Original Article

Generalization of Homeomorphism in Topological Space

Govardhana Reddy H G¹, Basavaraj M. Ittanagi², Veeresh S. Sajjanar³, Raghavendra K⁴ and Nazir Ahamad⁵

¹Department of Mathematics, Alliance University, Bangalore, Karnataka, India ²Department of Mathematics, Siddaganga Institute of Technology, Tumkur, Karnataka, India. ³Department of Mathematics, Presidency University, Bangalore, Karnataka, India. ⁴Department of Mathematics, ACS College of Engineering, Bangalore, Karnataka, India. ³Department of Mathematics, Presidency University, Bangalore, Karnataka, India.

Received: 19 April 2022 Revised: 02 June 2022 Accepted: 09 June 2022 Published: 25 June 2022

Abstract - A new-class of homeomorphisms called gg- homeomorphism and gg*-homeomorphism are introduced in topological spaces. Interesting properties on these homeomorphisms are investigated. Also, their relation with few homeomorphisms in topological space is presented.

Keywords - Homeomorphism, gg-homeomorphism and gg*-homeomorphism.

1. Introduction

Many researchers and mathematicians contributed their work in the field of general topology, particularly homeomorphisms in topological spaces, as it plays a very important role in topology. in 1991, Maki et all [11], introduced and studied generalized homeomorphism in topological space. Later, N. Nagaveni [2], investigated rwg homeomorphism in topological space. in 2002, M Sheik John [16] investigated ω homeomorphism in topological space. Recently, different types of homeomorphisms are introduced by the authors Basavaraj M. Ittanagi [1-6], R.S. Wali [24-26], Vivekananda Dembre [20-23] and T.Shyla Isac Mary. the aim of this paper is to introduce and study gg-homeomorphism, gg*-homeomorphism and their relationship with few homeomorphisms in topological space. Also, interesting properties on these homeomorphisms are investigated.

2. Prerequisites

the following is the list of definitions and notations used in present paper. Here, M or (M, τ) and N or (N, σ) denote topological spaces. for $B \subseteq (M, \tau)$, cl(B), int(B) and M - B or B^c stands for closure, interior and complement of B respectively. Also, $C - (M, \tau)$ denotes collection of closed sets.

2.1 Definitions Let $B \subseteq (M, \tau)$. Then **B** is said to be

- a) Generalized closed set (g-closed) [10] if $cl(B) \subseteq S$, whenever $B \subseteq S$ and S is open in (M, τ) .
- b) $r^{\wedge}g$ -closed set [15] if $gcl(B) \subseteq S$, whenever $B \subseteq S$ and S is regular open in (M, τ) .
- c) β wg**-closed set [18] if β wg * cl(B) \subseteq S whenever $B \subseteq S$ and S is regular open in (M, τ) .
- d) gg-closed set [7] if $gcl(B) \subseteq S$, whenever $B \subseteq S$ and S is regular semi open in (M, τ) .

the complement of closed sets listed above are their open sets respectively and vice versa.

2.2 *Definitions* the bijective map $h: (M, \tau) \to (N, \sigma)$ is called

- a) homeomorphism if h is both open and continuous
- b) generalized homeomorphism (g-homeomorphism) if h is both g-continuous and g-open.
- c) ω -homeomorphism [16] if h is both ω -continuous and ω -open.
- d) swg*-homeomorphism [12] if it is both swg*-continuous and swg*-open.
- e) rwg-homeomorphism [13] if it is both rwg-continuous and rwg-open.
- f) r^g-homeomorphism if it is both r^g-continuous and r^g-open.
- g) βwg **-homeomorphism if h is both βwg **-continuous and βwg **-open.
- h) gc-homeomorphism if h and h^{-1} are gc-irresolute
- i) ω^* -homeomorphism [16] if h and h^{-1} are ω -irresolute.

3. Results and Discussion

- 3.1 Definition the bijective map $h: (M, \tau) \to (N, \sigma)$ is known as gg-homeomorphism if h is both gg-continuous and gg-open
- **3.2** *Example* Let $M = N = \{1, 2, 3\}, \tau = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, M\}$ and $\sigma = \{\varphi, \{1\}, \{2, 3\}, N\}$. Here, the bijective map h, defined by h(1) = 2, h(2) = 3, h(3) = 1 is gg-homeomorphism.
- **3.3Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is homeomorphism is always a gg-homeomorphism and converse is untrue.

Proof. Consider a homeomorphism, $h:(M,\tau)\to (N,\sigma)$. Then, h is bijective, continuous, and open map. Since every continuous is gg-continuous and every open map is gg-open, f is homeomorphism.

- 3.4 Example in example 3.2, h is a gg-homeomorphism but not a homeomorphism as $h^{-1}\{2,3\} = \{1,2\} \notin C(M,\tau)$ for $\{2,3\} \in C(N,\sigma)$ that is, h is not a gg-continuous.
- **3.5 Theorem** Every bijective map $h:(M,\tau)\to (N,\sigma)$, which is g-homeomorphism is always a gg-homeomorphism and converse is untrue.

Proof. the proof is based on the results that every generalized continuous is gg-continuous and every generalized-open map is gg-open map.

- **3.6** *Example* in example 3.2, h is a gg-homeomorphism but not a g-homeomorphism as $h^{-1}\{2,3\} = \{1,2\} \notin C(M,\tau)$ for $\{2,3\} \in C(N,\sigma)$ that is, h is not a gg-continuous and hence h is not a g-continuous.
- 3.7 **Theorem** Every bijective map $h:(M,\tau) \to (N,\sigma)$, which is ω -homeomorphism is always a gg-homeomorphism and converse is untrue.

Proof. Based on facts that, every ω -continuous is gg-continuous and every ω -open map is gg-open map.

- 3.8 Example in example 3.2, h is a gg-homeomorphism but not a ω -homeomorphism as $h^{-1}\{2,3\} = \{1,2\} \notin \omega C(M,\tau)$ for $\{2,3\} \in C(N,\sigma)$ that is,h is not a gg-continuous and hence h is not a ω -continuous.
- **3.9 Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is ω *-homeomorphism is always a gg-homeomorphism and converse is untrue.

Proof. Based on results that, every ω^* -homeomorphism is ω -homeomorphism and Theorem 3.7.

- 3.10 Example in example 3.2, h is a gg-homeomorphism but not a ω^* -homeomorphism as $h^{-1}\{2,3\} = \{1,2\} \notin \omega C(M,\tau)$ for $\{2,3\} \in \omega C(N,\sigma)$ that is, h is not a gg-irresolute.
- **3.11 Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is swg *-homeomorphism is always a gg-homeomorphism and converse is untrue.

Proof. Based on facts that, every swg*-continuous is gg-continuous and every swg*-open map is gg-open map.

- 3.12 Example in example 3.2, h is a gg-homeomorphism but not a swg*-homeomorphism as $h^{-1}\{2,3\} = \{1,2\} \notin swg * -C(M,\tau)$ for $\{2,3\} \in C(N,\sigma)$ that is, h is not a swg*-continuous
- **3.13 Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is gc-homeomorphism is always a gg-homeomorphism and converse is untrue.

Proof. Based on facts that, every gc-homeomorphism is swg*-homeomorphism and Theorem 3.11

- 3.14 Example. in example 3.2, h is a gg-homeomorphism but not a gc-homeomorphism as $h^{-1}\{2,3\} = \{1,2\} \notin g C(M,\tau)$ for $\{2,3\} \in g C(N,\sigma)$ that is, h is not a g-irresolute.
- **3.15 Theorem** Every bijective map $h:(M,\tau)\to (N,\sigma)$ which is gg-homeomorphism is always a rwg-homeomorphism and converse is untrue.

Proof. Consider a gg-homeomorphism $h: (M, \tau) \to (N, \sigma)$. Then, h is both gg-continuous and gg-open. That is, h is both rwg continuous and rwg open. Therefore, h is rwg-homeomorphism.

3.16 Example Let $M = N = \{1, 2, 3, 4\}$, $\tau = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, M\}$ and $\sigma = \{\varphi, \{1, 2\}, \{3, 4\}, N\}$. the bijective map h, defined by h(1) = 1, h(2) = 3, h(3) = 2, h(4) = 4 is a rwg-homeomorphism but not a gg-homeomorphism as $h^{-1}\{1, 2\} = \{1, 3\} \notin gg - C(M, \tau)$ for $\{1, 2\} \in C(N, \sigma)$ that is, h is not a gg-continuous.

3.17 Theorem Every bijective map $h:(M,\tau)\to (N,\sigma)$, which is gg-homeomorphism is always a r^g-homeomorphism and converse is untrue.

Proof. Based on results that, every gg-continuous is rwg-continuous and every gg-open map is r^g-open map.

- 3.18 Example in example 3.16, h is a r^g-homeomorphism but not a gg-homeomorphism as $h^{-1}\{1,2\} = \{1,3\} \notin gg C(M,\tau)$ for $\{1,2\} \in C(N,\sigma)$ that is, h is not a gg-continuous.
- **3.19 Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is gg-homeomorphism is always a β wg**-homeomorphism and converse is untrue.

Proof. Follows from results that, every gg-continuous map is β wg**-continuous and every gg-open map is β wg**-open map.

- **3.20** *Example* in example 3.16, h is a β wg**-homeomorphism but not gg-homeomorphism as $h^{-1}\{1,2\} = \{1,3\} \notin gg C(M,\tau)$ for $\{1,2\} \in C(N,\sigma)$ that is, h is not a gg-continuous.
- **3.21 Remark** Following two examples show that gg-homeomorphism is independent with few homeomorphisms in topological spaces.
- 3.22 *Example* in example 3.2, h is gg-homeomorphism but not a sg-homeomorphism [8], gs-homeomorphism, gb-homeomorphism, and $g\alpha b$ -homeomorphism [11] as $h^{-1}\{2,3\} = \{1,2\}$ which is not a sg-closed, gs-closed, gb-closed and $g\alpha b$ closed set in M, for $\{2,3\} \in C(N,\sigma)$. Thus, h is not a sg-continuous, gs-continuous, gb-continuous and $g\alpha b$ -continuous.
- 3.23 *Example* Let $M = N = \{1, 2, 3, 4\}$, $\tau = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, M\}$ and $\sigma = \{\varphi, \{1, 2\}, \{3, 4\}, N\}$. the bijective map h, defined by h(1)=1, h(2)=3, h(3)=2, h(4)=4 is a sg-homeomorphism, gs- homeomorphism, gb-homeomorphism and $g\alpha$ b-homeomorphism but not a gg-homeomorphism as $h^{-1}\{1, 2\} = \{1, 3\} \notin gg C(M, \tau)$ for $\{1, 2\} \in C(N, \sigma)$. Therefore h is not a gg-continuous.
- **3.24 Theorem** the statements given below are identical for a bijective map $h: (M, \tau) \to (N, \sigma)$, which is gg-continuous. Then, h is
- (i) gg-open map.
- (ii) gg-homeomorphism.
- (iii)gg-closed map.

Proof.

 $(i) \Longrightarrow (ii)$

Given, a bijective map h, which is gg-continuous and gg-open. Therefore h is a gg-homeomorphism.

 $(ii) \Longrightarrow (iii)$

Given, h is a gg-homeomorphism. Consider a closed set G in M and hence G^c is open set in M. Then $h(G^c)$ is open in N. But $(h(G^c))^c$. Therefore h is a gg-closed map.

 $(iii) \Longrightarrow (i)$

Assume that h is a gg-closed map. Consider an open set G in M and hence $G^c \in C(M)$. Then, $h(G^c) \in C(N)$. But $h(G^c) = (h(G))^c$. Therefore h is a gg-open map.

- 3.25 Remark Let h and g be two gg-homeomorphisms. in general, goh is need not be a gg-homeomorphism.
- **3.26** Example Let $M = N = P = \{1, 2, 3, 4\}$, $\tau = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, M\}$, $\sigma = \{\varphi, N, \{1\}, \{1, 2\}, \{1, 2, 3\}\}$ and $\eta = \{\varphi, P, \{1, 2\}, \{3, 4\}\}$. the bijective map h, defined by h(1) = 1, h(2) = 3, h(3) = 2, h(4) = 4 is a gg-homeomorphism. the identity map $g: (N, \sigma) \to (P, \eta)$ is a gg-homeomorphism. But $goh: (M, \tau) \to (P, \eta)$ is not a gg-homeomorphism as $(goh)^{-1}\{1, 2\} = \{1, 3\} \notin gg C(M, \tau)$ for $\{1, 2\} \in C(P, \eta)$. That is, h is not a gg-continuous.
- **3.27** *Definition* the bijective map $h: (M, \tau) \to (N, \sigma)$ is known as gg*-homeomorphism if h and h^{-1} are gg-irresolute. Where $gg * -(M, \tau)$ denotes collection of all gg- homeomorphisms of M on to itself.
- **3.28 Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is gg*-homeomorphism is gg-homeomorphism and converse is untrue.

Proof. Consider a bijective map $h: (M, \tau) \to (N, \sigma)$, which is gg*-homeomorphism. Then, h and h^{-1} are gg-irresolute. This implies that h and h^{-1} are gg-continuous. From Theorem 3.24, h is a gg-homeomorphism.

- **3.29** Example in example 3.2, h is a gg-homeomorphism but not gg*-homeomorphism as $h^{-1}\{2\} = \{1\} \notin gg C(M,\tau)$, for $\{2\} \in gg C(N,\sigma)$.
- **3.30 Theorem** Every bijective map $h: (M, \tau) \to (N, \sigma)$, which is gg*-homeomorphism is always a rwg-homeomorphism and converse is untrue.

Proof. Similar to Theorem 3.28.

- **3.31 Example** in example 3.16, converse of Theorem 3.30 is untrue as $h^{-1}\{1,2\} = \{1,3\} \notin gg C(M,\tau)$ for $\{1,2\} \in C(N,\sigma)$.
- **3.32 Theorem** Every gg*-homeomorphism is r^g-homeomorphism (resp. β wg**-homeomorphism) but converse is not true. Proof. Similar to Theorem 3.28
- 3.33 Example in example 3.16, h is a r^g-homeomorphism and also βwg^{**} -homeomorphism but not a gg homeomorphism as $h^{-1}\{1,2\} = \{1,3\} \notin gg C(M,\tau)$ for $\{1,2\} \in C(N,\sigma)$
- 3.34 Remark the results discussed above are shown in the diagram as follows

Fig. 1 Relation between gg-homeomorphism with various homeomorphisms in topological spaces

3.35 Theorem Any two gg*-homeomorphisms are preserved under composition.

Proof. Consider two gg*-homeomorphisms, $h: M \to N$ and $g: N \to P$. Let $V \in C(P)$. Then, $g(V) \in gg - C(N)$ and $h^{-1}(g^{-1}(V)) \in gg - C(M)$. But $h^{-1}(g^{-1}(V)) = (goh)^{-1}(V)$, Therefore goh is gg-irresolute. Take $W \in C(M)$. Then, $h(W) \in gg - C(N)$ and $g(h(W)) \in gg - C(P)$. But (goh)(W) = g(h(W)). Therefore goh is gg-irresolute. Hence the theorem.

3.36 Remark in the collection of all topological spaces, gg*-homeomorphism is an equivalence relation.Proof. the reflexive and symmetric relations are follows from the known facts and transitive property follows from theorem3.35

Conclusion

In this work, a new-class of homeomorphism namely gg-homeomorphisms are defined in topological spaces by using gg-closed maps and gg-continuous maps. Also, the basic properties of these homeomorphisms are discussed in detail. the stronger, weaker, and independent form of gg-homeomorphisms with various homeomorphisms in topological spaces are established and shown in the figure. Also, introduced and studied the basic properties of gg*-homeomorphisms in topological spaces. This research work can further continue in soft topological spaces and fuzzy topological spaces. There is a possibility of studying this work in digital plane.

References

- [1] Basavaraj M Ittanagi, Govardhana Reddy H G, On Gg-Closed Sets in Topological Spaces. *International Journal Mathematical Archive*, 8(8) (2017)126-133.
- [2] Basavaraj M Ittanagi, Raghavendra K and Veeresha S Sajjanar, On Weakly Semi-Continuous and Weakly Semi-Irresolute Maps in Topological Space, *Test Engineering and Management Journal*, 83 (2020) 12715-12721.
- [3] Basavaraj M Ittanagi and Veeresha S Sajjanar, On WS Closed and WS Open Maps in Topological Spaces, *International Journal of Engineering and Technology*, 7 (2018) 869-872.
- [4] Basavaraj M Ittanagi, Raghavendra K and Veeresha S Sajjanar, A New Type of Locally Closed Sets in Topological Spaces, *TEST Engineering and Management*, 83 (2020) 12708-12714.
- [5] Basavaraj M. Ittanagi and Mohan, on *sαrw* Homeomorphism in Topological Spaces, *International Journal of Engineering and Technology*, 4(10) (2018) 880-882.
- [6] Basavaraj M Ittanagi and Raghavendra K, On R Continuous and R Irresolute Maps in Topological Spaces, International Journal of Advanced Research. 6 (2018) 461-470.
- [7] Cameron D. E, Properties of S-Closed Spaces , Proceedings of American Mathematics Society, 72 (1978) 581-586.
- [8] Devi R, Balachandran K, Maki H, Semi Generalized Homeomorphisms and Generalized Semi Homeomorphisms in Topological Spaces. *Indian Journal of Pure and Applied Mathematics*, 26 (1995) 271-284.
- [9] Elvina Mary and Chitra, (SP)* Closed Sets in Topological Spaces, *International Journal of Mathematics Trends and Technology*, 7(1) (2014) 68-82.
- [10] Levine N, Generalized Closed Sets in Topology, Reports Maternatic Club of Palermo. 19(2) (1970) 89-96.
- [11] Maki H, Sundaram P, Balachandran K, On Generalized-Homeomorphisms in Topological Spaces, *Bulletin of Fukuoka University of Education*, 40(3) (1991) 13-21.
- [12] Mukundhan C, Nagaveni N, On Semi Weakly G* Homeomorphisms and Semi Weakly G* Irresolute Maps in Topological Spaces, *Advances in Theoretical and Applied Mathematics*, 6(5) (2011) 591-601.
- [13] Nagaveni N, Studies on Generalization of Homeomorphisms in Topological Space, Ph. D. Thesies, Bharathiar University, Coimbatore, (2000).
- [14] Prabhavathi S Mandalageri and R.S. Wali, On αrw Closed Maps and αrw Open Maps in Topological Spaces, *International Journal of Applied Research*, 1(11) (2015) 511-518.
- [15] Savithiri D and Janaki C, On Regular ^Generalized Closed Sets in Topological Spaces, *International Journal of Mathematical Archive* , 4(4) (2014) 162-169.
- [16] Sheik John M. on W-Closed Sets in Topology, Acta Ciencia Indica, 4 (2000) 389-382.
- [17] T. Shyla Isac Mary and G. Abhirami, α(Gg)* Closed Sets in Topological Spaces, *International Journal of Mathematics Trends and Technology*, 68(3) (2022) 5-10.
- [18] Subashini Jesu Rajan, On Bwg** Set and Continuity in Topological Spaces, International Journal of Computing. 4(3) (2014).
- [19] Vinayagamoorthi L, Nagaveni N, On Generalized-A B Closed Sets in Topological Spaces Bitopological Spaces and Fuzzy Topological Spaces. Ph. D Thesis, Anna University, Tamil Nadu, India. (2014).
- [20] Vivekananda Dembre and R.S. Wali, On Pgprw-Closed Maps and Pgprw-Open Maps in Topological Spaces, *International Journal of Statistics and Applied Mathematics*, 1(1) (2016) 01-04.
- [21] Vivekananda Dembre and Sandeep N Patil, On Pre Generalized Pre Regular Weakly Homeomorphism in Topological Spaces, *Journal of Computer and Mathematical Sciences*, 9(1) (2018) 1-5.
- [22] Vivekananda Dembre, Minimal Weakly Homeomorphism and Maximal Weakly Homeomorphism in Topological Spaces, *Bulletin of Marathons Mathematical Society*, 16(2) (2015) 1-7.
- [23] Vivekananda Dembre and Jeetendra Gurjar, Minimal Weakly Open Maps and Maximal Weakly Open Maps in Topological Spaces. *International Research Journal of Pure Algebra*, 4(0) (2014) 603-606.
- [24] R.S. Wali and Prabhavathi S Mandalageri, On αrw Homeomorphisms in Topological Spaces, Journal of New Theory, 21 (2018) 68-77.
- [25] R.S. Wali and Vijayalakshmi S Patil, On *rgwα* Homeomorphism in Topological Spaces, *International Journal of Statistics and Applied Mathematics*, 2(4) (2017) 22-27.
- [26] R.S. Wali and Vijayalakshmi S Patil, On *rgwα* Open and Closed Maps in Topological Spaces, *International Journal of Applied Research*, 3(6) (2017) 31-38.