International Journal of Engineering & Technology, 7 (4.10) (2018) 766-769

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

On gg-Separation Axioms in Topological Spaces

Govardhana Reddy H G^{1*}, Basavaraj M. Ittanagi²

¹Department of Mathematics, Alliance College of Engineering and Design, Alliance University, Bangalore-562106, India ²Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-572103, India *Corresponding author E-mail: govardhana.reddy@alliance.edu.in

Abstract

Study and investigate a class of separation axiom namely $gg-T_k$ space (k=0, 1, 2), gg-regular and gg-normal space. Meanwhile, some of their properties are obtained.

Keywords: gg- T_k spaces (K=0, 1, 2), gg-regular space and gg-normal space.

1. Introduction

From the literature survey on separation axiom, we observed that there has been significant work on T_0 space, T_1 space, T_2 space, regular space and normal space. In 1980, R. C. Jain [5] introduced a new class of separation axioms namely δT_i space (i=0, 1, 2). Since then different types of separation axioms are investigated. Using g-closed sets of Levine [6], T. Noiri and Papa [7] and Sheik John [8] contributed their work in the field of separation axiom. Recently, Basavaraj M. Ittanagi [1], studied basic properties of gg-closed sets, gg-continuous functions and gg-closed maps in topological spaces. In present paper, gg- T_0 , gg- T_1 and gg- T_2 spaces are studied. The relation with existing separation axioms is discussed.

2. Prerequisites

In study, (X, T_1) , (Y, T_2) (or X, Y) denote topological spaces. Let $g:X \rightarrow Y$ (or simply g) always denote map. For $B \subseteq X$, int(B), cl(B), X-B or B^c represent interior, closure and complement of B respectively. The basic definitions required for this research work are listed below.

Definition 2.1 Let $B \subseteq X$. Then B is said to be

i) g-closed [5] if $cl(B) \subseteq W$ whenever $B \subseteq W$ and W is open. ii) gg-closed [1] if $gcl(B) \subseteq W$ whenever $B \subseteq W$ and W is regular semiopen. Also, ggC(X) (resp. ggO(X)) always denote family of gg-closed (resp. gg-open) sets in X.

iii) δT_0 space [4] if for every explicit points p, q of X, $q \notin M$, $p \in M$, or $p \notin M$, $q \in M$, where M is a δ -open set of X.

iv) δT_1 -space [4] if for every explicit points p, q of X, q \notin M, p \in M and p \notin N, q \in N where M and N are two δ -open sets of X. v) δT_2 -space [4] if for every explicit points p, q of X, q \notin H₁, p \in H₁ and p \notin H₂, q \in H₂ where H₁, H₂ are two δ -open sets with H₁ \neq H₂.

Definition 2.2 A map g is known as gg-continuous [2](gg-irresolute[2]) if $f^1(F) \in ggC(X)$, \forall closed(gg-closed)set F in Y.

3. $gg-T_0$, $gg-T_1$ and $gg-T_2$ Spaces

Definition 3.1 Let X be

i) gg- T_0 if for every explicit points p, q of X, $q \notin M$, $p \in M$ or $p \notin M$, $q \in M$ where M is an open set of X.

ii) gg-T₁ space if for every explicit points p, q of X, $q \notin M$, $p \in M$ and $p \notin N$, $q \in N$ where N, $M \in ggO(X)$.

iii) gg- T_2 space (gg-Housdorff space) if for every explicit points p, q of X, $q \notin H_1$, $p \in H_1$ and $p \notin H_2$, $q \in H_2$ where H_2 , $H_1 \in ggO(X) \ni H_2 \neq H_1$.

Theorem 3.2

- i) If X is T_0 , then X is $gg-T_0$
- ii) If X is T_1 , then X is $gg-T_0$ and $gg-T_1$
- iii) If X is T₂, then X is gg-T₂
- iv) If X is gg-T₁, then X is gg-T₀
- v) If X is $gg-T_2$, then X is $gg-T_1$

Proof. i) Given, X is T_0 space. For distinct points of every pair p, q of $X \exists$ open set U where $q \notin U$, $p \in U$, or $p \notin U$, $q \in U$, Then $U \in ggO(X)$ with $q \notin U$, $p \in U$ or $p \notin U$, $q \in U$. Therefore X is $gg-T_0$ space.

Similarly we can prove ii), iii), iv) and v).

Example 3.3 Let $X=\{n, m, l, k\}$ and $T_1=\{\varphi, \{l, k\}, \{n, m\}, X\}$ be a topology on X. Then

ggC(X)=P(X)=ggO(X).

Here (X, T₁) is a

- (i) $gg \cdot T_0$ space but not a T_0 space. For explicit points k, l of X, no open set M exist $\ni k \in M$, $l \notin M$ or $l \in M$, $k \notin M$.
- (ii) gg- T_0 space but not a T_1 space. For explicit points k, l of X, no two open sets M and N exist $\ni k \in M$, $l \notin M$ and $l \in N$, $k \notin N$.
- (iii) gg-T₁ space but not a T₁ space. For explicit points k, 1 of X, no two open sets M and N exist $\ni k \in M$, $l \notin M$ and $l \in N$, $k \notin N$.

(iv) gg-T₂ space but not a T₂ space. For explicit points k, l of X, no two distinct open sets H_1 and H_2 exist $\ni k \in H_1$, $l \notin H_1$ and $l \in H_2$, $k \notin H_2$.

Theorem 3.4

- 1) If X is δT_0 , then it is gg- T_0
- 2) If X is δT_1 , then it is gg- T_1
- 3) If X is δT_2 , then it is gg- T_2 .

Proof. Based on fact, every δ - open set is in ggO(X).

Remark 3.5 Converse of this theorem is untrue.

Example 3.6 Let $T_1 = \{ \varphi, X, \{1\}, \{m, n\} \}$ be a topology on $X = \{n, m, 1\}$. Then

ggO(X)=P(X)δ-O(X)= { φ , X, {1}, {m, n}}

Here (X, T_1) is a

- (1) gg- T_0 but not a δT_0 space. For explicit points m, n of X, no δ open set exist with $n \notin M, m \in M$ or $m \notin M, n \in M$
- (2) gg- T_1 space but not a δT_1 space. For explicit points m, n of X, no two δ open sets M and N exist with $n \notin M$, $m \in M$ and $m \notin N$, $n \in N$.
- (3) gg- T_2 space but not a δT_2 space. For explicit points m, n of X, no two distinct δ -open sets H_1 and H_2 exist with $m \in H_1$, $n \notin H_1$ and $n \in H_2$, $m \notin H_2$.

Theorem 3.7 Let X is gg-T₀ iff $ggcl\{x_1\} \neq ggcl\{x_2\}$, $\forall x_1 \neq x_2$ of X.

Proof. Given that X is gg-T₀. Let $x_2, x_1 \in X$ and $x_2 \neq x_1$, then $\exists V \in ggO(X), x_2 \notin V$ and $x_1 \in V$ implies $x_1 \notin V^c$, $x_2 \in V^c$. But $ggcl\{x_2\}$ is the smallest gg-closed containing x_2 . Therefore $ggcl(\{y\}) \subseteq V^c$. Hence $x \notin ggcl\{x_2\}$. Thus $ggcl\{x_1\} \neq ggcl\{x_2\}$.

Conversely, suppose $ggcl\{x_1\} \neq ggcl\{x_2\}$, $\forall x_1 \neq x_2$ of X. Let $x_3 \in X$ with $x_3 \in ggcl(\{x_1\})$ but $x_3 \notin ggcl(\{x_2\})$. If $x \in ggcl(\{y\})$ then $ggcl(\{x_1\}) \subseteq ggcl(\{x_2\})$. Hence $x_3 \in ggcl(\{x_2\})$. This contradicts our assumption. Thus $x_1 \notin ggcl(\{x_2\})$ implies $x_1 \in (ggcl(\{x_2\}))^c$ implies $(ggcl(\{x_2\}))^c$ is gg-open containing x_1 and not x_2 . Therefore X is $gg-T_0$.

Theorem 3.8 If g is bijective, strongly gg-open and X is $gg-T_0$, then Y is $gg-T_0$ space.

Proof Take y_2 and y_1 of Y with $y_2 \neq y_1$. By hypothesis $y_1 = g(x_1)$ and $y_2 = g(x_2)$ where x_2 and x_1 are explicit points of X. By hypothesis, $M \in ggO(X)$ with $x_1 \in M$ and $x_2 \notin M$. Therefore $g(x_1) \in g(M)$ and $g(x_2) \notin g(M)$. As X is strongly gg-open, $g(M) \in ggO(Y)$. Therefore g(M) is gg-open set in Y with $y_1 \in g(M)$ and $y_2 \notin g(M)$. Thus Y is a gg- T_0 space.

Theorem 3.9 If g is gg-irresolute, injective, Y is gg- T_0 then X is gg- T_0 .

Proof. Take explicit points x_2 and x_1 of X. As g is injective implies $g(x_1) \neq g(x_2)$. As Y is $gg-T_0$, exists $U \in ggO(Y)$ such that $g(x_1) \notin U$, $g(x_2) \notin U$ or exists a $V \in ggO(Y)$ such that $g(x_1) \notin V$, $g(x_2) \in V$ with $g(x_2) \neq g(x_1)$. Sine g is gg-irresolute then $g^{-1}(U) \in ggO(X) \ni x_2 \notin g^{-1}(U)$, $x_1 \in g^{-1}(U)$ or $g^{-1}(V) \in ggO(X) \ni x_1 \notin g^{-1}(V)$, $x_2 \in g^{-1}(V)$. Hence X is gg- T_0 .

Theorem 3.10 Let X is gg-T₁ iff $x_2 \in X$ singleton $\{x_2\} \in ggC(X)$.

Proof Let X is $gg-T_1$, $x_1 \in X$. Then $x_2 \in X-\{x_1\} \Rightarrow x_1 \neq x_2 \in X$. But X is $gg-T_1$ space implies their exist G_1 , $G_2 \in ggO(X) \ni x_1 \notin G_1$, $x_2 \in G_2 \subseteq (X-\{x_1\})$. Also $x_2 \in G_2 \subseteq (X-\{x_1\})$ implies $(X-\{x_1\}) \in ggO(X)$. Thus $\{x_1\}$ is gg-closed.

Conversely, Let $x_1 \neq x_2 \in X$ then $\{x_1\}$ and $\{x_2\}$ are gg-closed sets and $\{x_1\}^c$ is gg-open. Clearly $x_1 \notin \{x_1\}^c$ and $x_2 \in \{x_1\}^c$. Similarly $\{x_2\}^c$ is gg-open, $x_2 \notin \{x_2\}^c$ and $x_1 \in \{x_2\}^c$. Hence X is gg-T₁ space.

Theorem 3.11 The following results holds

- If g is gg-continuous, injective, Y is T₁ space, imply X is gg-T₁.
- ii) If g is gg-continuous, injective, Y is T₂ space, imply X is gg-T₂ space.
- iii) If g is gg-irresolute, injective, Y is gg-T₂ space, imply X is gg-T₂ space.

Proof. i) Consider two points x_1 , x_2 of X with $x_2 \neq x_1$, then $g(x_1) = y_1$ and $g(x_2) = y_2$. Also, $g(x_1) \neq g(x_2)$. Since (Y, σ) is T_1 then $y_1 \in M$, $y_2 \notin M$ and $y_1 \notin N$, $y_2 \in N$. Then $x_1 \in g^{-1}(M)$, $x_1 \notin g^{-1}(N)$ and $x_2 \in g^{-1}(N)$, $x_2 \notin g^{-1}(M)$. By the definition of gg-continuity, $g^{-1}(M)$ and $g^{-1}(N) \in ggO(X)$. For $x_1, x_2 \in X$ with $x_1 \neq x_2, x_1 \in g^{-1}(M), x_1 \notin g^{-1}(N)$ and $x_2 \notin g^{-1}(M)$, $x_2 \in g^{-1}(N)$. Therefore (X, T_1) is $gg-T_1$

Similarly we can prove ii) and iii)

Theorem 3.12 The statements given below are equivalent.

1) X is gg-T₂

2) If $x_1 \in X$, then $x_2 \neq x_1$, $\exists W$ containing $x_1 \ni x_2 \notin ggcl(W)$.

Proof. $(1) \Longrightarrow (2)$

Take $x_1 \in X$ and $x_2 \in X$ with $x_1 \neq x_2$, \exists disjoint sets W, $V \in ggO(X)$ $\ni x_1 \in W$ and $x_2 \in V$. Then $x_1 \in W \subseteq V^c$ and $V^c \in ggC(X)$ and $x_2 \notin V^c$. Thus $x_2 \notin ggcl(W)$.

 $(2) \Longrightarrow (1)$

Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. By (ii), \exists gg-open W containing $x_1 \ni x_2 \notin ggcl(W)$ implies $x_2 \in (X-(ggcl(W)))$. $(X-(ggcl(W))) \in ggO(X)$ and $x_1 \notin (X-(ggcl(W)))$. Also $W \cap (X-ggcl(W)) = \varphi$. Thus X is gg-T₂.

4. gg-Regular Space

Definition 4.1 Let X is known as gg-regular if \forall F \in ggC(X) and $x\notin$ F, \exists disjoint open sets G and H \ni F \subseteq G, $x\in$ H.

We have the following relationship between gg-regularity and regularity.

Theorem 4.2 Every gg-regular space is regular.

Proof. Given that X is gg-regular. Take $F \in ggC(X)$ and $x \notin F$. As X is gg-regular, \exists a pair of disjoint open sets U and $V \ni F \subseteq U$ and $x \in V$. Hence X is a regular.

Remark 4.3 Every regular space is not a gg-regular space.

Example 4.4 Let $T_1 = \{\phi, \{k\}, \{m, 1\}, X\}$ be topology on $X = \{m, 1, k\}$. Here (X, T_1) is regular but not a gg-regular space. For the gg-closed set $\{1\}$ with $m \notin \{1\}$, no two disjoint open sets U, H exist $\ni \{1\} \subseteq U, m \in H$.

Theorem 4.5 Every regular with ggTc space is gg-regular.

Proof. Given that X is regular, ggTc . Let $F \in ggC(X)$ and $x \in X \ni x \notin F$. Now X is ggTc space, F is closed, $x \notin F$. As X is regular, \exists pair of disjoint open sets M and $N \ni F \subseteq M$ and $x \in N$. Therefore X is gg regular.

Theorem 4.6 If X is gg-regular then it is g-regular space.

Proof. Based on the fact, every g-closed belongs to ggC(X).

Theorem 4.7 If X is gg-regular, then it is w regular space.

Proof. Based on fact, each w closed belongs to ggC(X).

Theorem 4.8 The statements given below are equivalent.

1) X is gg-regular

2) \forall x \in X and each gg-open nbhd U \exists an open nbhd N of X \ni cl(N) \subseteq U.

Proof.

 $(1) \Longrightarrow (2)$

Let U be gg-neighbourhood of x, \exists a $G \in ggO(X) \ni x \in G \subseteq U$. Now $G^c \in ggC(X)$ and $x \notin G^c$. From (1), \exists P, $Q \ni G^c \subseteq P$, $x \in Q$, $P \cap Q = \varphi$. So $Q \subseteq M^c$. Now $cl(Q) \subseteq cl(p^c) = G^c$ and $G^c \subseteq P$. This implies $(P^c \subseteq G \subseteq U)$. Therefore $cl(Q) \subseteq U$. (2) \Longrightarrow (1)

Let gg-closed F in X and $x \notin F$ or $x \in F^c$ and X is gg-open and so F^c is a gg-nbhd of x. By hypothesis, \exists an open nbhd $N \ni x \in N$, $cl(N) \subseteq F^c$. This implies $F \subseteq \{X\text{-}cl(N)\}$ and $N \cap \{(X\text{-}cl(N))\} = \phi$. Thus X is gg-regular.

Theorem 4.9 Let X is gg-regular iff for every $G \in ggC(X)$ and point $p \in (X-G)$ then $x \in U$, $G \subseteq N$ and $cl(N) \cap cl(U) = \phi$ where N and U are open sets.

Proof. Given that X is gg-regular. Let $G \in ggC(X)$ and $x \notin G$. Then $p \in M$ and $G \subseteq N$ and $M \cap N = \phi$ where M and M are open sets. This implies $M \cap cl(N) = \phi$. Since (X, T_1) is gg-regular, $p \in P$ and $cl(N) \subseteq Q$, $P \cap N = \phi$ where P, Q are open. Also $cl(P) \cap Q = \phi$. Let $U = M \cap P$ then $p \in U$, $G \subseteq N$ and $cl(N) \cap cl(U) = \phi$ where N, U are open in X.

Conversely, suppose \forall $G \in ggC(X)$ and $p \in (X-G)$, we have $p \in U$, $G \subseteq N$ and $cl(N) \cap cl(U) = \phi$ where N and U are open sets. This implies $p \in U$, $G \subseteq N$ and $u \cap N = \phi$. Therefore (X, T_1) is ggregular.

Theorem 4.10 A subspace Y of gg-regular (X, T_1) is gg-regular.

Proof. Obvious.

Theorem 4.11 Let g is bijective, gg-irresolute and open map from gg-regular X in to Y, then Y is gg-regular.

Proof Take $y \in Y$ and $F \in ggC(X)$ with $y \notin F$. As g is ggirresolute then $g^{-1}(F) \in ggC(X)$. Let y=g(x) then $g^{-1}(y)=x$ and $x \notin g^{-1}(F)$. Again X is gg-regular, \exists open sets P and $Q \ni x \in P$ and $g^{-1}(F) \subseteq Q$, $P \cap Q = \varphi$. Given g is open and bijective implies $y \in g(P)$, $F \subseteq g(Q)$ and $g(Q \cap P) = g(\varphi) = \varphi$. Thus Y is gg-regular.

Theorem 4.12 Let g be bijective, gg-closed map from X into ggregular Y. If X is ggTc, then it is gg-regular

Proof. Consider $x \in X$, $F \in ggC(X)$ with $x \notin F$. Then F is closed. Also g is gg-closed implies $g(F) \in ggC(Y)$ with $g(x) \notin g(F)$ in Y. As Y is gg-regular, $\exists \ P, \ Q \ni p \in R$ and $g(x) \in P$ and $g(F) \subseteq Q$. Therefore $x \in g^{-1}(P)$ and $F \subseteq g^{-1}(Q)$. Hence X is gg-regular space.

5. gg-Normal Space

Definition 5.1 Let X is known as gg-normal if for each pair D, C \in ggC(X), \exists disjoint open sets P, Q in X \ni C \subseteq P and D \subseteq Q.

Theorem 5.2 Every gg-normal is normal

Proof. Given that X is a gg-normal. Consider closed D, C which are disjoint in X. Then D, $C \in ggC(X)$. Since X is gg-normal, \exists a pair G, $H \ni C \subseteq G$, $D \subseteq H$. Hence X is normal.

Example 5.3 Let T_1 ={ ϕ , {1}, {k}, {1, k}, {k, m}, X} be a topology on X={m, k, 1}. Here X is normal and not gg-normal. For the disjoint gg-closed sets {m} and {k, 1} does not exist disjoint open sets P and Q.

Theorem 5.4 If Y is normal, ggTc space, then Y is gg-normal.

Proof. Given Y is normal. Let a pair of disjoint sets C, D \in ggC(Y). Since ggTc space, then C and D are closed. As Y is normal, \exists a pair of disjoint open sets P, Q in Y \ni , C \subseteq P and D \subseteq Q. Hence Y is gg-normal.

Theorem 5.5 Every gg-normal is g-normal.

Proof. Given X is gg-normal. Let pair of disjoint sets C, D \in ggC(Y). Then \exists a pair of disjoint P, Q \ni C \subseteq P and D \subseteq Q. Hence X is g-normal.

Remark 5.6 Every g-normal is not a gg-normal

Example 5.7 Let $T_1 = \{\phi, \{l\}, \{k\}, \{k, l\}, \{k, m\}, X\}$ be a topology on $X = \{m, l, k\}$. Here (X, T_1) is g normal and not a gg-normal space. For the disjoint gg-closed sets $\{m\}$ and $\{k, l\}$ does not exist P, O.

Theorem 5.8 Every gg-normal is w-normal.

Proof. Similar as Theorem 5.5

Remark 5.9 In general, converse is untrue

Example 5.10 Let $T_1 = \{\phi, \{l\}, \{k\}, \{k, l\}, \{m, k\}, X\}$ be a topology on $X = \{m, l, k\}$. Here (X, T_1) is w normal and not a ggnormal space. For the disjoint gg-closed sets $\{m\}$ and $\{k, l\}$ does not exist P, Q.

Theorem 5.11 If Y is gg-closed subspace of gg-normal X, then Y is is gg-normal.

Proof. Let X be gg-normal and Y is gg-closed subspace. Let a pair of disjoint sets C, D \in ggC(Y). Then \exists G, H \in X \ni C \subseteq G and D \subseteq H. Then $G \cap Y$ and $H \cap Y$ are open in Y. Also we have $C \subseteq G$ and D \subseteq H implies $C \cap Y \subseteq Y \cap G$ and $Y \cap D \subseteq Y \cap H$ and $(G \cap Y) \cap (Y \cap H) = Y \cap (G \cap H) = \phi$. Hence Y is gg-normal.

Theorem 5.12 Statements given below are equivalent in (X, T_1) . 1) X is gg-normal

- 2) For each $C \in ggC(X)$ and each $M \in ggO(X)$ with $C \subseteq M$ then $C \subseteq N \subseteq cl(N) \subseteq M$ where N is an open set.
- 3) For any disjoint sets $C, D \in ggC(X)$, \exists an open set $N \ni C \subseteq N$ and $cl(N) \cap D = \varphi$
- 4) For each disjoint sets $C, D \in ggC(X)$, \exists open sets $M, N \ni C \subseteq M, D \subseteq N, cl(M) \cap cl(N) = \varphi$.

Proof. $(1) \Longrightarrow (2)$

Take $C \in ggC(X)$, $M \in ggO(X) \ni C \subseteq M$. This implies C and (X-M) are two disjoint sets of ggC(X). By the definition of gg-normal, $C \subseteq N$ and $(X-M) \subseteq O$ where N and O are disjoint open sets. Thuss $N \subseteq (X-O)$ and $O \cap N = \emptyset$. This implies $N \subseteq (X-O)$ and $cl(N) \subseteq (X-O) \subseteq M$ and so $cl(N) \subseteq M$. Therefore $C \subseteq N \subseteq cl(N) \subseteq M$.

 $(2)\Longrightarrow(3)$

Let a pair of disjoint sets D, C \in ggC(X), C \subseteq (X-D) where C and (X-D) are gg-closed and gg-open sets in X respectively. By (2) there exist an open set N with C \subseteq N \subseteq cl(N) \subseteq (X-D). But cl(N) \subseteq (X-D) implies D \cap cl(N)= φ . Therefore C \subseteq N and cl(N) \subseteq D= φ . (3) \Longrightarrow (4)

Consider two disjoint gg-closed sets C and D in X. Then from (3), \exists an open set $M \ni C \subseteq M$ and $cl(M) \cap D = \varphi$. But cl(M) is closed and hence gg-closed set in X. Now cl(M), D belongs to ggC(X). By (3), we have $D \subseteq N$ and $cl(M) \cap cl(N) = \varphi$ where N is open set exist in X.

 $(4)\Longrightarrow(1)$

Consider two disjoint gg-closed C, D in X. By hypothesis \exists open sets N, M with $C \subseteq M$, $D \subseteq N$, $cl(M) \cap cl(N) = \phi$. This implies that $C \subseteq M$, $D \subseteq N$. Therefore X is gg-normal.

Theorem 5.13 A map g is bijective open, gg-irresolute from ggnormal X on to Y, then Y is ggnormal.

Proof. Take A, B in ggC(X), which are disjoint. As g is ggirresolute then $g^{-1}(A)$ and $g^{-1}(B)$ are in ggC(X). As X is gg-normal $g^{-1}(A) \subseteq M$ and $g^{-1}(B) \subseteq N$ where M and N are open sets exist in X. Further, as g is bijective and open, g(M) and g(N) are open with $A \subseteq g(M)$, $B \subseteq g(N)$. Therefore Y is gg-normal.

Theorem 5.14 The statements given below are equivalent in X

- (1) X is g-normal
- (2) For each disjoint closed sets C, D, \exists disjoint sets M, N $\in ggO(X) \ni C \subseteq M$, $D \subseteq N$.

Proof. (i) \Longrightarrow (ii)

Suppose X is g-normal. Let disjoint closed C, D of X. As (X, T_1) is g-normal then \exists disjoint g-open sets M, $N \ni C \subseteq M$, $D \subseteq N$.. Then M, $N \in ggO(X)$ with $C \subseteq M$, $D \subseteq N$ and $M \cap N = \phi$. (ii) \Longrightarrow (i)

Consider two disjoint gg-closed sets $C, D \in ggC(X)$. By hypothesis $C \subseteq M$, $D \subseteq N$ and $N \cap M = \varphi$ where N, M are disjoint sets in ggO(X). We know that $C \subseteq gint(M)$, $D \subseteq gint(N)$ and $gint(M) \cap gint(N) = \varphi$. Therefore (X, T_1) is g-normal.

6. Conclusion

A new class of separation axioms called gg-separation axioms are introduced and studied in (X, T). The relations between gg-separation axioms with existing separation axioms are discussed. The useful results on gg-regular and gg-normal spaces are also presented.

References

- Basavaraj M Ittanagi and Govardhana Reddy H G, On gg-Closed Sets in Topological Spaces, International Journal of Mathematical Archive- 8(8), (2017), 126-133.
- [2] Basavaraj M Ittanagi and Govardhana Reddy H G, On gg-Continuous and gg-Irresolute Maps in Topological Spaces, Journal of Global Research in Mathematical Archive-4(11) (2017), 42-52.
- [3] Basavaraj M Ittanagi and Govardhana Reddy H G, On gg-Closed and gg-Open Maps in Topological Spaces, On national conference of Analysis and its Applications, 2018, Karnatak University Dharwad, Karnataka, India (presented paper).
- [4] R. C. Jain, The role of regularly open sets in general topology spaces, Ph.D. Thesis, Meerut Univ. Inst. Advance Stud. Meerut, India 1980.
- [5] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89-96.
- [6] T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci. Kochi Univ. Math. 20 (1999) 67-74.
- [7] M. Sheik John, A study on generalization of closed sets on continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (2002).