T0 
ii)   If X is T1, then X is gg-T0 and gg-T1 
iii)  If X is T2, then X is gg-T2 
iv)   If X is gg-T1, then X is gg-T0 
v)    If X is gg-T2, then X is gg-T1 

 
Proof. i) Given, X is T0 space. For distinct points of every pair p, q 
of X   open set U where q   U, p  U, or p  U, q   U, Then U   
ggO(X) with  q   U, p   U or p   U, q   U. Therefore X is gg-T0 

space. 
Similarly we can prove ii), iii), iv) and  v). 

 

Example 3.3 Let X={n, m, l, k} and T1={ , { l, k}, { n, m}, X} 

be a topology on X. Then  
ggC(X)=P(X)=ggO(X). 
Here (X, T1) is a 
(i) gg-T0 space but not a T0 space. For explicit points k, l of X, no 
open set M exist   k  M, l  M or l  M, k  M. 

(ii) gg-T0 space but not a T1 space. For explicit points k, l of X, no 
two open sets M and N exist   k  M, l  M and l  N, k N. 

(iii) gg-T1 space but not a T1 space. For explicit points k, l of X, 
no two open sets M and N exist   k  M, l  M and l  N, k N. 
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(iv) gg-T2 space but not a T2 space. For explicit points k, l of X, no 
two distinct open sets H1 and H2 exist   k  H1, l  H1 and l  H2, 

k  H2. 

 

Theorem 3.4 
1)    If X is δT0, then it is gg-T0 
2)   If X is δT1, then it is gg-T1 
3)  If X is δT2 , then it is gg-T2.  
 
Proof. Based on fact, every δ- open set is in ggO(X). 
 

Remark 3.5 Converse of this theorem is untrue. 

 

Example 3.6 Let T1={ , X, {l}, {m, n}} be a topology on X={n, 

m, l}. Then  
ggO(X)=P(X) 

δ-O(X)= {  , X, {l}, {m, n}} 

Here (X, T1) is a  
(1) gg-T0 but not a δT0 space. For explicit points m, n of X, no δ 
open set exist with n   M, m   M or m  M, n   M 

(2) gg-T1 space but not a δT1 space. For explicit points m, n of X, 
no two δ open sets M and N exist with n   M, m   M and m   N, 

n   N. 

(3) gg-T2 space but not a δT2 space. For explicit points m, n of X, 
no two distinct δ-open sets H1 and H2 exist with m   H1, n   H1 

and n   H2, m   H2. 

 

Theorem 3.7 Let X is gg-T0 iff ggcl{x1}  ggcl{x2},   x1   x2 

of X. 
 
Proof. Given that X is gg-T0. Let x2, x1   X and x2  x1, then   V  
ggO(X), x2   V and x1   V implies x1   Vc, x2   Vc. But ggcl{x2} 

is the smallest gg-closed containing x2. Therefore ggcl({y})   Vc. 

Hence x   ggcl{x2}. Thus ggcl{x1}   ggcl{x2}. 

Conversely, suppose ggcl{x1}  ggcl{x2},   x1   x2 of X. Let x3   
X with x3  ggcl({x1}) but x3   ggcl({x2}). If x   ggcl({y}) then 

ggcl({x1})   ggcl({x2}). Hence x3   ggcl({x2}). This contradicts 

our assumption. Thus x1   ggcl({x2}) implies x1   (ggcl({x2}))c 

implies (ggcl({x2}))c is gg-open containing x1 and not x2. There-
fore X is gg-T0. 
 

Theorem 3.8 If g is bijective, strongly gg-open and X is gg-T0, 

then Y is gg-T0 space. 
 
Proof Take y2 and y1 of Y with y2   y1. By hypothesis y1= g(x1) 

and y2= g(x2) where x2 and x1 are explicit points of X. By hypoth-
esis, M  ggO(X) with x1   M and x2   M. Therefore g(x1)   g(M) 

and g(x2)   g(M). As X is strongly gg-open, g(M)   ggO(Y). 

Therefore g(M) is gg-open set in Y with y1   g(M) and y2   g(M). 

Thus Y is a gg-T0 space. 
 

Theorem 3.9 If g is gg-irresolute, injective, Y is gg-T0 then X is 

gg-T0. 
 
Proof. Take explicit points x2 and x1 of X. As g is injective implies 
g(x1)≠ g(x2). As Y is gg-T0, exists U   ggO(Y) such that g(x1)   U, 

g(x2)   U or exists a V  ggO(Y) such that g(x1)   V, g(x2)  V 

with g(x2)≠ g(x1). Sine g is gg-irresolute then g-1(U)   ggO(X)   
x2   g-1(U), x1   g-1(U) or g-1(V)  ggO(X)   x1   g-1(V), x2   g

-

1(V). Hence X is gg-T0. 
 

Theorem 3.10 Let X is gg-T1 iff  x2   X singleton {x2}  ggC(X). 

 
Proof Let X is gg-T1, x1   X. Then x2   X-{x1}   x1≠ x2  X. But 

X is gg-T1 space implies their exist G1, G2   ggO(X)   x1   G1, x2 

  G2   (X-{x1}). Also x2   G2   (X-{x1}) implies (X-

{x1}) ggO(X). Thus {x1} is gg-closed.  

Conversely, Let x1≠ x2  X then {x1} and {x2} are gg-closed sets 

and {x1}
c is gg-open. Clearly x1   {x1}

c and x2   {x1}
c. Similarly 

{x2}
c is gg-open, x2   {x2}

c and x1   {x2}
c. Hence X is gg-T1 

space. 
 

Theorem 3.11 The following results holds 

i) If g is gg-continuous, injective, Y is T1 space, imply X 
is gg-T1. 

ii) If g is gg-continuous, injective, Y is T2 space, imply X 
is gg-T2 space. 

iii) If g is gg-irresolute, injective, Y is gg-T2 space, imply X 
is gg-T2 space. 

 

Proof. i) Consider two points x1, x2 of X with x2  x1, then g(x1)= 
y1 and g(x2)= y2. Also, g(x1) ≠ g(x2). Since (Y,  ) is T1 then y1   

M, y2   M and y1   N, y2   N. Then x1   g-1(M), x1   g
-1(N) and x2 

  g-1 (N), x2   g
-1 (M). By the definition of gg-continuity, g-1(M) 

and g-1(N)   ggO(X). For x1, x2   X with x1 ≠ x2, x1   g-1(M), x1   
g-1(N) and x2   g-1(M), x2   g-1(N). Therefore (X, T1) is gg-T1 

space. 
Similarly we can prove ii) and iii) 

 

Theorem 3.12 The statements given below are equivalent. 

1) X is gg-T2 
2) If x1   X, then x2 ≠ x1,    W containing x1   x2   ggcl(W). 

   
Proof. (1)   (2) 

Take x1   X and x2   X with x1 ≠ x2,   disjoint sets W, V  ggO(X) 

  x1   W and x2   V. Then x1   W  Vc and Vc   ggC(X) and x2   
Vc. Thus x2   ggcl(W). 

  
(2)   (1) 

Let x1, x2   X with x1≠ x2. By (ii),   gg-open W containing x1   x2 

  ggcl(W) implies x2   (X-(ggcl(W))). (X-(ggcl(W)))   ggO(X) 

and x1   (X-(ggcl(W))). Also W  (X-ggcl(W))= . Thus X is gg-

T2. 

4. gg-Regular Space 

Definition 4.1 Let X is known as gg-regular if   F  ggC(X) and 

x  F,   disjoint open sets G and H   F  G, x  H. 

We have the following relationship between gg-regularity and 
regularity. 
 

Theorem 4.2 Every gg-regular space is regular.  

 
Proof. Given that X is gg-regular. Take F  ggC(X) and x   F. As 

X is gg-regular,   a pair of disjoint open sets U and V   F   U 

and x   V. Hence X is a regular. 

 

Remark 4.3 Every regular space is not a gg-regular space. 
 

Example 4.4 Let T1={φ, {k}, {m, l}, X} be topology on X={m, l, 
k}. Here (X, T1) is regular but not a gg-regular space. For the gg-

closed set {l} with m   {l}, no two disjoint open sets U, H exist   
{l}   U,  m   H. 

 

Theorem 4.5 Every regular with ggTc space is gg-regular. 

 
Proof. Given that X is regular, ggTc . Let F   ggC(X) and x   X   
x   F. Now X is ggTc space, F is closed, x   F. As X is regular,   
pair of disjoint open sets M and N   F  M and x   N. Therefore 

X is gg regular. 
 

Theorem 4.6 If X is gg-regular then it is g-regular space. 

 
Proof. Based on the fact, every g-closed belongs to ggC(X).  
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Theorem 4.7 If X is gg-regular, then it is w regular space. 

 
Proof. Based on fact, each w closed belongs to ggC(X). 
 

Theorem 4.8 The statements given below are equivalent. 

1) X is gg-regular 
2)   x  X and each gg-open nbhd U   an open nbhd N of X   
cl(N)   U. 

 
Proof. 
(1)   (2) 

Let U be gg-neighbourhood of x,   a G   ggO(X)   x   G   U. 

Now Gc   ggC(X) and x   Gc. From (1),   P, Q   Gc   P, x   Q, 

P∩ Q=φ. So Q   Mc. Now cl(Q)   cl(pc)= Gc and Gc   P. This 

implies (Pc   G   U. Therefore cl(Q)   U. 

(2)   (1) 

Let gg-closed F in X and x   F or x   Fc and X is gg-open and so 

Fc is a gg-nbhd of x. By hypothesis,   an open nbhd N   x   N, 

cl(N)   Fc. This implies F   {X-cl(N)} and N∩{(X-cl(N))} = φ. 

Thus X is gg-regular. 
 

Theorem 4.9 Let X is gg-regular iff for every G   ggC(X) and 

point p   (X-G) then x   U, G   N and cl(N) ∩ cl(U)= φ where N 

and U are open sets. 
 
Proof. Given that X is gg-regular. Let G   ggC(X) and x   G. 

Then p   M and G   N and M∩ N=φ where M and N are open 

sets. This implies M∩cl(N)=φ. Since (X, T1) is gg-regular, p   P 

and cl(N)  Q, P∩N=φ where P, Q are open. Also cl(P)∩ Q= φ. 

Let U =M∩P then p   U, G   N and cl(N) ∩ cl(U) = φ where N, 

U are open in X. 
Conversely, suppose   G   ggC(X) and p   (X-G), we have p   U, 

G   N and cl(N)∩cl(U)= φ where N and U are open sets. This 

implies p   U, G   N and U∩N= φ. Therefore (X, T1) is gg-

regular. 
 

Theorem 4.10 A subspace Y of gg-regular (X, T1) is gg-regular. 

 
Proof. Obvious. 
 

Theorem 4.11 Let g is bijective, gg-irresolute and open map 

from gg-regular X in to Y, then Y is gg-regular. 

 
Proof Take y   Y and F   ggC(X) with y   F. As g is gg-

irresolute then g-1(F)   ggC(X). Let y=g(x) then g-1(y)=x and x   
g-1(F). Again X is gg-regular,   open sets P and Q   x   P and g-

1(F)   Q, P∩ Q=φ. Given g is open and bijective implies y   g(P), 
F   g(Q) and g(Q∩P)=g(φ )= φ. Thus Y is gg-regular. 

 

Theorem 4.12 Let g be bijective, gg-closed map from X into gg-
regular Y. If X is ggTc , then it is gg-regular 

 
Proof. Consider x   X, F   ggC(X) with x   F. Then F is closed. 

Also g is gg-closed implies g(F)   ggC(Y) with g(x)   g(F) in Y. 

As Y is gg-regular,   P, Q   p   R and g(x)   P and g(F)   Q. 

Therefore x   g-1(P) and F   g-1(Q). Hence X is gg-regular space. 

5. gg-Normal Space 

Definition 5.1 Let X is known as gg-normal if for each pair D, C 

  ggC(X),   disjoint open sets P, Q in X   C   P and D   Q. 

 

Theorem 5.2 Every gg-normal is normal  

 
Proof. Given that X is a gg-normal. Consider closed D, C which 
are disjoint in X. Then D, C   ggC(X). Since X is gg-normal,   a 
pair G, H   C   G, D   H. Hence X is normal. 
 

Example 5.3 Let T1={φ, {l}, {k}, {l, k}, {k, m}, X} be a topol-

ogy on X={m, k, l}. Here X is normal and not gg-normal. For the 
disjoint gg-closed sets {m} and {k, l} does not exist disjoint open 
sets P and Q. 
 

Theorem 5.4 If Y is normal, ggTc space, then Y is gg-normal. 

 
Proof. Given Y is normal. Let a pair of disjoint sets C, D   
ggC(Y). Since ggTc space, then C and D are closed. As Y is nor-
mal,   a pair of disjoint open sets P, Q in Y  , C   P and D   Q. 
Hence Y is gg-normal. 

 

Theorem 5.5 Every gg-normal is g-normal. 

 
Proof. Given X is gg-normal. Let pair of disjoint sets C, D   
ggC(Y). Then   a pair of disjoint P, Q   C   P and D   Q. 
Hence X is g-normal. 
 

Remark 5.6 Every g-normal is not a gg-normal 

 

Example 5.7 Let T1={φ, {l}, {k}, {k, l}, {k, m}, X} be a topol-

ogy on X={m, l, k}. Here (X, T1) is g normal and not a gg-normal 
space. For the disjoint gg-closed sets {m} and {k, l} does not exist 
P, Q. 
 

Theorem 5.8 Every gg-normal is w-normal. 

 
Proof. Similar as Theorem 5.5  
 

Remark 5.9 In general, converse is untrue 

 

Example 5.10 Let T1={φ, {l}, {k}, {k, l}, {m, k}, X} be a to-

pology on X={m, l, k}. Here (X, T1) is w normal and not a gg-
normal space. For the disjoint gg-closed sets {m} and {k, l} does 
not exist P, Q. 
 

Theorem 5.11 If Y is gg-closed subspace of gg-normal X, then 

Y is  is gg-normal. 
 
Proof. Let X be gg-normal and Y is gg-closed subspace. Let a pair 

of disjoint sets C, D   ggC(Y). Then   G, H   X   C   G and D 

  H. Then G∩Y and H∩Y are open in Y. Also we have C   G 
and D   H implies C∩Y   Y∩G and Y∩D   Y∩H and (G∩Y) ∩ 
( Y∩H)= Y∩( G∩H)=φ. Hence Y is gg-normal. 
 

Theorem 5.12 Statements given below are equivalent in (X, T1). 

1) X is gg-normal 
2) For each C   ggC(X) and each M   ggO(X) with C   M then 
C   N   cl(N)   M where N is an open set. 
3) For any disjoint sets C, D   ggC(X),   an open set N   C   N 
and cl(N)∩D= φ 

4) For each disjoint sets C, D   ggC(X),   open sets M, N   C   
M, D   N, cl(M)∩cl(N)= φ. 
 
Proof. (1) (2) 

Take C   ggC(X), M   ggO(X)   C   M. This implies C and 
(X-M) are two disjoint sets of ggC(X). By the definition of gg-
normal, C   N and (X-M)   O where N and O are disjoint open 
sets. Thuss N   (X-O) and O∩N=φ. This implies N   (X-O) and 
cl(N)   (X-O)  M and so cl(N)   M. Therefore C   N   cl(N)  
M. 

(2) (3) 

Let a pair of disjoint sets D, C   ggC(X), C   (X-D) where C and 
(X-D) are gg-closed and gg-open sets in X respectively. By (2) 
there exist an open set N with C   N   cl(N)   (X-D). But cl(N) 
  (X-D) implies D ∩ cl(N)=φ. Therefore C   N and cl(N)   D=φ. 
(3) (4) 
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Consider two disjoint gg-closed sets C and D in X. Then from (3), 
  an open set M   C   M and cl(M)∩D=φ. But cl(M) is closed 
and hence gg-closed set in X. Now cl(M), D belongs to ggC(X). 
By (3), we have D   N and cl(M)∩cl(N)= φ where N is open set 
exist in X. 
(4) (1) 

Consider two disjoint gg-closed C, D in X. By hypothesis   open 
sets N, M with C   M, D   N, cl(M)∩cl(N)= φ. This implies that 
C   M, D   N. Therefore X is gg-normal. 

 

Theorem 5.13 A map g is bijective open, gg-irresolute from gg-

normal X on to Y, then Y is gg-normal. 
 
Proof. Take A, B in ggC(X), which are disjoint. As g is gg-
irresolute then g-1(A) and g-1(B) are in ggC(X). As X is gg-normal 
g-1(A)   M and g-1(B)   N where M and N are open sets exist in 
X. Further, as g is bijective and open, g(M) and g(N) are open 
with A   g(M), B   g(N). Therefore Y is gg-normal. 
 

Theorem 5.14 The statements given below are equivalent in X 
(1) X is g-normal 

(2) For each disjoint closed sets C, D,   disjoint sets M, N 
  ggO(X)   C   M, D   N. 
 
Proof. (i)   (ii) 

Suppose X is g-normal. Let disjoint closed C, D of X. As (X, T1) 
is g-normal then   disjoint g-open sets M, N   C   M, D   N.. 
Then M, N   ggO(X) with C   M, D   N and M∩N= φ. 
(ii)   (i) 

Consider two disjoint gg-closed sets C, D   ggC(X). By hypothe-
sis C   M, D   N and N∩M= φ where N, M are disjoint sets in 
ggO(X). We know that C   gint(M), D   gint(N) and gint(M)∩ 

gint(N) = φ. Therefore (X, T1) is g-normal. 

6. Conclusion  

A new class of separation axioms called gg-separation axioms are 
introduced and studied in (X, T). The relations between gg-
separation axioms with existing separation axioms are discussed. 

The useful results on gg-regular and gg-normal spaces are also 
presented. 
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