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ABSTRACT 

The field of image processing offers distinctive features and is useful in 

medical diagnostics and imaging system. For the radiologists, manually identifying 

and classifying the Tumor has become a demanding and frantic process. Brain 

Magnetic resonance (MR) images must be extracted from malignant Tumor areas, 

which is a laborious and time-consuming task carried out by radiology experts or 

healthcare professionals. Current studies now heavily rely on medical imaging mainly 

to the continuous progress in automated brain Tumor classification and segmentation. 

This aids in quick decision as well as clear vision, diagnosis, and easier medication 

progression for the professionals. A dynamically Deep Learning technique for 

Glioblastoma brain cancer survival prediction rate was put out to address the 

aforementioned problems.  

In this research thesis, we present two approaches for detecting the brain 

tumor, risk prediction and measure the survival rate of patient. In the first approach, 

we developed the computer-aided tumor diagnosis techniques based on CNN that 

have demonstrated to be effective and have contributed considerable strides in 

computer vision. The deep learning method for predicting the prognosis of glioma 

brain tumors is covered in this research. Glioma prediction has been determined using 

MRI brain tumor imaging. Data pre-processing is the initial phase. The MRI brain 

images were improved by intensities normalization using histogram normalization, 

de-noising via bilateral filtering, and the removal of information contaminants. 

Probabilistic noise salted and peppers distortion was also taken out. Secondly, 

radiomic features segmentation was completed using the MFCM clustering approach. 

Then, Rough Set Theory-based Grey Wolf Optimization was used to choose the most 

important and instructive aspects from the obtained characteristics. Then, using FR-



vii 

CNN, the overall survival predictions categorization is performed to the important 

feature selection in MRI brain images. The proposed MFCM-RSGWO-FRCNN 

approach is tested against state-of-arts FCM, OTSUS, NB, and SVM approaches. 

Evaluation parameters like Specificity, Sensitivity, PSNR, Mean Square Error (MSE), 

Segmentation Time, and Prediction Accuracy were used to examine the technique. 

The proposed MFCM-RSGWO-FRCNN has the advantages of less converging and 

the corresponding characteristics. 

In the second approach, machine learning technique of the Random Forest 

model and Deep Neural Network method is proposed to predict the glioblastoma 

recurrence risk. Initially, Resampling and Z-Score Normalization are the image pre-

processing techniques that are used to remove the outlier in MRI brain image data. 

After the pre-processing brain images are then segmented using the Recurrent Neural 

Network-Generative Adversarial Network (RNN-GAN), which mitigates the impact 

of imbalanced pixel labels. Subsequently, the Wavelet Band-Pass Filtering technique 

is presented to extract the texture features and the CE-T1WI model predicts PFS and 

ORR in recurrent GBM patients treated with the combination of Nivolumab and 

Bevacizumab. Accordingly, Random Forest and DNN techniques are proposed for 

patients’ recurrence risk prediction. 

After analyzing both models, the second RNN+GAN Model gives a better 

result as compared to the first MFCM RSGWO-FRCNN Model. The RNN+GAN 

Model achieves a 95.11% accuracy score; Sensitivity is also 95.11% and Specificity is 

98%. The RNN+GAN Model increase the survival rate which is 2.47% after diagnosis 

and overall treatment of patients.  And finally, RNN+GAN Model is compared with 

existing state-of-art methods. 
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     CHAPTER 1 

INTRODUCTION 

1.1 Overview  

A brain tumor is caused by the formation of aberrant tissue in the brain. It plays a 

significant role in the rising death rate among adults and adolescents. According to the 

tumor's aggressiveness and rate of growth. A primary tumor starts inside or outside 

the brain, whereas a secondary tumor develops when the malignant cells of the 

original tumor spread to body suggested by Gaur L. et al., (2020). According to 

WHO, brain tumors are divided into normal (less harmful) and malignancy 

(dangerous) categories based on the source and behavior of cells (dangerous). 

Glioblastoma (GBM) is a prevalent and dangerous type of brain tumor.  The 

expectancy for GBM is typically terrible, and final treatments that include maximal 

surgical removal, radiotherapy, and chemotherapeutic mentioned by Martinez E. et 

al., (2020). Diagnosis and treatment of Glioblastoma recurrence were inevitable even 

though both therapies are unable to eradicate this fatal malignancy. The brain MRI is 

utilized in the identification, prognosis assessment, and medication or even other 

medication decisions of people with GBM as a quasi-radiological image processing 

approach. Structural, operational, and physiological data are extracted using MRI. As 

a powerful diagnostic image processing technique, MRI uses this data to produce real-

time multidimensional images of GBM. Brain tumors in MRI are almost the definitive 

arm, guiding many therapy decisions, other surgical management, and survival rate 

estimates as discussed by Ke, Qiao. et al., (2019). 

Basic predictive methods for brain tumor survival assessment were well at the 

collective scale, but improved survival prediction remained a difficulty, probably due 
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to the well-documented biological variability of the illness and treatments. Various 

survival investigations have employed the Cox proportional hazards (Cox PH) 

approach mentioned by Baek, E.T. et al., (2021), a common survival method in 

statistics, to find significant medical variables for the building, which visually depicts 

a statistical method to forecast customized cancer prediction. Simple multiple 

regression approaches, on the other hand, are inadequate at detecting unique 

meaningful features in information, hence machine learning (ML) techniques were 

rapidly becoming investigated in brain tumor survival assessments Wu, Jiewei et al., 

(2020). 

 Deep learning has been utilized to find a pattern in massive amounts of 

complicated data that are within normal vision, and then utilize those patterns to 

produce data-driven forecasts. The advancement and utilization of deep learning for 

clinical image processing, particularly radiomics assessment for a brain tumor, has 

resulted from advancements in image research and computing research working 

together suggested by Giger ML. et al.,(2018). Radiomics, a constantly emerging 

subject, allows for a statistical examination of tumor characteristics on a macroscopic 

level. Radiomics is the process of extracting, analyzing, and interpreting massive 

collections of visible and semi-visible image data for the identification and 

categorization of malignancies at the tissue stage. High-Level glioma is still a deadly 

and severe cancer, but because of recent improvements in tumor genomes and the 

hopeful beginnings of targeted therapies, researchers may be able to profit even more 

from developments in ML approaches deployed to the brain tumor recognition 

system. 
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Another difficulty in clinical image analysis is that producing such datasets is time-

consuming and the information is varied. This exposes an overfitting problem on the 

training dataset and is not beneficial as a serious issue for deep learning techniques 

explained by Erickson BJ.et al.,(2018). To interact with a small amount of data, such 

as those experienced in clinical image analysis, numerous strategies can be used, such 

as time series analysis mentioned by Han, Changhee, et al.(2022), data augmentation 

Kayalibay B. et al.,(2017)., histogram analysis mentioned by Xi YB, Guo F, Xu 

ZL.(2018) , Hemanth G. et al.,(2022).  

 BT can be assumed as a issue that determines if a particular region 

corresponds to the healthy tissue, glioblastoma, or edoema categories. Custom 

characteristics and classification approach such as Linear regression, Adaboost, RF, 

Knn, and decision tree suggested by Tian Q.,et al.,(2018). Deep learning in this 

subject has increased its popularity, particularly image segmentation. Several of the 

existing prominent CNNs for segmentation issues utilize a patch-wise method 

discussed by Bisdas S.et al.(2018). , in which smaller patches of the images around 

each pixel are evaluated and a cascade of progressively complicated and generalized 

aspects of nonlinear characterizations of the information is extracted as mentioned by 

Avşar, Ercan, and Kerem Salçin. (2019). Moreover, CNN models are utilized to 

separate the tumor and sub-regions to obtain information such as size, local binary 

patterns, and geometrical data. Then, for average survival prediction rate 

discussed by Hang Chen (2019).   are suggested with maximum resolutions of 

residual convolutional networks based on fully connected, connected neural model on 

4 predetermined characteristics.  
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A range of radionics features is beneficial for grade had mentioned by Bakas S. et 

al.,(2018), genotyping categorization done by Rathore S. et al.(2018), and result from 

forecasting was discussed by Beig N. et al.,(2018) in the setting of glioblastoma. 

Rathore found a subgroup of eleven radionics peritumoral variables from pretreatment 

MRI to be diagnostic of total survival in individuals with glioblastoma, involving 

severity, variability, and texture characteristics. Deep learning has been used in 

several current attempts to investigate deeper and high-order characteristics that might 

enhance the predicted effectiveness of existing radiomics algorithms for brain tumors 

was mentioned by Rathore, S. et al.,(2018).  

Regarding survival rate prognosis and molecular features categorization, DL 

based radionics approaches for brain cancers were suggested Liu, L. et al.,(2019). Nie 

used MRI to construct a CNN-based radiomics system to predict survival rates in 

glioblastoma patients.  The constructed approach can predict the average survival rate 

better than conventional approaches after selecting six deep characteristics from 

pertained CNN explained by Sun, L., Zhang, S., & Luo, L. (2018). It's vital to 

remember that such approaches have drawbacks, and considerable obstacles remain. 

1.2 Brain Tumour 

The human nervous system is made up of this sensitive, vascular tissue. A finely 

structured system of nerves carries signals to the human brain. The nervous system is 

in charge of most of its organs. Currently, theories as to whether gliomas develop are 

constantly being discussed. Cells typically develop, die, and are restored. 

Occasionally, though, this regular process is flawed, and human cells continue to 

develop even if no additional cells are required. Healthy cells eventually pass away 
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due to aging or injury, whereas cancer cells don't. As a result, continue to develop 

rapidly. 

Basic brain cancer may be malignant (cancerous) or benign (Normal). A 

malignant tumor is harmful because it develops spontaneously and swiftly moves to 

the various organs and nervous systems of the human body. It is simple to remove 

benign brain cancer from the body since they are well-defined and don't penetrate the 

normal tissue severely. Usually, cancers receive a grading (Grade I to IV). The 

grading given is a representation of how the tissues look under a microscope. 

Normally benign grade-I cells have a modest pace of development and resemble 

healthy brain neurons in appearance. Grading II denotes cancerous cells; however, the 

form is much less resemblance to healthy brain cells. In Grade III, the cells diverge 

from normal cells in appearance, which is a sign of malignancies. Grade IV denotes 

extremely abnormal-looking and aggressively growing cancerous body cells. 

1.2.1 Brain Tumour Types 

As per the World Health Organization, there seem to be 125 predicted tumor variants. 

Depending on the tumor's severity in the brain cortex, suprasellar area, posterior 

fossa, and ventricle systems, are categorized. Cancer develops from glial cells like a 

flame and is derived from neural cells via their support. The area in which cancer 

develops determines the name given to it. As an example, since they develop inside 

the anterior-posterior, pituitary cancers are also known as cerebral adenomas. 

Meningiomas are cancers that develop from the tissue area which surrounds the brain 

and is known as the central nervous system. Benign growths are cancers that develop 

from the nerves that pass through the membrane. Acoustics neuromas are tumors that 

develop on the nerves that regulate hearing. Most cancers were categorized mainly as: 



6 

 Benign (Normal) 

 Malignant (Dangerous) 

The cells in a normal brain's cancer are not malignant. These cancers were 

removed with surgical, radiation, or chemotherapeutic, and never develop back as 

mentioned by Saba, T., Khan, M. S., Mehmood, Z., Tariq, U., & Ayesha, N. (2021). 

A cancerous lump might, therefore, obstruct the brain's abundant blood circulatory 

system. In almost any case, benign cancers that continue to have this impact on the 

brain's critical regions will indeed be exceedingly harmful to the person's condition. A 

benign cancer diagnosis seldom develops into a cancerous one. 

Significant changes in proliferative tissue divisions occur in malignant brain 

cancers discussed by Karayegen, G., & Aksahin, M. F. (2021). The tissue area, which 

is made up of a thick shell of enzymes and fats, creates serious cancerous cells. 

Malignant brain cancers spread typically in the lungs, kidneys, or testicles part of the 

human body suggested by Sahaai, M.B. and Jothilakshmi, G.R. (2021). Thereafter, 

aberrant cells enter the cerebral layers via the neural nerve and extract cellular 

components, which has an impact on the internal functioning of the brain and the 

nerve structure. As per the tumor's thickness, form, and position, the cells that make 

up the cancer are dispersed throughout the human brain. The WHO states that a 

tumor's volume and structure can be utilized to determine whether it is malignant or 

not. Figure 1.1 following depicts the locations of the various types of brain tumor’s 

inside an adolescent. 



7 

 

Figure. 1.1 Various Types of Brain Tumours Inside an Adolescent 

Source: Health Library/ Brain Tumor, 

https://demo.staywellhealthlibrary.com/Content/cancer-source-v1/types-of-brain-

tumors/ 

In both adolescents and youngsters, oligodendrogliomas, meningiomas, and 

astrocytomas had discussed by Divya, S., Padmapriya, K. and Ezhumalai, P., (2021) 

Although gliomas typically develop in the cerebral hemispheres, they can also 

develop in the spinal cord, brain cells of the cerebellar, and nervous system. The 

source of the astrocyte cells determines the subtypes of glioblastoma. "Astro" in 

Greek is a star-shaped object. The meninges are the layer that acts as a guardian for 

the Central Nervous System (CNS) through this tissue, the tumor present in these 

meninges is called the Meningioma the brain that develops from the meninges was 

suggested by Pei, L., Vidyaratne, L., Rahman, M.M. and Iftekharuddin, K.M., (2020).  

1.2.2 Radiologic Image Classification 

Instead of using the tumors' pathology, four groups of brain cancers can be 

distinguished only by their radiologic appearances on contrast-enhanced T1-weighted 

imaging. The four categories are as described in the following: ring-enhanced tumors, 

full-boosted tumors with no edema, and full-boosted tumors with edema was 

discussed by  Naser, M.A. and Deen, M.J., (2020). 
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1.2.2.1 Non-Enhanced tumors 

During contrast-enhanced (CE) T1-weight imaging, these tumors look hypoechoic 

(darkened as Gray-Matter (GM)) and therefore do not absorb imaging techniques. T1-

weight radiographs are displayed in Figure 1.2, as seen here. These were often full, 

either with or without edema. These show hyperintense in T2-weight imaging. The 

highest prevalent types of this tumor are oligodendrogliomas, gangliogliomas, and 

low-grade gliomas. 

 

Figure 1.2: A tumor that is not increased. T1-weight axial slice (a). The identical T1-weight 

slice with contrast enhancement.  b) The FLAIR image  

Source: https://www.nimh.nih.gov/research/research-conducted-at-nimh/research-

areas/clinics-and-labs/etpb/nnu/fellows-0 

1.2.2.2 Fully-Enhanced tumors without edema 

Almost most of the tumor's data points show hyperintense in contrast-enhanced T1 

weight images, as illustrated in Figure 1.3, and cancers improved with contrasting 

medication in T1-weight images. 
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Figure 1.3: A completely developed tumour devoid of edema. a) T1-weighted image's axial 

slice. b) The identical T1-weighted image slice that has been increased with contrast. c) A 

T2-weighted picture   

Source: http://www.neuroradiologycases.com/2012/09/ischemic-stroke-and-vascular.html 

Such cancers don't have edema and look hyperintense on T2-weight and FLAIR 

imaging but hypointense on T1-weight brain images. Tumors in this category are 

Meningiomas (some types), lymphomas, ependymomas, pituitary adenomas, and 

craniopharyngiomas. 

1.2.2.3 Fully-Enhanced tumours with edema 

The edema as well as the core portions of such cancers are divided into two divisions. 

As shown in Figure 1.4, the edema appears the solid area that follows the contrast 

agent appears hyperintense in both T1-weight brain image and contrast-enhanced T1-

weight brain image. In FLAIR and T2 -weight brain images, the tumor in both areas is 

seen as being hypoechoic. This group comprises benign growths of several forms as 

well as high-grade oligodendrogliomas, adenoma astrocytomas (highly-graded 

Primitive Neuroectodermal Tumours), and others. 
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Figure 1.4:  A tumour with edema and complete enhancement. a) An axial slice of the T1-

weight brain image b) An identical slice of the T1-weight brain image enhanced by contrast. 

c) The FLAIR picture   

Source: https://radiopaedia.org/cases/glioblastoma-nos-mimics-parafalcine-meningioma   

1.2.2.4 Tumors with ring enhancement  

Such tumors are divided into three parts. Both T1-weight brain images and contrast-

enhanced T1-weight brain images show that the core region has necrotic and 

hypoechoic. The compact region, which covers the necrotic and absorbs the 

contrasting agent, T1-weight brain imaging and hyperintense in T1-weight imaging, 

as illustrated in Figure 1.5. Edema is the term for the third portion that encircles the 

core part. The edema shows hyperintense in both T1-weight and contrast-enhanced 

T1-weight brain imaging. The necrotic is brighter than its remaining parts in T1-

weight brain imaging, whereas the solid region, edema, and necrotic were 

hypoechoic. In FLAIR imaging, the necrotic shows as just a hypoechoic sign, but the 

edema and solid portions show as just a hyperintense signal. Such features are shared 

by Glioblastoma Multiformes (GBMs) and highly-graded oligodendrogliomas. 
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Figure 1.5   A tumor with ring enhancement. a) Axial brain imaging slice using T1-weight. b) 

The identical T1-weight brain imaging slice boosted by contrast. c) FLAIR cerebral imaging   

Source: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1750-3639.2007.00076_3.x     

1.2.3 Symptoms of Brain Tumour 

The primary and secondary indications of brain lesions change for the tumor location, 

size, and type tumor. When the brain tumor puts pressure on a nerve, chokes the blood 

supply path around the vicinity of the brain, resulting from the swell of the internal 

organ, in the region of the brain because of the accumulation of fluids is the onset of 

the symptoms of a brain tumor. 

Hallucination, intense, headaches, frequent vomiting, speech disorder, blur vision, and 

hearing impairment are some of these symptoms. There is also the presence of mood 

swings or personality changes. There have also been reports of inability to 

concentrate, bad memory, numbness, or tickling in the arms or legs mentioned by 

Yogananda, C.G.B. et al.,(2020). The aforementioned symptoms of a brain tumor 

make it easy for the physician to predict the illness if the symptoms are clearly stated 

by the patient. 
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1.2.4 Diagnosis 

Many CAD tests are undertaken to analyze the changes in the brain to aid in the 

diagnosis of tumors, some of which include CT scans, angiograms, MRIs, and 

biopsies. There are, however, other neurological examinations, such as hearing loss 

tests with an audiometer, muscle endurance, eye check-up, and intelligence Quotient 

(IQ) test. All these tests are done by the physician to properly understand the 

situation. 

In MRI, a patient is tested with a large machine attached to a computer, which 

is equipped with a strong magnet. These machines act as CAD and frames of various 

slices of the human brain are produced in 3D which includes three axes such as axial, 

coronal, and sagittal view. These help in computing the internal voxel regions of the 

patient's head. The victim or tumor-affected patient is normally diagnosed using a 

contrast agent or special dye, which is intromitted into the blood vessels through 

injection. The computation results are based on the internal functional changes in the 

brain. This sophisticated analysis is skewed toward functional MRI (fMRI) and PET 

scan, to analyze abnormal tissues such as tumor or any other foreign objects in the 

human body mentioned by Tang, Z. et al.,(2020). 

CT scan uses x-ray radiation for analyzing internal regions and does not have 

the potency or functionality of reconstructing images, but it takes a series of slices of 

the head which help in diagnosis. 

A procedure called angiography involves injecting a tracer into the circulation, 

that causes the brain's blood arteries to appear on X-ray images. When a tumor is 
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developed, the X-ray might reveal the tumor or the blood arteries sustaining it 

explained by Xia, W. et al.,(2021). 

1.2.5 Treatment 

People with brain tumors undergo a sequence of surgery, involving radiotherapy-like 

laser radiation applied in the tumor incision area and chemotherapy applied with 

chemical drug agents to destroy the tumor cell regions. Often these treatments are 

administered simultaneously, which is dependent on the size, grading, and type of 

tumor.  

Surgery is the usual treatment for a brain tumor. In this, the surgeon opens the 

skull and removes as much of the tumor tissues as possible. However, if the tumor is 

in the brain stem, surgery is not possible. In such cases, radiotherapy is the next 

suitable option. Radiation therapy usually happens after surgery. It destroys cancer 

cells through high-energy X-rays and lasers. 

Chemotherapy involves the use of drugs or chemotherapeutic agents which 

functions as cytotoxic to destroy the cancer cells. These drugs are intromitted into the 

body through the mouth or vein. When the drug enters the bloodstream, it spreads 

throughout the body to kill tumor cells. These drugs can also be placed into the brain 

in the form of wafers. Usually, this is done for adults, in which the wafers are 

implanted into the brain. After a few weeks, the wafers dissolve and kill cancer cells. 

1.3 MRI Imaging 

Protons and neutrons make up the nuclei in the cells of the individual body. Because 

protons are positively charged but neutron is negative, the nucleus has positively 
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charged. A high-speed spin produces a vertical magnetic moment when a charged 

nucleus spins on its axis. This phenomenon is described by the law of electromagnetic 

induction. The nucleus could be separated into two categories: magnetic nucleus and 

non-magnetic nucleus, depending on the various spinning nature. The earlier 

designates the nucleus that can produce a magnetic moment due to its spin, whereas 

the latter designates neutrons that are unable to do so. A nucleus is classified as a 

magnetized nucleus if it contains protons or neutrons in an odd ratio else, it is 

classified as a non-magnetic nucleus. That is true when and just when an atomic 

nucleus has an equal amount of protons and neutrons. MRI can only be performed on 

the magnetic nucleus mentioned by  Zaw, H., Maneerat, N., & Win, K. T. (2019). 

However, in the existing image modality, mainly hydrogen nuclei only with 

single neutrons and single protons were primarily utilized. Theoretically, the magnetic 

nucleus among all components could be utilized for MRI scanning. The primary 

magnet, gradients technologies, RF mechanisms, computer devices, as well as other 

ancillary devices make up the majority of the five components that make up a 

traditional MRI scanning device as shown in Figure 1.6. 
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Figure 1.6: MRI Scanning system 

The main magnet comes in two forms: An electromagnetic magnet (twined by coils) 

and a permanent magnet (made of permanent magnet material). The linear gradient 

magnetic field is generated by the gradient system. The MR echoing is produced by 

the regular switching of the area of the gradient and spatial orientations of the MRI 

signals. The radio frequency circuits that make up the majority of an RF device are 

employed to pick up the produced MRI echoes. The whole MRI scanning system's 

processing, involving pulse excitation, signal gathering, data processes, and imaging 

displaying, is managed by a computing device. This computing software could add 

extra advanced skills, such as data analysis, and three-dimensional simulation, as well 

as other things, with the help of certain multi-functional programs. The term 

"auxiliary system" mostly referred to the supporting technology which keeps the MRI 

scanning structure running normally. 
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The MRI imaging process is described below: 

The human body generates magnetization phenomena when fed to a strong magnetic 

field. The amount of hydrogen nucleus in cells is a factor in the macro-magnetic 

properties of various organs. The macro-magnetic moment vectors would be entirely 

immersed in the major magnetic fields as the contents are more. Ever more powerful 

the transverse macro-magnetic energy generated, the greater the pulse signals 

discharged from the nucleus with transverse magnetic moments. Although both are 

pointing similarly, the magnitude of the macro-magnetic moment vectors remains 

significantly lower than those of the primary magnetic field. These are extremely faint 

when overlapped to be picked up by Radiofrequency coils. Therefore, it's not possible 

to differentiate between various cells based on the various macro vector values 

brought on by the various hydrogen nucleus concentrations. 

The scanning device applies Radiofrequency impulses to the individual body 

in the primary magnetic fields in an attempt to differentiate various cells. The pulsed' 

power will be transferred to the hydrogen atoms when they are at a low-energy level, 

causing it to change to a higher level by soaking up the power. All these so computed 

tomography phenomena are just one. The incoming pulses cause the macro-magnetic 

energy vectors to deviate. The degree of deflection increases as Radiofrequency pulse 

frequency increases. The power of the nucleus is large and variable upon assimilation. 

The power would naturally be dissipated when the radiofrequency signal was stopped, 

and the hydrogen atoms will resume their previous stable level. An electromagnetic 

pulse would be released during the procedure of restoration and would be picked up 

by the Radiofrequency coils for brain image. 
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There seem to be two types of relaxation: transverse and longitudinal 

relaxation. These relaxation processes result from the disappearance of the RF pulses, 

while the macro-magnetic vector tries to rebuild. T1 and T2 describe the 

characteristics of the tissues. Different tissues with different characteristics would 

have corresponding T1 and T2 mentioned by Fu, J. et al., (2021). Figure 1.7 displays 

a schematic diagram of MRI equipment. 

 

Figure 1.7 The MRI machinery and inspection’s schematic view.  

Source- https://medicalxpress.com/news/2017-12-fda-issues-tougher-mri-dye.html 

Restricted water movement is used to detect an abnormality. Perfusion-

weighted MRI is used to examine the vascularity of the tissue, permitting the 

detection of alteration in the blood volume or circulation. MRI imaging is completely 

non-invasive because there is no medication injected into the body and no medical 

instrument is inserted into the body. This makes the process completely safe. 
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Additionally, because of its high resolution, precise placement of soft cells, and 

sensitivity to illness features, MRI scanning is particularly well suited for the 

detection of brain abnormalities mentioned by  Amin, J. et al.,(2020) – Jakola, A. et 

al.,(2020). 

In radiation therapy and surgical scenarios, when acquiring MRI data, the 

physicians must accurately assess the patient's health by the pertinent image data and 

thoroughly plan for the illness treatments depending on relevant clinical data. In 

general, doctors can perform the subjective segment approach of brain images based 

on the acquired MRI imaging and the physician's expertise and skill to properly 

determine the volume, shape, position, structural dispersion, and other abnormalities 

of the tumor areas explained by  Sharif M. et al.,(2020). Figure 1.8 displays the 

numerous MRI imaging forms, and Figure 1.9 displays the numerous weighted MRI 

brain image forms. 

 

Figure 1.8: Magnetic Resonance Imaging Types 
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1.3.1 T1 Weighted Image 

The directional relaxing duration is T1. That shows the amount of period needed for a 

substance to become magnetic upon already becoming exposed to a magnetic force or 

the amount of period needed to restore longitudinal magnetization following the 

application of a Radiofrequency pulsed. The resonant protons' thermodynamic 

reactions with the other charged particles, and the magnetic nucleus in the magnetic 

field, define T1. 

All the molecules move naturally because of rotation, vibration, and 

translation. Smaller molecules move faster and larger molecules move slowly. The 

primary magnetic field of the MRI scanner affects the molecule movement 

frequencies and resonant frequencies, which are both represented by the T1 relaxing 

period. 

1.3.2 T2 Weighted MRI 

The longitudinal relaxation period (T2) measures the duration of longitudinal 

magnetism in an externally applied magnetic field that is entirely consistent. Magnetic 

interaction among rotating protons causes T2 release. T2 interactions just change 

phases, not power, which results in a lack of coherence. 

The occurrence of static intrinsic forces within the material is necessary for T2 

relaxation. Protons on large molecules were typically to blame for them. the protons 

are aligned together or against the primary magnetic force, such stationery or 

gradually changing magnetic energies produce local zones with enhanced or 

diminished magnetic fields. 
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Figure 1.9 Different weighted MRI image 

Source: https://radiopaedia.org/cases/neurofibromatosis-type-1-with-optic-pathway-glioma-1 

1.3.3 T2* Weighted MRI 

Gradient Echo (GRE) sequencing is very susceptible to T2* decline in T2* dependent 

cinematography, which is achieved by appropriately adjusting user-selectable 

variables including echo time (TE), flipping angle, and repeating time (TR). The 

lesions, structure, and regions of de-phasing were visible as dark places on such T2* 

weight sequences, allowing for its identification or characterization. 

1.3.4 Spin Density Weighted MRI 

In MRI images, brain tissues are categorized into normal and abnormal tissues. 

Normal tissue includes GM, WM, and CSF. The abnormal tissues usually contain 

tumors, and may also contain necrosis, cystic degeneration, and edema. 

Distinguishing normal and abnormal tissues is very difficult since they overlap with 
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each other. Table 1.1 displays the pattern of grey contrast on cells overlaid by tissues 

in various MRI brain images. 

Table 1.1 The Gray Dissemination of the Various Tissues  

 Gray  White  CFS Tumor Edema 

T1 weighted - + - - - - - - - - 

T2 weighted + - - - + + + + + + 

PD + - - - - - + + - 

The positive symbol in Table 1.1 suggests a high grey value, whereas the negative 

symbol indicates a low grey value. The dark areas correspond to the number of 

negative indications. The related area is brighter if there are additional positive 

indications present. The strength pattern in the tumor region is often unequal since 

that contains a range of aberrant cells. Additionally, this serves as one of the 

requirements for classifying the interior cells of the cancer area. 

1.3.5 FLAIRE Images 

The Flair sequential method has a much longer TE, and TR duration when compared 

to T2-weighted imaging. As a result, anomalies are kept visible, while the normal 

CSF liquid is reduced. 

 

Figure 1.10: Assessment between T1, T2 and Flair brain images 

Source:https://www.researchgate.net/publication/344539928_A_survey_on_Brain_Tumor 
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1.4 Image Preprocessing 

The image preprocessing comprises various methods and techniques to geometrically 

correct the MRI brain image, and enhance the quality to make it easier for quantitative 

and qualitative interpretation. The noise and fluctuations are suppressed in the 

process. Some of the basic methods that take place during preprocessing include 

transformation, rotation, and filtration. 

1.4.1 Noise Reduction Techniques 

Based on the histogram's and probability density function's structure, the disturbance 

is categorized. Uneven noise, Poisson distortion, salt-and-pepper interference, gamma 

noise, and Rayleigh distributions are typical concepts of image distortion. The salts 

and speckle noise are a result of incorrect memory places, damaged camera sensors, 

and time issues during brain image digitization. Gamma distortion is a result of brain 

images' low pass filter. Filters can eliminate all of those disturbances. A modified 

brain image with improved edge recognition is created once the disturbance has been 

removed, and that aids in extracting the precise position of the cancer region. 

1.4.2 Contrast Enhancement 

Enhancing brain image contrast is crucial to image recognition, particularly for 

biological imaging systems. The basic objective of image contrast improvement is to 

raise quality to a level superior to it which the actual reference images. The image 

device quality, the user's lack of shooting experience, and the bad weather factors 

were to blame for the photographs' low resolution. 
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If these conditions were satisfied, the resulting photos will lack various 

elements and have low quality. The pictures could appear washed away. The above-

mentioned issues are addressed through contrast improvement technologies, which 

also enhance an image's graphical fidelity. 

Direct and indirect image improvement techniques are two categories. The 

direct approach of image improvement aims to achieve a contrast measurement that is 

expressly defined. By taking advantage of the dynamic range's underutilized areas 

while expressly establishing any metric, indirect approaches increase contrast. Among 

all these techniques, the technique based on histograms is widely used, because of its 

straightforward implementation abilities explained by Tandel G.et al., (2020) 

1.5 Image Segmentation 

The object of interest is found by the segmentation technique. It involves dividing the 

image into several regions or objects. The contours of an image are extracted using 

edge detection techniques. This procedure helps in locating the tumor, or abnormal 

tissue growth. A pre-process image enhances the image segmentation process. The 

segmentation process can be divided into two groupings: advanced and basic 

segmentation techniques. Advanced segmentation involves probabilistic methods, 

clustering, and model fitting. The basic segmentation technique involves 

morphological watershed, region growing, line and edge detection, point, 

thresholding, and region growing. 
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1.5.1 Threshold-based based Segmentation 

The basic segmentation technique. It involves partitioning an image according to a 

predefined criterion into respective regions. They are global techniques, local 

techniques, and split, merge, and growing techniques. Local techniques involve using 

the neighbourhood of the pixels and local properties of an image. Global techniques 

involve segmenting an image based on the global information that is gleaned from the 

image. For effective segmentation, splitting, merging, and growth procedures make 

utilization of the ideas of homogeneous and geometrical approximation. 

A threshold can be either local or global. A binary image can be generated by 

selecting the grey level image using an appropriate threshold 'T'. This is to make the 

process of recognition and classification easier, thereby reducing the complexity. 

1.5.2 Region Expanding Technique 

One of the basic techniques for area-based picture segmentation is area expansion. 

Since it chooses the first initial centroids, it can also be referred to as the pixel-based 

picture segmentation technique. The neighbouring pixel of the initial seed pixel is 

inspected to ascertain its inclusion in the region. This process is very identical to 

various clustering techniques. 

The selection of a group of initial centroids is the first step in the region's 

growth. This decision may be made using properly spread pixels on the grids that fall 

within a particular grey level. The first region starts approximately where such seeds 

are now. According to the region membership conditions, which might be image pixel 

intensities, grey-level texture, or color, the region is expanded from such initial 
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centroids to nearby spots. The divide and combine method goes through the following 

stages: 

 Specify homogeneity criteria. The image is divided into four equal-sized 

segments. 

 Whether any resulting square is not evenly divided into quadrants, it is also 

classified into four categories. 

 Combine the two or several surrounding areas that meet the requirement of 

uniformity at every stage. 

 Continue splitting and merging the area until this is impossible to do so any 

longer. 

 

 

 

 

 

 

Figure 1.11: Quad-tree layout, (a) with R standing for the complete image area and (b) with 

the associated segmented image 
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Advantages: 

The image could be split progressively according to the resolution demanded or 

wanted. The mean and variance of the segmented pixel value can be determined based 

on the criteria of the image. However, the splitting criteria can be different from the 

merging criteria. 

Disadvantage 

It may result in block image segmentation. 

1.5.3 Watershed Segmentation 

In image segmentation, the watershed is one of the powerful methods used. This 

method is popular for its speed, simplicity, and complete division of an image. The 

watershed algorithm is a precedent for grey-scale morphology. In the presence of 

weak boundaries and low contrasts, the algorithm still provides closed contours.  

The "watershed basin" is the area wherever holes have been cut into the local 

bedrock while the environment is submerged under a reservoir. Reservoirs would be 

constructed, water will be topped off at such initial local minimum value, and the 

spots when water from several watersheds would converge. The procedure comes to 

an end whenever the water level approaches the highest point in the surrounding area. 

For an outcome, watershed boundaries are the divisions of the terrain among basins or 

areas that are divided from one another by reservoirs mentioned by Suter, Y.et al., 

(2020). 

There are primarily two groups of watershed techniques focused on watershed 

transformations. Conventional approaches are found in the first category, which 
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includes flooding-based watershed techniques, and the second category, which 

includes rain-falling-based watershed techniques. Across both categories, numerous 

techniques have been suggested, however, the linked components-based watershed 

approach outperforms them all in terms of efficiency. This falls underneath the 

technique of the rain-falling-based watershed technique. It produces quite effective 

segmentation outcomes and satisfies the requirement for hardware implementations 

with minimal computational costs. 

1.6 Feature Extraction Techniques 

The technique of constructing representations or modifications from the source 

information is called feature extraction. These are techniques that are both machine-

and human-centered. An appropriate numerical approximation is chosen for 

perception-based elements like texture using the human-centered method. To extract 

specific features, a unified computational technique is chosen in the machine-centered 

strategy explained by Wijethilake N.et al.,(2020). 

1.6.1 Texture-Based Feature Extraction 

A primary characteristic utilized in image analysis to describe the surface and 

organization of a given area is texturing. A collection of image pixels or an object 

made up of linked pixels is known as a texture. The "texture primitives" defines that 

collection of image pixels. Texturing is a numerical representation of the distribution 

of intensities in a space. 

Therefore, there are two groups of texture characterization techniques. These 

are both structural and statistical. The statistical distributions of the pixel intensities 
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are used by statistical techniques to describe image texture. One of the characteristics 

that distinguish textures is the spatial arrangement of grey levels. Statistical 

techniques are used to analyze the spatial distribution of grey levels. 

These are accomplished by calculating local features at every location of an 

image, and then deriving a collection of statistics from the distributions of feature 

points. By recognizing structural primitives and related positioning guidelines, 

structural techniques depict texture conveyed by Shree, N. V., & Kumar, T. K. S. 

(2018). 

1.6.2 Histogram-Based Feature Extraction 

The core idea of the Histogram of Oriented Gradient (HOG) descriptors would be a 

certain distribution of pixel intensity variations or information that can be used to 

characterize the appearances and structure of local elements inside images. A 

histogram of the gradient's orientations again for image pixels inside every cell could 

be built to incorporate these descriptors by breaking the images across small 

interconnected sections, known as pixels. 

The descriptors are therefore represented by the sum of such histograms. 

Every pixel inside the image block is normalized, and the localized histograms could 

be contrast-normalized for increased precision. 

Improved inversion to depict variations in luminance or shadows is produced 

by such a normalization technique. Among alternative descriptor techniques, the HOG 

descriptor still has a few significant benefits. The approach maintains normalization to 

geometric and photographic modifications, except for object direction, because the 
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HOG descriptor works on isolated pixels. Especially bigger spatial areas can 

experience such alterations. The HOG descriptor is therefore very well adapted for 

detecting humans in images. 

1.6.3 Intensity-based Histogram Features 

The histogram is a graphical representation that displays the total pixels in images at 

various degrees of its intensity. About approximately 256 different intensity ranges 

can be used for 8-bit, or 16-bit grayscale images. First-order statistical data describe 

the features of the intensities of the histogram. Four features are extracted from the 

histogram once it is displayed in the images. Through the use of intensity histogram 

graphs, the four features, homogeneity, third instant, and fractal dimension computed.  

1.6.4 Second-Order Statistical Features 

Whereas the Region of Interest distributions of gray-level is described by the first-

order empirical features, those features never provide data on how the different grey-

level are distributed spatially within the Region of Interest. These kinds of details can 

be gleaned from the run-length and co-occurrence matrices. 

Features depending on histograms are regional in scope. Such attributes don't 

take into account spatial data. The combined conditional probability of image pixels 

paired pairings serves as the foundation for these properties. The combined 

probability distribution among pixels is calculated using the neighbourhood’s issued 

distance and angles. Regarding calculations, d=1, 2 and θ = 0, 450, 900, and 1350 

degrees are typically employed was confirmed by Sun, L., Zhang, S., & Luo, L. 

(2018b). 
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1.6.5 Feature Selection Algorithms 

The strategies for feature selection are described in the following: according to the 

pre-designed selection criterion, the least crucial characteristics of the provided input 

information are chosen by the optimum procedures underneath the predefined 

condition, and the other aspects are deleted from the input to lower the quantity of 

information. Due to the unavoidable signal loss and discovered intervention during 

the device's obtaining, image processing environment, information transmission, and 

converting processes, even though the implemented categorization domains are 

distinct, the final acquired signal is intertwined with a huge amount of distortion and 

interference in the particular pattern identification and categorization issues. In 

contrast to the conventional de-noising methods, feature extraction and selection is a 

crucial pre-processing step that affects the image data significantly. 

 Feature selection helps in eliminating interference, less important data, and 

noise from the input. This gets rid of all the data that are not relevant to the 

classification at hand thereby reducing the input data and consequently the processing 

time. 

 To improve the classifier's accuracy through the removal of non-relevant data 

which may be replete with interference, thereby leaving only the needed data for 

training and classification, which improves the model and its capability to solve the 

problem. Higher accuracy is achieved as a result. 

 The operational efficiency is also improved. Since all redundant and unwanted 

data are removed, the computational time is reduced as well, because the complexity 

is reduced. 
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Given its significance in pattern recognition issues, the selection of features 

has been a contentious and challenging subject in image processing. The key problem 

to be resolved is how to choose the proper feature selection method, retrieve the 

crucial features from available data, and use experimentation to confirm the accuracy, 

consistency, application, durability, and computational complexity of the 

requirements. Figure 1.13 displays a typical feature selection architecture. 

 

Figure.1.12: General Structure for feature selection 

The following stages make up a basic features assessment procedure. 

1. Subset formation: It is a procedure of selectively obtaining a set of features subset 

from the trained features vector matrix that has been created for the classifiers to 

evaluate or from a single features vector by specific conditions. The features subgroup 
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will be taken into account as the outcome of one level of the features extraction 

procedure to assess how well it performed. 

2. Subset Assessment: The feature selection approach can be carried out in one of 

two ways: starting with an attribute subgroup that only includes one attribute and 

expanding it one at a time; or starting with a universal set that contains all the 

elements of the feature subgroup and contracting it by one at a time. Whatever 

method is employed for selecting features, it is necessary to assess the performance of 

the existing subset whenever it is changed throughout time. The pre-set condition 

must be used to finish the feature extraction assessment procedure. 

3. Establishing the stopping condition: Every feature is a subset that must be 

evaluated and then its attributes must be checked against the stopping condition to see 

whether they meet a predetermined threshold. If that's so, feature extraction would 

immediately halt as well as the currently selected subgroup will be taken into 

consideration as the completed image. If not, this procedure will keep repeating itself 

till a features subgroup that satisfies the stopping requirement is found. According to 

the limitations of the feature-choosing requirements and the stopping conditions, the 

technique in this optimization problem occasionally fails to autonomously converge. 

Consequently, explicitly specifying the halting conditions could be necessary. This 

suggests therefore the effectiveness, accuracy, and precision of the feature selection 

operations will be strongly impacted by the feature-selecting criterion and the halting 

conditions. 

The PCA is used as a traditional FS approach, the input datasets from the 

existing domain into the new space using the projections transform. Diagonalization 
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transformation of the raw data provides information on the projection direction. The 

energy of the data corresponds to the value of each new axis, for which the sum of all 

the energies should tally with the original data. The first n values, when the data is 

arranged in a descending order tally up to 95% of the total energy and the remaining 

can be removed. 

The power proportion, that's always variable and ranges between 85% to 99%, 

could be explicitly changed. The higher Eigenvectors were maintained in the modified 

diagonal matrix, the little ones were eliminated, and the aggregate of the maintained 

Eigenvector achieves the percentage of the overall value, which is represented in the 

predicted value. The new space has only a few axes, even though there are a vast 

majority of energy reserves, and those axes correspond to the principal axis. To 

accomplish the goal of dimension reduction via projected transformations, PCA 

heavily relies on the concept of power concentrations. 

The SVM classification decomposed, whose important component is obtaining 

the spatially projected transform, is frequently used to execute PCA. The eigenvalues 

of the matrix following the projections are represented by every row in the matrix. 

1.7 Classification Algorithms 

Investigators create procedures and automated systems considering sample data or 

prior knowledge, some learning methodologies attempt to optimize a performing 

objective in such a situation elaborated by Nogay H. S. et al., (2020). - Rosati, R. et 

al.,(2020). When training is being done under supervision, learning techniques are 

chosen depending on such instances (i.e., the training stage), which also comprises 

correct output. That type of learning activity is referred to as categorization whenever 
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the predicted values show the various classes to which the instances belong. These are 

commonly referred to as train data because the classifier's characteristics are derived 

from the sample dataset. The real classifiers and the classifying techniques vary 

significantly from one another validated by Parthasarathy, G. et al.,(2019). 

1.8 Research Problem Statement  

A deep convolutional layer efficiently extracts significant and reliable the features are 

evaluated across the entire MRI dataset. Additionally, overfitting problems occur 

from the classifications phase based on the entire MRI analysis in every direction, and 

features are not chosen depending on the precision of data obtained from the 

grouping. Due to the distributed nature of the training dataset in this situation, there is 

a significant decision-making latency. Deep learning algorithms do not optimize the 

usage of several levels in the training and classification procedure. Higher computing 

cost is the outcome of this. A predetermined conceptual framework is utilized to 

decide after limiting the segmentation to edge portions. Unfortunately, these 

procedures are laborious, time-consuming, and subject to human mistakes. Hence, the 

requirement for automated classification and mortality predictions occurs. 

1.9 Motivation of Research 

The third-highest percentage of brain tumor deaths worldwide has been reported from 

India. Glioblastoma Cancer is among the worst malignancies, with an average and 

maximum life expectancy of 15-to-16 months for individuals who obtain appropriate 

medication. An accurate assessment is essential for determining the condition and 

developing the best possible medication strategy. A Brain tumor can be quickly 

diagnosed with the aid of computer vision, which has been done in the past. The 
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learning cost and accuracy rate of traditional machine learning approaches are its 

limitations. This encourages the creation of novel computer vision algorithms for MRI 

tumor identification that are simpler and have better efficiency, as traditional machine 

learning approaches have limitations on training speed and identification precision. In 

the past few decades, dynamic prediction using a contemporary deep framework has 

generated a lot of innovative research issues and attracted a lot of research attention. 

Nevertheless, deep neural models need additional layers for training. This encourages 

the development of innovative CNN modelling for glioma tumor prediction based on 

adaptive networks. 

1.10 Objectives of the Research  

The major objective is further divided into sub-objectives as stated below: 

 To develop DL models for supporting the diagnosis of radiologists and  

automated detection of glioblastoma brain tumor in MRI Images 

 To identify feature extraction and feature selection techniques that support in 

identification of glioblastoma brain tumor. 

 To predict the total survival rate of patients suffering from a glioblastoma 

brain tumor 

1.11 Unique key Contribution of this Study 

A hybrid deep learning model has been presented in our suggested research work to 

classify the glioblastoma brain tumor from MRI images. The suggested deep learning 

method for predicting the prognosis of glioma brain tumor. Glioma recognition was 
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determined using MRI brain tumor imaging. A dynamic Deep Learning technique for 

Glioblastoma brain cancer survival prediction rate was put out to address the 

aforementioned problems. 

 

Figure 1.13: Complete Architecture of Proposed System. 
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Contribution 1:  

In a summary, the contributions are as follows. 

In this study, we have developed two deep learning models for predicting the 

glioblastoma brain tumor segmentation and classification from human brain MRI 

images, which will help to accurately diagnose and classify the MRI images. In the 

First model, a unique and dynamic network-based faster R-CNN modelling strategy 

was developed. The MFCM classification technique is then used for segmentation 

utilizing radiomic characteristic data. The categorization for overall survival rate 

estimation is then completed to features chosen in MRI brain images using a FR-CNN 

technique. As a result, the suggested classifier improves accuracy while requiring 

shorter training time and a faster-converging rate. In the second model, the Hybrid 

deep learning approach has been used in each step of the proposed model.  

After observing the results of both models, found that the second model gives 

better results and the efficiency of the suggested approach is improved by 3%. 

1.12 Dataset 

 

 

Dataset 

Benchmark Data set 

( Kaggle) 
Real Time Dataset 
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Benchmark Dataset 

The standard benchmarking dataset aims to establish a common assessment criterion 

to assess the effectiveness and reliability of brain tumor identification and 

categorization. This dataset includes, 

Table 1.2 Details Regarding Benchmark Dataset 

 Controlled Patients with Tumor 

Adult Group 73 180 

Real Time Dataset 

Real Time Data Collected from Tata Memorial Hospital Hospital, Mumbai, 

Maharashtra (80 Patient Data Set Shared From TMC) 

Table 1.3 Details Regarding Real-time Dataset 

 Controlled Patients with Tumour 

Adult Group 528 1232 

Table 1.4   Details of real time patient’s dataset 

Patients No of Images Patients No of Images 

 Patient 1 22 Patient 41 20 

Patient 2 20 Patient 42 20 

Patient 3 22 Patient 43 20 

Patient 4 20 Patient 44 20 

Patient 5 20 Patient 45 22 

Patient 6 20 Patient 46 20 

Patient 7 20 Patient 47 20 

Patient 8 20 Patient 48 20 

Patient 9 20 Patient 49 22 
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Patient 10 22 Patient 50 20 

Patient 11 20 Patient 51 20 

Patient 12 20 Patient 52 20 

Patient 13 24 Patient 53 20 

Patient 14 20 Patient 54 20 

Patient 15 23 Patient 55 20 

Patient 16 20 Patient 56 24 

Patient 17 22 Patient 57 22 

Patient 18 20 Patient 58 20 

Patient 19 20 Patient 59 20 

Patient 20 20 Patient 60 20 

Patient 21 20 Patient 61 20 

Patient 22 20 Patient 62 20 

Patient 23 20 Patient 63 20 

Patient 24 22 Patient 64 20 

Patient 25 20 Patient 65 20 

Patient 26 20 Patient 66 20 

Patient 27 20 Patient 67 22 

Patient 28 20 Patient 68 20 

Patient 29 22 Patient 69 22 

Patient 30 20 Patient 70 20 

Patient 31 20 Patient 71 20 

Patient 32 22 Patient 72 22 

Patient 33 20 Patient 73 20 

Patient 34 20 Patient 74 20 

Patient 35 22 Patient 75 22 

Patient 36 20 Patient 76 20 

Patient 37 20 Patient 77 22 

Patient 38 22 Patient 78 22 

Patient 39 20 Patient 79 20 

Patient 40 20 Patient 80 22 
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MRI Scan  

 T1-Weighted ,T2-Weighted ,FLAIR 

 Kaggle Data Set (T1,FLAIR) (253 Case Data Available) 

 Real-Time Data Collected from  Tata Memorial Hospital Hospital, 

Mumbai, Maharashtra (80 Patient Data Set Shared From TMC) 

Inclusion and Exclusion Criteria 

 Previous research was considered when researchers created or 

approved a technique for MRI-based adult brain tumour segmentation 

or recognition.  

 Inclusion Criteria- Pre-operative and Post-operative CE T1, FLAIR 

adult group images consider. 

 Exclusion- Inadequate Image quality, subsection or biopsy result.  

1.13 Permission Letter 

Real-Time Data Collected from Tata Memorial Hospital, Mumbai, Maharashtra (80 

Patient Data Set Shared From TMC)  

Non-Disclosure Agreement - VL 183254 

1.14 Layout of the Thesis 

The thesis is divided into six chapters, each of which covers MRI scans utilized to 

forecast the glioblastoma subtype of brain tumors and the prediction of the survival of 

the patient. Details of each chapter are given below: 
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Chapter 1 – This Chapter provides a comprehensive overview of brain tumours and 

the various sorts of them. This chapter also covers the topic of exposing problems 

with state-of-the-art techniques, research goals, and the framework of the overall 

model that is suggested to address such problems. This chapter describes the rationale, 

the problem definition, and our contribution to the problem based on the existing 

circumstances. 

Chapter 2 – The comprehensive literature review in this chapter is divided into three 

sections: segmentation, feature extraction, and brain tumour prediction. The section is 

wrapped up with a summary table. This chapter recalls and compares prior work's 

findings according to criteria of accuracy, sensitivity, specificity, and precision. The 

proper objectives of the current work and its ultimate conclusion are outlined in light 

of the literature.  

Chapter 3 – This chapter discusses the history of MRI image processing. The first 

section of the chapter goes over the research on brain cancer characteristics and 

imaging-based methods for their identification. In order to emphasize the study being 

carried to provide a methodology for the automated diagnosis of a brain tumor, 

significant methodologies are then identified. Additionally, it provides a survey of the 

research on several image processing methods, including those for segmentation, 

relevant feature extraction, categorization, the immunological approach, and three-

dimensional reconstructions. 

Chapter 4 – This chapter describes the research on glioblastoma imaging techniques 

including its operational applications in section 4.1. The experimental result and 
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discussions are discussed in section 4.3, the proposed technique is detailed in section 

4.2, and the research is concluded in section 4.4, respectively.  

Chapter 5- In this chapter, conclusion and suggested methods for strengthening 

differences to bring the research to a close and summarize the contributions of the 

dissertation. There are also recommendations for further improvement. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter discusses the history of MRI image processing. The first section of the 

chapter goes over the research on brain cancer characteristics and imaging-based 

methods for their identification. To emphasize the study being done to provide a 

methodology for the automated detection, significant methodologies are then 

identified. Additionally, it provides a survey of the research on several image 

processing methods, including those for segmentation, relevant feature extraction, 

categorization, the immunological approach, and three-dimensional reconstructions. 

2.1 Overview 

The completed analysis was considered. The next sections provide a thorough review 

of earlier studies and projects that dealt with extracting the features, segmentation, 

and classifications using different techniques. MRI imaging can show specifics of 

various traits and offer a crucial foundation for the identification and treatment of 

sickness in individuals. Moreover, there are also a few limitations in the computer-

based assessment of MRI healthcare images, including variations in images devices, 

images systems, and image variables between patients, duplication, interference, as 

well as other intervention parameters from image acquisition, the massive portion of 

image datasets from numerous sequence data to be interacted to, the homogeneous 

patient situations between many persons, the absence of previous awareness, and the 

complicated MRI system. Because of the invasiveness of glioblastoma, the internal 

and external parts of the tumor often contain various cells, and the tumor borders are 

often unclear. 
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The aforementioned limitations on the level of automation in MRI-based healthcare 

imaging systems make it nearly difficult to create an efficient and effective fully 

automated system efficient and effective fully automated systems. The problem is 

now at the centre of study as well as being a critical and challenging one in the 

worldwide, combined domains of healthcare and data. Many efforts are made to 

address this problem, and numerous novel or better techniques are used to provide it. 

Currently, an effective approach is to create a semi-automatic system with mixing of 

human involvement. This can both increase the system levels of automation and 

minimize the amount of unnecessary engagement. The system can fully utilize the 

multi-modality brain MRI sequencing data and effectively tune the classifier to 

increase classifying performance and reliability by using additional methods (pre-or 

post-processing procedures). 

2.2 Image Segmentation 

The images are divided into several interconnected sections after the image 

segmentation. Segmentation aims to divide an image into various sections for 

additional processing before changing the representations of an image for easier 

evaluation. According to the problem, multiple image segmentation techniques are 

used. The various methods for image segmentation include edge, threshold, region, 

and cluster-based. Depending on distinct strategies, there are two categories of 

segmentation techniques. These are identifying differences and resemblances. In order 

to segment an image using sudden variations in brightness, discontinuity must be 

detected. It covers edge identification as an example of an image segmentation 

technique. 



45 

Conventional MRI imaging processing may operate directly on the pictures as a 

standard image analysis task, ignoring any associated health information. To separate 

the areas having identical and comparable properties for every two-dimensional brain 

MRI segment, various image-handling techniques are used. Areas can be made up of 

blocks rather than being sequential and still have consistent properties. For the finish, 

of the two-dimensional segments' preliminary investigation, more sections with 

distinct properties were separated from other areas. The conventional challenge of 

cancer identification in brain MRI images is one of image processing. 

Regional algorithms make utilization of the estimated properties (correlation) of 

consecutive frames, whereas bounding techniques make utilization of the properties 

of the vastly different pixels surrounding the border, such as the jumping density, 

complicated contour, grey gradient, level of the frequency spectrum, etc. According to 

Parthasarathy G. et al., (2019), many edge identification operators, including the 

Canny operator, Sobel operator, and others, provide the foundation of widely 

employed border recognition techniques. These operators have the same value as 

discrete rectangular patterns of varying shapes, such as 3 * 3, 5 * 5, etc. The 

appropriate border is made up of a combination of the core pixels of the patterns that 

correlate to the convolutional outcome over the complete image as the patterns travel 

pixel by pixel. Edge recognition usually yields single contour points, and thus needs 

to employ several connection strategies to retrieve the entire border's shape. Different 

edge recognition algorithms have various benefits and drawbacks, but they are all 

often noise-sensitive and not failed. 

Massive volumes of input image data, the computing complexity of the fundamental 

processes, and computational time restrictions make image processing jobs 



46 

computationally demanding. The objectivity of the problem Just about all 

organizations make extensive use of digital image analysis. Utilizing it frequently 

enables the industry to achieve newer technical heights. The most challenging query 

here is automated data retrieval and pattern analysis, which form the cornerstone of 

decision-making in the control of manufacturing operations. Real images are 

challenging for an automated approach and have several characteristics that are 

defined not just by the circumstances of the formation of the image but also by its 

methodologies and consequent preparation, and a combination of extracted data. 

Actual images are used in manufacturing vision processes, monitoring, supervising 

procedures, etc. 

It is typically used to describe particular formal aspects of images. Furthermore, 

considering the range of characteristics of the real image, discussing the network 

characteristics would be the more correct way to describe it and, subsequently, make 

the greatest utilization of the data it contains. The consistency of the intricate, multi-

level arrangement of several feature sets that characterize the examined image in all 

facets of expression of its qualities is the primary prerequisite of this approach. A 

huge set of modifications is one example of an operator creating a succession of 

images. It should not alter the geometric features of the image while having an impact 

on almost any feature groupings. Throughout this instance, a single feature may 

appear in a variety of ways across various images in the multi-sequence, always 

altering. Therefore, as an outcome of such modifications, it can either vanish or alter 

to the point where it needs to be regarded as a different autonomous characteristic or 

feature. 

 



47 

2.1.1 Unsupervised Segmentation Methods 

The process of segmenting an image entails breaking it up into homogenous areas. To 

do this, heterogeneity must be measured objectively. In contrast to techniques that 

utilize an image-based objective assessment, the image segmentation job addressed in 

this study utilizes a morphological objective assessment to evaluate the segmentation 

performance. In contrast to areas with identical intensities or textures, the objective is 

to segment the brain images into areas that have homogenous (and well-known) 

morphological features. However, Section 2.1 will mainly concentrate on 

unsupervised strategies that attempt to segment the MRI brain images into two 

significant areas, that is tumor or edema. Section 2.2 will describe numerous 

techniques suggested for brain tumor segmentation that uses an image-based objective 

assessment. 

2.1.1.1 Unsupervised segmentation with an anatomic objective measured 

Abdel-Gawad et al., (2020) suggested an unsupervised method for segmenting cancer 

pixels from T1-weight post-contrast brain MRI images. An individually chosen region 

of interest was subjected to an intensity threshold in such an approach, which was 

followed by a region-growing technique that expanded the threshold regions to the 

edges indicated by a Sobel edge detection filter. During several rounds of dilatation 

(which made the specified cancer area develop) and erosion, the area development 

results were improved (tumor region shrink). These two processes, which are also 

known as morphological operations, modify the labels provided to certain pixels by 

looking at the label of the pixel location. 
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Miao J. et al., (2020) suggested the same approach for MRI image objects 

whose intensities differ from those of their surroundings. Whereas one drawback of 

these approaches is the need for manually sliced or region of interest selections, a 

more serious drawback is that do not adequately account for the existence of 

hyperintense pixels, which reflect typical structure in T1 post-contrast Images . In 

addition to normal tissues that might absorb the contrast substance, such false 

positives have included non-tumor structures with short T1 durations. The expectation 

that the whole border will have a significant intensity differential between its 

neighbouring tissue, which is not necessarily the situation, is yet another significant 

drawback of these approaches. 

Biswas A. et al., (2021) presented an ANN strategy. The initial stage is to 

create an ANN model to identify brain tumor and extract the relevant features using 

K-Means and FCM Clustering. The retrieved features are sent through a correlation 

analysis selection procedure, with the finest features being chosen as the result. For 

experimentation and verification, 3 BraTS databases from 2015, 2017, and 2018 were 

used, with an accuracy of 98.32, 96.97, and 92.67 percent, accordingly.  

 Vijh, S., et al., (2020) demonstrated brain tumor based on the OTSU 

Embedded Adaptive PSO Method and CNN. This approach was effectively employed 

to determine the particular tumor area and measurements such as size, thickness, and 

length, and images are exhibited in various dimensions such as coronal, frontal, and 

axial. In regards to tumor diagnosis, the assessment findings of semantic segmentation 

performed based on the GLCM approach are extremely encouraging.  
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 Ye J. et al., (2021) suggested the VNet frame for predicting the glioma tumor 

grade based on the radiomics feature extraction from tumor images .To classify and 

extract information from brain images, the VNet technique leverages the framework. 

Such VNet variants are compact and can be installed on Edge equipment as required. 

The grade is localized using the shape and statistics of the tumor. Just after the tumor 

has been localized, the segmentation procedure takes place inside the detector area, 

increasing the likelihood that the segmentation will be done correctly. The suggested 

approach provides an effective rate of 90% during the identification phase, and better 

results can be obtained with additional training images.  

 Deepak S. et al., (2021) proposed the sophisticated architecture for predicting 

the types of brain tumor of Radiomics images. Fivefold cross-validation and CNN 

and, the accuracy score of the suggested models is 95% . 

 Veeramuthu A. et al., (2022) projected a deep CNN for tumor images based on 

tumor segmentation taking into account the ambiguity of the image feature in the 

radiography MRI imaging sub-areas. Additionally, to obtain tumor subtype 

categorization, implement a deep CNN to the tumor segmentation.  

2.1.1.2 Unsupervised segmentation with an image-based objective measure 

Numerous studies have focused on methods for unsupervised brain cancer 

segmentation in MRI brain images without using an anatomically precise metric. Such 

techniques partition images into homogeneity sections utilizing image-based features 

like intensities or textures instead of across anatomically relevant divisions. Because 

this strategy has significant drawbacks, such techniques won't be discussed for a 

significant duration. 
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The need for manual interference to select (and maybe split, combine, or 

process) the tumor sections which are to be utilized for statistical research makes such 

concerns particularly clear when addressing heterogeneity tumours. Although not 

directly applicable to quantitative analysis, these techniques are often appropriate for 

enhanced visualizations. 

Brindha, P. G. et al., (2021) suggested the three techniques such as Hopfield 

Neural Networks, Boltzmann Machines, and ISODATA looked at to do unsupervised 

brain cancer segmentation with an image-based objective assessment. This kind of 

strategy was introduced more recently by S. L. Bangare et al., (2018). The utilization 

of a Markov Random Field framework that statistically significant utilizes impacts 

that adjacent pixel values should also have over each other's labels, obviating 

necessity anatomical processes, and a fully automated "brain masking" preprocessing 

procedure gives one such technique an edge over equivalent technique . This research 

developed the Markov Random Field using the Classifier Conditional Modes 

technique on the assumption that the tissue classifications. Wu, W. et. al., (2021), 

presented an alternative method, to Glioblastoma which also utilized a Gaussian 

Mixture Framework (learned utilizing an Expectation-Maximization strategy), 

however, and utilized an Evidence Theory preparation instead of a Markov Random 

Field to account for image pixels dependencies in nearby pixels. 

2.1.1.3 Summary of unsupervised segmentation 

Whereas supervised segmentation approaches would be ideal because these do not 

include the humanistic variation of manual train datasets, unsupervised segmentation 

techniques using morphological quantitative assessments have only had little success. 
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This is partly because it is challenging to translate human professionals' visual 

interpretation and anatomical expertise into procedures that provide the necessary 

outcomes. Unsupervised segmentation techniques that utilize an objective assessment 

depending on intensity or texture can manage more complex instances and are helpful 

in improving visualizations, but the outcomes are frequently inappropriate for 

automatic quantitative analysis because intensities and texture differences frequently 

don't relate to the proper morphologic differences. 

2.1.2 Supervised Segmentation 

In order to effectively construct a segmentation framework based on the supervised 

approaches for images, segmentation differs from unsupervised approaches by using 

tagged train data. Data-driven methodologies, like classifiers, have the advantages that 

pertinent patterns in the dataset are found automatically instead of through manual 

trial and interpretation. A well-liked technique for carrying out brain image 

segmentation with a supervised learning technique is the design of the categorization 

problems. The goal of classifying is to classify an object based on a collection of 

attributes into one of the definite class labels. In the supervised approach, there are 

two phases: the training and testing, which employs labeled data to create a 

framework that mappings of characteristics to labels, and the testing stage, which 

utilizes evaluated relevant features to assign labels to unlabeled data. These 2 steps 

are used by numerous unsupervised techniques as well, but the use of the labeled data 

training stage of supervised techniques encourages the models to concentrate on 

producing discriminations in the feature set which match the specific semantic 

discriminations. 
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Using the terms normally and malignancy as categories and the intensities in 

the various brain MRI images as the relevant feature is an easy way to formulate the 

brain cancer segmentation problem like a supervised classifying issue. According to 

this concept, the learning step would involve developing a classifier that distinguishes 

between tumor and normal regions using the brain MRI image intensities. Using this 

framework to divide unlabeled image pixels into one of the 2 categories according to 

respective pixel intensities would constitute the test phase. 

Utilizing supervised formulations has many benefits, including the ability to 

execute a variety of operations by simply altering the training dataset. It was 

demonstrated in recent research that compared supervised segmentation methods to 

the unsupervised knowledge-based approach covered in the earlier part. 

2.2 Feature Extraction Approach 

Certain image processing techniques have it that the tumor area is extracted and 

passed to the next level. It is crucial for analyses and categorization to define a 

collection of features that properly describe the data. This procedure is known as 

feature extraction. Usually, gray values contribute a small portion of the information 

contents. Image information is normally spatial by nature. 

In spectral data, most of the information is repeated from image to image and 

this complicates the process of analysis and categorization. The key objective of 

feature extraction is to simplify and make the process of analysis and classification 

effective. The above-mentioned statement can be made true only when the following 

points hold; the redundancy of image data has to be eliminated, the variability of the 

image data has to be eliminated and finally, the data need to be restructured to 
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optimize the effectiveness of the classifiers. This is followed by the extraction of 

spatial information. When a spatial pattern is taken into consideration, shape, size, 

orientation, texture, and position are given importance. Among all these, texture is the 

primary feature of interest. Some of the main crucial aspects of pattern identification 

are textures. The texture is an attribute that plays a vital role in photo interpretation. 

Qualitative terms such as smooth, uniform, flat, coarse, grainy, even, uneven, regular, 

irregular, periodic, and random describe the term texture. 

Chato L. et al., (2021) proposed a ML  framework ,the texture in this project 

has had brain image preprocessing performed on it, and the counts are calculated by 

splitting the texture area with that window's area. The window is read from the pre-

processed image while using the statistical window approach, and the OTSU 

thresholding features are then determined at various volumes. If the total exceeds the 

number, the classification method is then used to classify the data. Whenever the 

count exceeds the number, the process comes to an end.  

Shim, K. Y. et al., (2021) proposed a ML  model, the Radiomics feature 

extraction method was used for extracting the relevant features based on local and 

distant recurrence. Fivefold cross-validation was performed on both local and distant 

recurrence features of glioblastoma tumor. 

Priya S. et al., (2021) proposed image is segmented into pixel blocks of size 

2×2, each pixel with an RGB component, in that work. Using this block, a training 

vector of dimension 12 is created. The aggregate of this training vector is called the 

training set. The various machine algorithm is applied over the training set. 
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Zuo S. et al., (2019) glioblastoma tumor patients based on RNA sequencing 

using six gene signatures. Effective RNA sequence discrimination is achieved with 

this simple feature set. The wavelet sub-band, discrete cosine transforms, and spatial 

partition was used to retrieve the sub-band frequency feature sets. impacts of 

changing trained class sizes, trained classes count, discriminating space size, and 

several frequency measures utilized for categorization. 

Hajianfar G. et al., (2019) analyzed univariate and multivariate radiogenomics 

features based on magnetic resonance imaging radiomics features of glioblastoma 

tumor patients. The feature extracting algorithm applies components from both 

models and region growing techniques. Incorporation of prior operational knowledge 

of shape and location can be used in this case, which contributes to an accurate 

volume and asymmetry. 

Hashemzehi R. et al., (2020) proposed a unique computer method based on 

multi-resolution decomposition to retrieve important information from MRI images 

and minimize the distortion in images. Multi-resolution from the median through the 

Starck-Murtagh-Bijaoui wavelet Transform is used for noise suppression.  

Lee, M. et al., (2019) proposed status in glioblastoma brain tumor. The 

quantitative radiomic data-based approach was used to obtain statistical features. The 

radiomic methods can be utilized to retrieve a variety of attributes. Therefore, in the 

study, four second-order features including entropy, inverse differential moment, 

correlations, and circular second moment are evaluated, demonstrating the system's 

ability to deliver the high discriminating efficiency needed for moving image 

prediction. 
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Amin J. et al., (2018) proposed fusion features from MRI brain images. This 

study introduced a unique feature extracting technique for the categorization of 

images. This work fusion of feature approach to extract numerous local descriptors. 

This method is developed upon the Probability Density Function formed by those 

descriptors. The features of fusion are extracted with the gradients.  It is suitable for 

all kinds of work associated with classification because it does not impose any 

specific assumption on the target. zyurt F. et al., (2019) suggested Expert Maximum 

Fuzzy Sure Entropy. The PCA based feature extraction .The sampling approach is not 

crucial when the size of data images is to select relatively large as postulated. 

Thakur T. et al., (2021) suggested innovative approaches based on RPCA and 

RPCA+LDA for cancer identification utilizing gene expression data.  Firstly, RPCA 

is utilized to draw attention to the distinctive genes linked to a certain biological 

mechanism. The feature selection process is then carried out utilizing RPCA and 

RPCA+LDA. SVM is also employed to classify tumor. The findings show that the 

suggested approaches for tumor categorization are efficient and workable. 

Deepa, B. et al., (2021) the Transform and Wavelet feature extraction analysis 

used in the process of extracting the texture feature. A novel computational algorithm 

to extract segments and detect regularity is discussed in this work. This method uses 

both speed and precision to retrieve and classify texture features of MRI images. 

Shim Ka et al., (2020) proposed to use of locating the tumor, the new methods 

extract the main features in brain images. To adequately describe the feature in DSC-

MRI images the coordinates framework is constructed. By combining region growing 

and edge detection, a tumor is detected. 
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K, K. K., T, M. D., & Maheswaran, S. K. (2018) proposed two methodologies, 

one based on tree-structured wavelet transform and the other based on GLCM. This 

work concludes that the wavelet provides better feature discrimination in terms of 

memory space and computation cost between the classes than the GLCM. 

A. Keerthana et al., (2021) proposed methods that use classification between 

non-adults and adults using SVM. There are the six descriptors, including dominant 

hue, structural, design, edges histogram, homogeneous texturing, and area shape, are 

used to accomplish that. For every descriptor, additional data is produced to retrieve 

the required features and go on to classification tasks.  

2.3 Image Classification Techniques  

There are two broad categories of image classification techniques that can be 

distinguished. These are non-parametric classifiers and training and learning learners. 

The categorization variables must undergo a thorough training stage for learning-

based suggested classifiers. Some of the known parametric methods are boosting, 

parametric generative models, decision trees, fragments, and object parts. These are 

the leading image classifiers, in particular SVM-based methods. 

Non-parametric classifiers do not require any training of parameters. Such a 

classifier decides what to classify based solely on the brain input image data. The 

decides popular parametric classifications, often known as Neural network-based 

classifiers, use Nearest Neighbour distance estimates. However, it renders inferior 

performances when compared with learning-based classifiers. 
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Non-parametric classifications have the benefit of handling a large number of 

classes organically. It prevents the over-fitting of variables, a major problem with 

learning-based methods. These classifiers do not require any training phase. Two 

image categorization techniques greatly lower the effectiveness of non-parametric 

brain MRI image classifiers. Image-to-image separation and quantized are the terms 

used to characterize them. 

To get compressed image interpretations, local image descriptors are used to 

characterize brain images. Such descriptors are quantization to provide a smaller bag - 

of - words. 

Quantization reduces complexity and weakens the effectiveness of 

descriptions. Several learning-based classifications require this kind of dimensionality 

reduction. Whenever a non-parametric classification lacks a training step to make up 

for the data losses, it is unneeded and destructive. Kernel-based techniques require 

image-to-image separation. Usually, if the query image is comparable to one of the 

dataset brains images can KNN classifiers deliver accurate image categorization. It 

only really generalizes to the labelled brain MRI images. For several classes with a 

high variety controlled, this restriction is extremely harsh. The Naive Bayes Nearest 

Neighbour classifier computes the direct images that are the closest distance without 

quantizing the descriptor.  

Lotan, E. et al., (2019) suggested model greatly when the application of such 

function in a neural network for unsupervised classification of images for mapping 

function is used. If the classification is done in a high dimensional space, then it can 

be separable linearly when compared to that in a low dimensional space.  
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In challenging image categorization tasks when the sole features are high-

dimensional histograms, the Support Vector Machine generalizes effectively and 

different wavelet transform. Some type of discrete intensity or color histogram is used 

as the input in this case. The Support Vector Machine which was motivated by 

Gurbina, M. et al., (2019), has a stronger generalization ability, which accounts for 

the extremely better results. 

Krishna T. Gopi et al., (2018) In this study, particle swarm optimization and 

SVM are two well-liked methods investigated for classification learning. 

Classification performance is increased by utilizing covariance matrices, 

decomposition-based number of pixels, and textural data on the collection of features. 

The probabilistic neural network classifiers with the utilization of innovative 

morphological filtering show robust advancement to various MRI data sets. The 

probabilistic neural network approach structure and the feature can be chosen quickly 

using GLCM method. The study concludes that Varuna Shree et al., (2018) proposed 

that classifiers require careful consideration when choosing input MRI data. 

Li Z. et al., (2018), suggested the model for an improved categorization 

method that uses the association of kernels with support vector machines to detect 

tumors in MRI images. GSDM and Tamura's techniques were used to retrieve the 

texture and Tamura characteristics. For feature identification, a genetic approach with 

combined probability was used. Support vector machines were used to classify data 

along with different kernels, and the effectiveness was verified. 
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Elshaikh, B. G. et al., (2021) proposed, Linear discriminant analysis of the 

texture classification model built from conceptual component pieces.  Depending on 

how well they can distinguish between different textures, a best-fit collection of six 

operations is chosen. The results are transformed into a conventional deviation matrix 

that is calculated over a moving window. Zonal sampling characteristics are computed 

using this matrix. The collection of unique features is utilized for texture 

categorization once a feature selection method has been performed. This method 

renders accurate classification. The developed algorithm can be applied to different 

types of classification problems. 

Almalki, Y.E. et al., (2022) provided the parameters of novel non-linear 

hybrid feature vector techniques that combine the use of structural data and spatially 

ranking methods in image analysis. Thus, a vector comprising the recorded sample 

data in both spatial and ranking order is used by the Invariant Clustered approach. The 

classical machine learning architecture was used for classifying the MRI brain image 

material which may be categorized based on the brightness patterns in the filtered 

images and determines the wavelet coefficients. In various cases, including picture 

de-blocking, impulse noise removal, and image extrapolation, the classification-based 

hybrid filtering outperforms linear filtering and order statistical filtering. 

Murali, E., & Meena, K. (2020) suggested Adaptive Thresholding and 

Histogram based techniques for detecting brain images. The multi-resolution 

histograms' feature groups were mapped using the novel, quick kernel functions, 

which also calculated a weighting histogram overlap in each area. The pyramids 

matching process detects correspondence automatically depending on the highest 
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resolutions of histogram cells, in which a matching pair shows first, and is linear in 

the number of features. 

Zhao J. et al., (2019) suggested the classifications technique creates a 2-D 

hidden supervised network for brain MRI images to enhance categorization by 

gradient and context sensitive features. It takes into context sensitive feature vectors 

for supervised brain tumor segmentation that are statistically reliant on a fundamental 

state mechanism with conditional probabilities based on the values of the nearby 

block within both horizontal and vertical dimensions. 

Gu X. et al. (2021) suggested an efficient coding technique called Locality-

constrained Linear Coding using Convolutional Dictionary Learning., and the 

projection coordinates are then combined using maximum pooled to get the final 

representations. The accuracy is achieved in two clinically relevant multi-class 

classification tasks using this method with a CNN algorithm, which works better than 

the conventional non-linear SPM methods. 

Choi K. S. et al. (2019) proposed the suggested framework is a unique 

learning strategy that incorporates the advantages of sharp and RNN classification, in 

contrast to previous methods. The fundamental architectural aspect of the suggested 

approach is how to ascertain the clusters' architecture in the multidimensional feature 

space. By the use of 5 test scenarios, the efficiency of the suggested technique was 

assessed. 

Choi Y. S. (2021) suggested a hybrid technique for predicting based on 

radiomics features using deep learning. The suggested technique is used in this 

instance for a collection of training data, whereby the input data are parameters that 
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are assessed online and the output data are qualitative factors that are categorized by 

human analysts. The suggested approach creates a robust deep neural model, that 

deduces that various features that can be precisely evaluated differ in value. The 

technique's usefulness is dependent on the absence of intricate repetitions in the 

training phase. 

Zhao Y. X. (2019) employing Multi-view Semi-Supervised 3-D Self-ensemble 

Network using MRI brain images for healthcare image processing systems for tumor 

segmentation. The Self-ensemble classifier combined with several kernel space 

features is the suggested approach. The kernel class specifies the selection conditions. 

To create a comprehensive and systematic approach, the feature selection technique is 

combined with Self-ensemble classification. The suggested strategy greatly improves 

outcomes and uses less time than experimentation without feature selection and 

adaptable train the model. 

Bakas S. et al., (2018) developed various ML techniques for Identifying the 

ML algorithms for segmentation and measuring the average Survival rate of the 

patient over the BRATS challenges. In general, machine learning classifiers find the 

separation hyper-plane by using two non-parallel descriptive margins. This classifier 

is appropriate in a variety of situations, particularly whenever the data have an 

incorrect pattern and the input values have a significant impact on the distortion. 

comparable to the various machine learning classifiers with a parametric margin. 

Hemanth, G. et al., (2019) examined a technique since it can be determined 

directly from the deciding functions of a CNN without any mathematically time-

consuming oversampling, the approach is computationally significantly more 
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effective than the leave-one-out approach. Investigations on synthetic data and a well-

known handwriting digits identification set demonstrate the generalization 

effectiveness of CNN for novel identification, which makes techniques better. 

Lu C. F. (2018) suggested a multi-level machine learning model for the 

diagnosis and monitoring. They suggested a system for choosing trained three levels 

of machine learning classifier. It takes advantage of a training level of machine 

learning feature that only employs the classification of sub-type of gliomas tumor 

from points that are located outside the distribution of the dataset. The produced 

models preserve the generalization power to the levels of a trained network on the 

entire trained dataset, but utilizes three level of classifiers and displays faster-training 

speed, according to analytical outcomes, which show that the suggested approach can 

minimize the training set significantly. 

2.4 Brain Tumour Classification Techniques 

Brain tumor are small malignant tissues that are developed in the human body. 

Primary brain tumor typically develop in the cerebellum and remain there. Tumor first 

appears elsewhere in the tissue before spreading to the brain in metastasis brain 

tumor. Due to the advancement in technology, knowledge about brain tumor has been 

enriched, because of the high-resolution techniques such as in medical imaging 

systems. 

Among all the above-mentioned techniques, MRI is the technique for lesion 

detection, tumor extent definition, tumor spread detection, and evaluation of residual 

and recurrent disease. 
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To use the fact that tumor occupy the space where normal cells would be, and 

that their severity features differ from those of normal cells, a system for detecting 

tumors from MRI brain images has been developed by Han W. (2020) based on deep 

transfer learning. In this procedure, the brain was retrieved by excising undesirable 

brain-related tissues such as the skull, forehead, fat, and muscle. CSF resembles tumor 

intensity characteristics in T2 scans. As a result, the symmetrical properties of the 

CSF categories are examined across the middle continuous line. The images with the 

CSF classes are further segmented into the CSF and tumor classes utilizing the 

expanded maximum transformation if the symmetric is not obtained. The tumor area 

and the usual CSF area are divided by this transformation. 

2.4.1 CNN Inception-V3 

Convolutional layer factorization is utilised in the InceptionV3 model to minimise the 

number of parameters. reducing processing without compromising network speed by 

switching from 55 Convolutional filters to two 33-filter combinations. 

Inception's 42 layers, 24M parameters, and 1–1, 3–3, and 5–5 filter sizes 

allowed for the largest amount of pooling while still extracting features at different 

scales. Calculations are sped up by using 11 filters. 

2.4.2 VGG16 Neural Network  

The deep neural network containing 16 layers is called VGG-16. A series of pre-

trained parameters from ImageNet is loaded into the network. In the highest five tests, 

the model performs 92.8% accurately in ImageNet, a database of over large brain 

tumor images divided into two categories. 
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The RGB image has three channels and a preset input size of 224 x 224 pixels 

for the VGG16 framework. It has maxpool layers of 2x2 filters with stride 2 and 3x3 

convolutional layers with stride 1. 

2.4.3 CNN- AlexNet 

A brain image is modified via the technique of convolutional, which involves 

putting filtering it. Poling is a discretization technique depending on samples. The 

input dimension should be decreased as the major justification. enabling speculation 

regarding the characteristics present in the binned sub-regions. 

The CNN Network is a collection of unique layers that, through the aid of a 

differentiable function, convert input brain images into the final output. AlexNet is 

made up of numerous inception models with convolutional kernels (CKs) ranging in 

size from 1 by 1 to 5 by 5, each with its own set of features. The crucial characteristic 

was retrieved at the start of the procedure. 

Melam, Nagaraju. (2018) suggested a new approach for detecting the 

bounding region of brain tissue. It also binds the peculiar abnormal tissue regions in 

the segmentation phase. In this work time, and complexity was reduced considerably. 

Younis A. et al., (2022) proposed a DL approach to analyze BT from MRI 

brain images. Faster CNN and VGG16 classifiers were used to diagnose the brain 

tumor and classify it to yield tumor region. This approach is in line with the 

techniques used by radiologists to diagnose and prognosticate brain tumors utilizing 

several MRI images, which is not the scenario with various other approaches and 
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training stages. The following is a description of the phase which was noted in that 

research. 

Ranjbarzadeh R. et al., (2021), suggested an innovative technique for tumor 

categorization in brain images T1, T1c, T2, and FLAIR was investigated. In two 

distinct ways, the suggested deep C-CNN network extracts. Images from Proton 

Magnetic Resonance Spectrometry are used for this categorization. The outcomes of 

using this technique demonstrate how precise, quick, and reliable it is. 

Chen H. et al., (2021) suggested a DL approach, this study sought to diagnose 

glioma tumor and detects and localizes low and high tumors in three dimensions with 

numerical models, which involved a planar antenna array and synthetic cylindrical. 

The development of an image creation method improved tumor responses and 

decreased earlier than usual time interference. Prior information is not required for the 

reconstruction algorithm. Both the cylindrical configuration and the plane detect 

tumor and in addition to that accurate identification of the tumor region. 

Fang, B.et al., (2019) presented that the 3-D structure of hyperspectral 

imaging (HSIs) data provides a chance for 3-D systems to effectively collect spectral 

and spatial features from image data. During HSI categorization, an innovative end-

to-end 3-D densely convolutional neural model with spectral-wise attentiveness 

strategy was used.  

Khosravanian A. et al., (2020) designed a model for Two phases are involved 

in the segmentation process using the fast level set. The first phase comprises the film 

artifact and the noise involved in that image is removed, after acquiring the image. In 
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the second phase of the image, the prime tissue structures are identified in the image 

volume. 

Moradmand, H. et al., (2020) examined the influence the automation 

algorithm by employing symmetric analysis for detecting brain tumor. The tumor area 

is calculated after the tumor has been detected and segmented. A modular and multi-

step approach was used to resolve the problem of segmentation. 

Carré, A. et al., (2020) suggested a standardized machine and protocols for 

predicting the brain tumor across MR images using the radiomics features. A fully 

automatic algorithm that is fast and robust, which does not require any prior 

information about the training process is used. In addition, to identify the seeding 

sites, both the homogeneous texture properties and the spatial aspects of the MRI 

brain images were brought into consideration. The segmentation results obtained are 

accurate. 

Yaqub M. et al., (2020) presented, the segmentation is done in two phases. 

MRI brain image acquisition is the first stage. Artifacts and noise of any kind have 

been eliminated. The optimized convolutional neural network with vectors quantized 

can achieve a higher value of tumor pixels and computational performance at the least 

number of weighted sums. 

Cho, H., Lee, S. H., Kim, J., & Park, H. (2018) builds the radiomics features 

were measured for classifying the grade of tumor and tumor region. The brain tumor 

at different grades by using the radiomics method. The tumor is detected based on a 

threshold set. This work superimposes the healthy area with the tumor affected area. 
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Bae S. et al., (2018) investigates radiomic characteristics from MRI with 

medical and biological factors that enhance survival rate prediction in people having 

glioblastoma tumor.  

Amin J. et al., (2020) proposed to consider the size, texture, and severity of the 

brain tumor. such a feature set is selected for each patient lesion. For additional 

statistical analysis, the goal is to localize and customize various forms of structure in 

brain. This study discusses the use of adaptive heuristics along with a generalized 

flexible-based segmentation technique to build a hybrid technique.  Also, with 

increasing improvement and comprehension of pattern detection algorithms, tries to 

adjust offered benefits by changing the parametric settings of patterns by relevant data 

and using time-dependent considerations. 

Feng X. et al., (2020) presented a new Ensemble 3-D U-Nets model to forecast 

patient survival rates, a linear framework was implemented.  The improvements were 

evaluated and found to have a high level of predictive performance in patients with 

both low-grade gliomas and glioblastomas. Utilizing recognized brain mapping as a 

prototype for a normal brain, researchers initially look for aberrant areas. Set 

geographical and geometrical limitations to the areas of identified tumor. 

Qian Z. et al., (2021) determines the best machine learning techniques for 

gliosarcoma and glioblastoma differentiating using radiomics features. According to a 

radiomics feature analysis predicated on the characteristics of the tumor volume is to 

use the technique LASSO in combination with the SVM classifiers. In comparison to 

all segmentations that met the requirements, the obtained outcomes exhibited the 

greatest combination of area characteristics and border characteristics. The tumor 
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volume and peritoneal edema were used to retrieve radiomic characteristics. The 

effectiveness of three feature extraction and classification approaches in 

differentiating between GSM and GBM was examined. 

Sotoudeh, H. et al., (2019) new AI methods have been designed to automate 

the diagnosis from histopathological, forecast grading and genomes from MR 

imaging, and offer information into gliomas prognosis. For physicians without 

computer expertise, a concise explanation of the fundamental ideas behind AI 

techniques and their applicability to medical training is introduced. To examine 

cutting-edge AI methods for glioma detection and treatment. It is suggested to employ 

a learning processing technique to create the classifier model within the rendering-

related optical parameter functionality. The categorization of high-resolution 

computerized tomography is a difficult issue for classification models, but 

experimental results show that it was greatly enhanced by additional learning stages 

and modifications. 

Korte J. C. (2021) examine the effects of an HNC radiation response model 

with non-reproducible radiomics properties. While limiting the system to credible 

features utilizing a correlation threshold technique, it is entirely feasible to categorize 

identical patient categories utilizing radiomic features from computing software. This 

is significant because it offers a methodology for evaluating the repeatability of 

observed radiomic patterns from previous experiments, which is pertinent for medical 

diagnostic validating studies. In contrast to an IBSI-compatible software suite, this 

research examined the consistency of radiomics features computed with two popular 

radiomics software products such as IBEX and MaZda. From 336 diffusion-weighted 
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MR images of 58 patients with head and necks cancer from the radiotherapy research, 

intensity histogram, size, and textural features were retrieved. 

Kobayashi K. et al., (2021) proposed the deep learning model to automatically 

selected radiomics features and classify the glioma tumor grades. The pixel intensity 

value of such a technique is unaffected by the form of cancer. It helps to improve the 

computer's potential to automatically estimate, allowing for a thorough examination 

of the essential surgical, chemotherapeutic, and radiation operations. 

2.5 Brain Tumour Classification System in Multiple MRI Sequences 

Mohsen H. et al., (2018) proposed a DL approach the discrete wavelet transforms and 

principal components analysis was used effectively combined data in the input layer 

and decision for making the layer to retrieve relevant feature for tumor identification. 

Whereas data fusion will add additional distortion, duplication, and computing effort, 

adequate data can minimize the classification's randomness and arbitrary nature to 

enhance the effectiveness of tumor identification. 

Suter Y. et al., (2020) suggested the ML model for analyzing the glioblastoma 

survival rate based on the radiomics feature extraction method.  The choice of class 

boundaries is where this approach becomes challenging.  

Kim D. et al., (2019) analyze the study's design elements to determine how 

well artificial intelligence techniques performed in the diagnostic examination of 

clinical images. Instead of using internal verification, this research utilized external 

validation; in the terms of external validation, was data obtained for validation. 

However, almost all of the research findings which have been published during the 
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study duration and assessed the effectiveness of AI techniques for early diagnosis in 

image analysis have been actual evidence of detailed feasibility investigations and 

lacked the architecture elements necessary for reliable verification of the medical 

effectiveness of AI techniques in real-world settings. 

Chen G. et al., (2020) proposed a framework to handle large dataset images. it 

employs the optimized probability maps and statistical features approach for 

extracting the relevant features.  Using hierarchical learning of the cascaded random 

forests is optimized the weight error values and the difficulty of the local spirited 

system, where the source is identified as the average distance between the feature 

vector and its respective MRI input images and the labels as the number of active 

neural in the systems. 

Jalalifar A.et al. (2020) predicated on abnormality identification utilizing a 

one-class SVM approach, suggested a technique .Two outliers masks are produced by 

the approach using separate one-class support vector machines. Moreover, the model's 

effectiveness varies widely, making it not very reliable. It employed an approach 

made up of probabilistic models and active contour frameworks. The technique is 

based on the retrieval of multi-dimensional features and a detailed summary of future 

natural data, however several of the underlying concepts may not hold for every case. 

Iqbal S. et al., (2019) In this publically available MICCAI BRATS 2015 

dataset was used. This dataset contains four modalities T1, T2, T1c, and FLAIR of 

MRI images. CNN and LSTM networks are two distinct deep models that are trained 

on the same dataset and integrated to create ensembles to enhance the outcomes. 
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Haarburger C. et al., (2020) reported the repeatability of radiomics the first 

stage involves manual MRI image segmentations from 4 specialist users, and the 

second stage involves a probabilistic automatic segmentation method utilizing created 

neural network. discover reliable findings for both manual and automatic MRI image 

segmentations across all three different datasets, demonstrating that some radiomic 

characteristics are resistant to segmentation variation while others are vulnerable to 

poor repeatability under various segmentation approaches.  

Ranjbarzadeh R. et al., (2020) presented contacting, and the variability of the 

organ. In the rapid identification of cancers cells, the segmentation of the initial input 

grey images is changed into the segmentation of the likelihood mapping after the 

probability mapping of MRI brain images will be first determined using the pattern 

recognition underneath the adjacent neighbouring factor The concave and convex 

endpoints were then determined after the Kirsch filter was used to retrieve the organs 

borders. The images were uniformized along the boundaries of the organ using the 

mean-shift method. Lastly, the tumor were divided using the FCM method. 

Shboul Z. A. et al., (2019) presented the DL approach for predicting the 

Glioblastoma Patient Survival rate based on Radiomics features. In this study, 

proposed a model for glioblastoma and aberrant tissues classification and 

segmentation and also survival prediction of patients using brain MR images. The 

suggested framework contains techniques for segmenting tumor tissue utilizing 

radiomics characteristics-guided deep neural networks and along with surviving 

regression and classification utilizing these aberrant tumor tissue sections as well as 

other pertinent medical variables.  
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Patel M. et al., (2021) predicated on merging medical, radiomic, and cellular 

to distinguish the tPD and psPD in patients having glioma. The machine learning 

random forest approach was used for relevant feature selection under bootstrap 

sample cross-validated sequential backward removal. The resultant models were 

validated using naive Bayes with a five-fold cross-validation procedure.  

Mahmoud A. et al.,(2023) proposed and examines the value of CNN models  

by using various measures on a dataset of brain tumor. The models in use had their 

accuracy, sensitivity, and specificity measured and compared.  

Tandel G.S. et al., (2023) Five convolutional neural networks were used in the 

proposed ensemble strategy.  
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Table 2.1: Summary of Some Literature Review in the field of brain tumor detection 

Authors Techniques/ 

Methods 

Classifier/ 

Algorithms 

Benefits Problem 

Identified 

Abdel-

Gawad et 

al., (2020) 

Sobel Edge 

Detection 

Technique 

Classical 

Genetic 

algorithms 

Correct ROI (Region 

of Interest) 

identification is made 

possible by using 

neural networks to 

operate at varied 

intensities.  

Changes in 

intensity when 

acquiring the 

images 

Miao J.et 

al.,  (2020) 

Adaptive 

Dictionary 

Learning 

Fuzzy C-

means 

clustering 

algorithm 

The relationship 

between compression 

and intracranial 

structure deformation 

in order to detect the 

progression of brain 

tumors on T1 post-

contrast images. 

Suggested 

approach cannot 

produce the ideal 

segmentation 

output with 

intensity 

inhomogeneity 

Biswas A. 

et al., 

(2021) 

K-Means 

and FCM 

Clustering 

ANN Seven potential 

designs for 

categorising MRI 

brain tumour of MRI 

mages. 

Accuracy of 

reconstruction was 

less 

Vijh, S. et 

al., (2020) 

Embedded 

Adaptive 

PSO 

CNN To designed the deep 

model with a self-

defined framework 

on an MRI dataset for 

brain tumours 

detection and finally 

result is compared. 

Work only on 

binary class so it 

difficult to predict 

another tumor.  

Ye J. et al., 

(2021) 

Radiomic 

feature 

VNet Seven potential 

designs for 

Accuracy of 

reconstruction was 
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Extraction, 

LLG, HOG 

categorising MRI 

brain tumour of MRI 

mages. 

less 

Deepak S. 

et al., 

(2021) 

Fivefold 

Cross-

Validation 

CNN- 

VGG16, 

SVM 

 The size of the 

tumour determines. 

Whereas      if 

tumor is smaller 

than 3 mm in 

diameter, it is 

challenging to 

locate the tumour. 

Veeramuthu 

A. (2022) 

Image-based 

classifier 

Deep CNN Seven potential 

designs for 

categorising MRI 

brain tumour of MRI 

mages. 

Accuracy of 

reconstruction was 

less 

Brindha 

P.G.et al., 

(2021) 

NA ANN 

CNN 

To designed the deep 

model with a self-

defined framework 

on an MRI dataset for 

brain tumours 

detection and finally 

result is compared. 

Work only on 

binary class so it 

difficult to predict 

another tumor.  

S. L. 

Bangare et 

al , (2021) 

Sobel Edge 

Detection 

OTSU’s Predict 2-D view of 

all stages of tumor 

Only grey MRI 

with limited dataset 

used.  

Chato, L. et 

al., (2021) 

Radiomic 

Features 

KNN, 

SVM, 

VGG16, 

NN 

Developed a ML 

model for predict the 

survival rate for 

glioblastoma patients 

and analyze the 

aggressiveness of 

if the dataset 

contains a mixture 

of high- and low-

grade tumours. then 

results may vary. 
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tumor 

Priya, S. et 

al., (2021) 

Six Spatial 

Scale Filters, 

Fivefold 

Cross-

Validation 

Neural 

Network 

To analyse the texture 

based T1 contrast-

enhanced images for 

examining the 

effectiveness of 

MRTA for glioma 

survival rate of 

patients. 

color space is 

shows to vary the 

final outcomes. 

Panwar S. 

et al., 

(2021) 

NA AlexNet Effectively categorize 

the different forms of 

brain tumours. 

Very small dataset 

was utilized to 

pretrained the 

network 

 Rani S et  

al., (2022) 

Cellular 

Logic Array 

Processing 

3D- 

AlexNet 

Proposed a 

framework to identify 

the specific pattern to 

detect the brain tumor 

from medical image 

Computational time 

is more for pattern 

recognition 

2.6 Research Gaps from Previous Research Work 

Table 2.2: Summary of various filters for feature extractions used in previous Work 

Filters Name Working Advantages Disadvantages 

Median Depending on the 

average Pixel 

intensity of brain 

Image 

effective at 

lowering speckle 

noise and salt and 

pepper distortion. 

Comparing to a 

mean filter, 

difficult and time 

consuming. 

Wiener Depending on 

frequency-domain 

and inverted 

filtration process 

effective at 

reducing the effects 

of distortion from 

images. 

Its modest 

performance is a 

result of operating 

in the frequency 

domains. fails to 
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produce 

satisfactory 

outcomes for 

additive noises. 

Hybrid It is combination of 

two filters such as 

median and wiener 

Removes the 

effects of blurring, 

impulsive 

distortion, and 

speckling from 

MRI images 

Complex and time 

consuming 

Gaussian It serves as low-

pass filtration for 

frequencies 

Effect is to remove 

high spatial 

frequency 

components from 

an image. 

Sometimes used 

distort MRI images 

and eliminate 

details 

Average It is depending on 

values of pixel 

intensities 

Reduces Gaussian 

noise. Response 

time is fast, 

Boundaries and 

edges are Preserved 

The average pixel 

value replaces the 

actual value 

Table 2.3: Summary of Various Image segmentation methods 

Various Techniques Advantages Disadvantages 

Threshold Method Pixels are partitioned 

depending in their intensity 

value 

The edges that can be seen are 

made up of individual pixel 

and could be absent entirely. 

computationally costly 

Watersheds Method improve the capture range, 

capture weak edges 

Over segmentation 

K-mean Computationally faster than 

other methods, if k-value is 

small 

Difficult to predict k-value, 

doesn't work with different 

size and different density, 
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accuracy depends on the 

predicted k-value 

Active contour 

method 

Utilize designs with active 

contours. effectively 

maintains the universal line 

forms. 

For the contouring, locate 

powerful image gradient. poor 

MRI image borders, poor 

precision, and image distortion 

Region growing Establish the initial 

centroids and effectively 

distinguish the areas with 

the similar characteristics. 

To get suitable location, only 

manual effort was needed. 

2.7 Contribution of this chapter 

 The vast amount of historical information on MRI brain images is covered in 

this chapter. The background data on brain tumor and their identification was 

discussed before moving on to the previous research.  

 The fundamental methods used by multiple investigators and the system they 

had discovered using automated identification methods were then discussed.  

 Additionally, the chapter analyses the literature on categorization, feature 

extraction approaches, optimization, and three-dimensional reconstructing 

approaches. 

 This chapter also discussed and used in image segmentation and feature 

extraction. 
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CHAPTER 3 

Glioblastoma Brain Tumour Survival Prediction Using Deep 

Learning 

This chapter presents the research on glioblastoma imaging techniques including its 

operational applications in section 3.1. Section 3.2 presented the complete 

methodology deep learning model. Section 3.3 mentioned the experimental result 

analysis, and the research is concluded in section 3.4. 

3.1 Overview 

Whenever abnormal brain cells multiply, brain tumor form. The death rate is 

significantly increased in adolescents and adults with cancers than in people without. 

Depending on their severity and development rate.  Whenever harmful cells 

proliferate from the initial tumor, secondary tumor develop in different regions of the 

human body highlighted by  Xia, W. et al.,(2021). Initial tumor appear in the brain. 

According to the WHO, the source and activity of cells determine whether a brain 

cancer is normal or malignant. Older patients with an initial stage of brain tumor are 

more likely to develop GBM, a very prevalent and dangerous type of tumor. The 

diagnosis for GBM is poor investigated by Zaw, H. et al., (2019) even though it is 

managed with chemotherapeutic, radiotherapy treatment, and maximal surgeries. 

Medicinal response and GBM regrowth were inevitable even though these 

multifunctional therapies are inadequate to cure this terrible sickness. As MRI is a 

non-invasive clinical diagnostic technique, it is frequently utilized in the diagnostic, 

prognostic prediction, treatment, and other therapeutic strategies of individuals having 

GBM. MRI uses the image to gather physiological, structural, operational, and 
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compositional data. Among the more effective approaches for diagnosing GBMs is 

MRI since it can capture real-time multimodal imaging of the disease. In brain tumor 

segmentation, MRI segments were primarily used for labelling. This affects several 

therapy choices, additional therapeutic strategies, and total survival predictions 

indicated by Fu, J. et al., (2021). The basis for the collaborative decision is that 

glioma patients require reliable predictions to make smart selections before receiving 

therapy confirmed by Amin, J. et al., (2020).  

3.1.1 Methods for Imaging Glioblastoma and Related Functional Issues 

Nowadays, X-ray, MRI, and computerized tomography (CT) scans are among the 

methods utilized to monitor brain development, and the resulting images by such 

methods have improved over time conveyed by Sharif, M. et al.,(2020). for 

determining neurological development is MRI, which is effective for classifying and 

identifying different types and grading tumor in the clinical analysis explored by  

Tandel, G. M. et al.,(2020). It can be used to identify dangerous tumor and locate 

affected cells inside the brain. This technique can reveal tumor characteristics that the 

unaided eye would have missed. These custom-made clauses are selected for either 

conventional facts approaches or deep learning computations observed by  Fan, C. et 

al., (2017).Brain cancer survival rates using a deep learning-based radiomics 

framework have been suggested by Suter, Y.et al.,(2020). Nie created a Convolution 

neural radiomics model employing a combination of MRI data from 75 patients (train 

data) and 38 individuals to determine the total patient survival rate with glioblastoma. 

The developed approach outperformed conventional approaches to predicting total 

survival if seven deep characteristics were chosen from the relevant CNN investigated 

by Wijethilake, N. et al.,(2020). Such methods can radically alter how neuroimaging 
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is utilized to enhance diagnosis and treatment for patients with traumatic brain injury, 

which is a distinctive benefit. It's crucial to remember that these methods have 

constraints, and there are still big problems to solve. In the chapters, a unique 

framework for glioma in relationship to radionics was developed using CNN 

characteristics for survival rate prediction. It contributes to increasing the prediction 

system accuracy in the environment of autonomous care and decision. 

3.1.2 Survival Prediction for Glioblastoma Brain Tumor 

Research in the field has shifted to ml algorithms throughout the last ten years. From 

standpoint of machine learning, the MRI image segmentation of brain tumor can be 

seen as a pixel problem to determine whether such a specific voxel corresponds to 

healthy tissue, glioblastoma, or edema category. Artificial characteristics and 

techniques depending on traditional machine learning, including AdaBoost, linear 

regression, and support vector machines are groups of techniques used to produce 

these features highlighted by Shree, N. V., & Kumar, T. K. S. (2018). Therefore, in 

the sector, deep learning has rapidly gained popularity, especially for image 

segmentation, classifying, and prediction. According to the network design, the 3 

types of deep learning techniques employed for brain cancer segmentation are patch-

wise, semantic information, and cascade-based.  

Nowadays, a large number of well-known CNN based utilize patch-wise 

strategies to address segmentation issues discussed by  Sun L. et al.,(2018b), Smaller 

areas of the image encompassing every pixel are examined to use a sequence of more 

intricate and simplified aspects of nonlinear interpretations of the dataset elaborated 

by Nogay, H. S., & Adeli, H. (2020). Additionally, the tumor is segmented using 
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CNN models, and features like form, entropy, and geometrical attributes are extracted 

from this. One of the biggest hurdles for investigators is finding malignancies in low-

complexity systems. Benign growths, glioblastoma, and pancreatic tumor, as per 

current research, can be reliably diagnosed, although their method necessitates a large 

amount of convolutional and kernel, which raises the computing cost. The malignant 

brain tumor test image was found using a subsequent expansion of the models. 

Despite the study focused on non-medical purposes, it provides insights into how 

Faster-R CNN might be applied to diagnostic imaging defined by Rosati, R. et 

al.,(2020). To forecast the survival rate of glioma tumor, the research suggests a deep-

learning technique.  

The neurological system varied collection of cancers that can develop close. 

The position of the tumor within the brain has a significant impact on the symptoms 

of these victims, and clear diagnostic and major remedial alternatives were 

determined, which may have a detrimental effect on the patient's condition life. Brain 

tumor are typically only identified through neuroimaging just after the onset of 

neurological problems. Numerous studies have used this methodology, and the 

approach has failed as a result of coefficients overhead, overfitting, and inefficient 

extraction of features. A deep learning approach does not optimize the utilization of 

several layers in the training and classifying systems. The computational cost rises as 

an outcome. Additionally, overfitting problems arise from the classification procedure 

that is based on the complete MRI analysis in each direction. According to the 

obstinate edge regions, segmenting images using a standard architecture is difficult. 

The learning latency and recognition effectiveness of traditional ML approaches are 

limited. Consequently, the time consuming, incorrect, and inefficient technique 
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creates a requirement for an enhanced deep learning model. To forecast glioma tumor 

in MRI diagnosis, a unique and dynamic network-based faster R-CNN modelling 

strategy was developed and published by Wankhede, D. S., & Rangasamy, S. (2022). 

3.2 Proposed MFCM-RSGWO-FRCNN Model  

Considering healthy tissue or large size overlap intensity, brain tumor were 

challenging to model and produce patterns for. Better precise diagnoses are produced, 

and there are several benefits to using MRI brain imaging data and computer based 

medical image analysis. Computer-aided tumor diagnosis techniques and CNN have 

been demonstrated to be effective and have contributed considerable strides in 

computer vision. Glioma recognition was determined using MRI brain tumor imaging. 

The complete architecture for the suggested deep learning model is depicted in Figure 

3.1. 
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Figure 3.1: Complete Architecture of Proposed MFCM-RSGWO-FRCNN Model  

The suggested method consists of four steps. The initial stage involves gathering the 

MRI brain data for utilization from a fixed website and preprocessing it to get rid of 

all the impurities. The MRI brain images also include several types of distortion, such 

as salted and speckle noise and Gaussian distortion. Furthermore, in certain instances, 

MRI images are collected using different scanning devices, and imaging intensity is 

used to normalize the MRI images. As a result, preprocessing includes by statistical 

normalizing and using filtering to improve the MRI brain images. The aim main of 

preprocessing is to build the database by removing unwanted data and restoring 

missing features from MRI images. The MFCM classification technique is then used 
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for segmentation utilizing radiomic characteristic data. Countless features may be 

retrieved from the segmented MRI brain images. The most important and instructive 

aspects from the retrieved important features. The categorization for overall survival 

rate estimation is then completed to features chosen in MRI brain images using an 

FR-CNN technique. As a result, the suggested classifier improves accuracy while 

requiring shorter training time and a faster converging rates. The following steps must 

be taken while using the suggested glioma brain cancer survival predictive model. 

3.2.1 Data Collection 

The standard benchmark MRI brain tumor sample 254 images taken from the 

publically available Kaggle were used to create the database. A prediction of the 

complete survival rate has been created from each batch of input brain images.  

3.2.2 Pre-processing and Noise Removal 

Improving the visual information from the brain's image using the pretreatment stage, 

and improving the image properties is crucial for postprocessing. The MRI scans 

show many types of distortion, containing salt and pepper noise and Gaussian noise. 

Since these brain images were taken with various scanning machines, the intensity 

also needed to be adjusted. Because multiple scanning devices are used to capture the 

images, intensity is also adjusted. To remove noises and distortions from the image in 

this study, symmetrical filtration and histogram normalization are used.  

3.2.2.1 Image Normalization 

Intensities is a fundamental preprocessing procedure in brain MRI 

investigation. Large intensity variations can occur when different scanners or 
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specifications are utilized for imaging the same patient at different periods throughout 

MRI data collection. Further, MRI preprocessing and population analyses, such as 

data augmentation, segmentation, and cell size estimate, would be significantly 

hampered by these intensities are vary.  A normalization technique modifies the 

distribution of every follow-up scan to suit the selected standard scanning to increase 

imaging similarities and facilitate MR image comparison among MRI images. For 

intensity normalization, the histogram normalization procedure has been used without 

any practical assistance or previous experiences. 

In an identical patient, utilizing varied acquired variables and varying field 

intensities were comparable for the same severity kind percentages for the identical 

cell types in brain MRI images.  As an outcome, low-quality MRI images will be fed 

to the network as the inputs, while a high-quality MRI images will be utilized as the 

outputs. The histogram's tails are usually to blame for problems. The tailed with high 

intensity typically relate to abnormalities and abnormal intensity, causing large 

scanning oscillations. To avoid this problem, the backgrounds and outliers are first 

removed from the source images during preprocessing, leaving only the Intensity of 

Interest, which is then utilized as the reference scaling. 

The       ,      are the two standard scale factors with min and max 

intensity. The benchmark image's distribution is composed of the Low-Intensity 

Homogeneous subgroups LIR and HIR. The distribution was initiated from the LIR 

and extends all the distance to the HIR. The MRI image intensity are translated to the 

HIR and LIR ratios. The source MRI images distribution is moved and enlarged as 

illustrated underneath to accommodate of input MRI image's grayscale values. 
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  (     )   
       

         
 ( (     )      )                   3.1 

Whereas, at      represents the initial input images of brain which is target 

histogram  (     ) and extends to      grayscale level images, scaled up between 

the lower boundary   
  of brain images and   

  is the upper boundary respectively. 

When the number of pixels   (     ) of the new normalised brain images lie between 

HIR respectively. The variables    and    reflect the upper and bottom boundaries of 

the reference MRI image before scaling up. This is achieved by employing two 

separate linear mappings. From ,      - to,      ], the first is ranges while from 

,       - to ,       ] the second ranges. Let's define the normalising function 

as  (     ). The expression for  (     ) is:  

 (     )  {
 ⌈     ( (     )    )

      

      
⌉    

    (     )         

⌈     ( (     )    )
      

      
⌉        (     )     

 
       3.2 

where the mean values of the input MRI images histogram and reference MRI 

images histogram were displayed as    and   , and the functionality of the ceiling is 

known as ⌈ ⌉ . The pixel values of the input MRI images are denoted as     and    . 

Three important intensity factors are required for normalising the MRI images 

[minimum (    and    ), maximum (    and    ), and mean (   and   )], will be 

effectively attained without the need for the study's incorrectly supplied histogram 

boundaries. The recommended normalising approach therefore deviates from the 

current normalisation technique. When comparing the input MRI brain images to the 

source images, the effectiveness of histogram normalisation is evaluated utilizing the 

noise quantification.  
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3.2.2.2 MRI brain images de-noised based on bilateral filtering  

Probabilistic, salt-pepper and other types of noise can be present in the MRI 

imaging of glioblastoma. The data remains unchanged from the inputted MRI brain 

data after the noise has been removed. These input MRI brain images are de-noised 

using bilateral filtering. The bilateral filtering technique applies the spatial weight 

average without employing the smoothed edge concluded by  Parthasarathy, G.et 

al.,(2019). It is achieved by combining two Gaussian filtering methods, including one 

that acts in the spatial domains and another in the pixel intensity plane. Both the 

intensities and the spatial range are being used to calculate the weights. P is the output 

of each pixel location based on a bilateral filter.   
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Where,  ( )  𝜀  and 𝜀  are factors that control the weight in the severity and 

spatially domain begin to decline. 
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Color mappings, cubic de-noising, texture pattern elimination, as well as other 

applications including image de-noising have been used in bilateral filtering. The 

intensity of the signal is presented to the variables of the spatial state in a high-

dimensional region that expresses the filtering. By implementing the bilateral filtering 

as two straightforward linear convolutional layers in this enhanced area, they can 

create straightforward parameters for down-sampling the crucial functions and 

attaining accelerated.  
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3.2.2.3 Brain Tumour Segmentation   

Brain tumour segmentation determines the location and size of abnormal 

tumour regions and if the tumour area is perfused, swelling, or advanced fibrosis 

utilizing and protons densities MRI imaging. That tumour kinds are more visible in 

particular imaging methods can be determined by analyzing the images produced by 

the several diagnostic modalities. An automated segmentation of a tumor into four 

sections which are generally . According to the three-imaging series that are 

accessible, each pixel has 219 low-level features produced by the classification. 

3.2.2.3.1 Modified Fuzzy C Means Clustering  

 The FCM approach assigns pixels to various categories based on fuzzy 

membership. Let  d

ii RxNixX  |,,2,1,   represent an N-pixel brain images 

that is divided up into the c number of clusters, with    shows the tumor data features. 

The approach uses a continuous optimisation technique to try and reduce the optimal 

solution represented by 
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Additionally, the optimization problem in equation 3.5 was changed right away to the 

following. 
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 Where, 
iN  is the probability of several neighbours going through a windows 

in a neighbourhood 
ix and 

rN . The next term's alpha variable regulates the penalty's 

impact. In general, increasing 3.6 by two results in a spatial constraint that aims to 

preserve consistency on nearby image pixels
ix . The objective function 

mJ  can be 

reduced utilizing an optimization technique given a restriction. 

Neighbouring pixels in images are those in an MRI scanning that are close by 

and have similar feature qualities. To effectively describe the spatial features of pixel 

in images, the result is modified. 

 


n

k

m

kj

y

kj

m

ij

y

ij

ij

sv

sv
v

1
.

.
                                            3.7 

  


jaNk ikij vs                                            3.8 

 Where, 
ijs  indicates the probability of a pixel in space. 

ja  belonging to the 

thi  cluster.  jaN  is a pixel- or voxel-centered squares frame in the spatially space. 

ja  in the spatial domain and my, are the set of parameter. While residue was 

unchanged by clustering, the spatially function enhances the unique membership 

score. The MFCM Algorithms has the following phases:   

Phase-1: Set c total number of clusters and y set of parameters.  

Phase-2: Evaluate membership matrix  b

ij

b vV   using Eq. 3.8,  

Phase-3: Evaluate 
jt based on Eq. 3.5,  

Phase-4: continue phase 2 and 3, upto the last terminating criteria is met: 
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    1bb VV where b  indicates how many iteration stages there are 

 ,2,1,0b  Obtaining the radiomic features from the MRI images based on this 

segmentation. The radiomics characteristics included data about Pixel intensity, image 

derivatives, geometric data, texture-based features, and GLISTR Bayesian 

probabilities mappings. Such characteristics have been used to create frameworks for 

diagnosis, prognosis, and predicting therapy outcomes. These frameworks are 

incorporating medical, physiological, hereditary, and proteomics traits to increase 

accuracy. 

3.2.2.3.2 Features Extraction 

 The raw pixel intensities for each pixel is included in the intensity element  ivI , 

as well as significant variations between all four modes. The image derivatives 

element is made up of the intensity of the image gradients and the Probabilistic 

Laplacian. Before creating additional intensity-based features, the mean image 

intensity of the GLISTR segmentation cerebrospinal fluids were used to do intensity 

normalization. The geometrical distances from the grain used as the tumor origin in 

GLISTR, which was at the pixel, offered the geometric data at the pixel. Following 

are how the geometric distances among vi and vs were determined. 

  dsSP


 min

                                            

3.9 

 Where,   is a route that connects 
iv to 

sv . The fast march technique was 

used to optimize, the weight P according to the gradient's intensity at each pixel, 

With the first and second orders, texture-based statistical approaches are provided by 

a GLCM. The mean and variability of the intensity inside two coordinates of each 
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modality make up the first-order statistics for each region to 64 unique gray values, 

and each image sliced was then confined by a boundary box made up of 5x5 pixels. 

 Furthermore, patient improvement was carried out by reviewing the spatial 

arrangement of the present segmented labelling using a stochastic framework. To 

begin, the intensities distribution of each of the cell classes—white tissue, edema, 

necrosis, with a GLISTR posterior probability of 1 was separately filled out. The 

class-conditional probability densities   1|Pr ClassIvi
and   2|Pr ClassIvi

 were 

modeled to use a variety of Gaussian methods, and every are calculated by method. 

The multiple couple proportions that were examined now are the edema regions 

compared it is projected that the earlier intensities populations will have significantly 

larger levels. In a conclusion, the strength of vertices for each cell category that was 

near to (i.e., within three coordinates of) the cell category to which they were opposed 

was evaluated. 

3.2.2.3.3 Features Selection using Radiomic 

The vast dimensionality of the input dataset may cause overfitting issues and increase 

computation costs for image radiomic characteristics like GLISTR probabilistic 

likelihood mappings, geometric data, pixel intensity data, texture-based, and image 

derivatives segregated from the pre-processed images.  

3.2.2.4 Rough Set Theory 

This part on rough set theory and RS-based features selection introduces a 

several fundamental ideas. Let   (       ) be an informational system, and the 

representation of a definite non-empty occurrence collection is  , whereas T shows 



92 

the finite non-empty attributes set.   represent the set union of attributes, whereas 

         represents scope of attribute            Each occurrence of the data 

functions is connected with a particular magnitude for every feature in  , resulting in 

 (   )     for any     and    .  

There is an invisible link   ( )  that connected to each    .   ( ) and  

  ( ) in eq. 3.13 and 3.14. 

  ( )  *(   )     |       (   )   (   ) +                    3.10 

The     ( ) represents the partition of   determined by   ( ) and can be measured 

as 

    ( )   *         (* +)+                                               3.11 

    *                    +                         3.12 

  ( )  *     , -   +                                                      3.13 

  ( )  *     , -      +                                              3.14 

The F-positive and F-negative zones are identified using equations 3.15 and 

3.16       which allow two equivalence relations to develop   ( ) and  ( ). 

region of X is stated as following, as shown in the equation 3.17. 

    ( )   ⋃   ( )        ( )                                              3.15 

    ( )     ⋃    ( )        ( )                                   3.16 

   ( )   ⋃    ( )        ( )  ⋃   ( )        ( )          3.17 
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One of the key challenges in data assessment is identifying connections 

between characteristics. If and only if   ( )    ( ), is based on   dependencies 

which is measured in similar way that        . From the eq. 3.18,  

  ( )  
|    ( )|

| |
                                    3.18 

  ( )      ( ) and          ( )    ( )             3.19 

                  in an information table,   (         ) .The 

decision features set is being utilized to indicate the accuracy of selections   ( ), 

how dependent are conditional and decision-making attributes. By employing feature 

minimization, unnecessary features can be removed while maintaining effectively 

classifying the reduced sets as the initial values. the equation 3.17 shows the feature 

that is a subgroup of the conditional feature called Sel. 

3.3 Grey Wolf Optimization  

The GWO technique was based on the hunting habits and social leadership of 

grey wolfs. The GWO approach begins with a group of arbitrarily generated wolf, 

much like similar metaheuristic algorithms. In order to create the social structure of 

the wolf when creating GW optimization techniques, the gray wolf populations are 

divided into five categories: (𝛼), (𝛽) (𝛿) respectively, in the formulation of the gray 

wolf optimization problem. Omega (𝜔) is considered to be some kind of optimistic 

alternative solution. The hunters are commanded by such three contenders 𝛼, 𝛽, and 

𝛿, and they also are preserved. The following is a presentation of the mathematical 

framework for changing the locations of the wolf. 
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 are all randomised vector, Additionally, the 

location of the current solutions, and is the number of iterations. In order to numerical 

model encircling behaviour, the mathematical expressions 3.22 to 3.25 are applied: 

 ⃗  (   )     
⃗⃗  ⃗ ( )   ⃗    ⃗                                   3.22 

Where, eq. 3.20 and 3.21. 

 ⃗  | ⃗⃗    
⃗⃗  ⃗ ( )   ⃗  ( )|                                       3.23 

 ⃗    ⃗     ⃗⃗  ⃗   ⃗                                                     3.24 

 ⃗⃗     ⃗⃗  ⃗                                                                3.25 

Generally, the alpha wolf is a leader to command of the pursuit. The beta and 

delta wolf can occasionally take participation in pursuing as well. The strongest 

possibility answer is alpha, whereas beta and delta are projected to have enhanced 

understanding regarding the likely hunting area to duplicate it statistically, the hunting 

movement of grey wolf. Alpha is the finest possible solution. The 3 top solutions 

discovered so far oblige some other searching actors to relocate them self in 

conformity with the locations of the top search actors. The locations of the wolf are 

changed as shown in following equation. 

  
⃗⃗ ⃗⃗   |  

⃗⃗⃗⃗    ⃗⃗  ⃗   ⃗ |   
⃗⃗ ⃗⃗  |  

⃗⃗ ⃗⃗    ⃗⃗  ⃗   ⃗ |   
⃗⃗⃗⃗  |  

⃗⃗ ⃗⃗    ⃗⃗  ⃗   ⃗ |                3.26 

  ⃗⃗⃗   |  ⃗⃗  ⃗    
⃗⃗⃗⃗    

⃗⃗ ⃗⃗  |   ⃗⃗  ⃗  |  ⃗⃗  ⃗    
⃗⃗⃗⃗    

⃗⃗ ⃗⃗ |       ⃗⃗  ⃗  |  ⃗⃗  ⃗    
⃗⃗⃗⃗    

⃗⃗⃗⃗ |          3.27 

   (   )   
  ⃗⃗⃗⃗       ⃗⃗⃗⃗  ⃗   ⃗⃗⃗⃗  

 
                                                                      3.28 
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The updating of the parameter  ⃗ , A final word on the Grey wolves, that 

controls the ratio of exploitation to research. As per equation, the parameter  ⃗  is 

linearly modified using every iterations upto the 2 to 0 rang, with   are iteration 

number and    maximum number of allowed iteration for the optimization 3.25. 

 ⃗      
 

  
                                                                             3.29 

3.3.1 Evaluate Fitness Function  

The Gray Wolf Optimizer examines new areas of the feature set and utilizes 

alternatives iteratively till it discovers a satisfactory result. The optimal result is 

composed of all possible feature options for the RS coupled Grey wolf, and the wolf's 

placements represent feature set decisions. The choice of a feature subgroup is made 

using the fitness value, which is shown in equation 3.30. 

          𝛾  ( )  𝛽 |   |

| |
       3.30 

Where, | | is to select the letter denotes the entire number of attributes | |. 

       and  𝛽     , are two related variables for the categorization quality and 

subset length of the significance parameter. The equation has varied consequences for 

the attribute reducing tasks depending on the size and accuracy of the feature subset. 

The higher makes ensuring that the optimal location is at the absolute minimum an 

approximate set minimization. Every position's value is evaluated by using fitness 

values. The objective of study is to maximize fitness levels. Relevant characteristics 

are recovered from the collected MRI brain images after every MRI brain image 

fitness score has been determined, and identical characteristics are eliminated. 
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3.4 Tumour Classification based on Faster-RCNN 

 The important features chosen using RS-GWO are categorized by FR-CNN to 

forecast the total survival rate. The R-CNN requires a forwarding run over the neural 

network to retrieve characteristics for every object proposal, adding a considerable 

amount of computational cost. This issue is reduced by using a faster R-CNN. Utilize 

the equivalent convolutional layers for both the RPN and Faster R-CNN analyzers 

once they achieve the maximum capability. The images are only processed over the 

CNN once within order to create and improve item suggestions. This suggestion is 

turned to a fixed-size feature space using the Region-of-Interest layers, then 

transferred to CNN's final convolutional layer. Furthermore, use boundary box 

analysis and Softmax categorization to derive the required carrying components. 

Figure 3.2 depicts the entire Faster R-CNN framework.  

 

Figure 3.2: Faster-RCNN Network Model   

 The 3 stages of the faster R-CNN tumor diagnosis technique are the 

convolutional layer, regions proposal network (RPN), and boundary box forecasting. 

Filtration helps in extracting relevant image characteristics in the convolutional, 

which is accompanied by a limited system of RPNs moving over the convolutional to 
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forecast whether or not the cancer is identified. If the tumor is identified, the bounding 

box is utilized by fully - connected channels to identify the component in MRI 

images. In the overall process of conventional Faster R-CNN extra, the convolution 

layer is swapped out for a feature extraction system architecture, such as ResNet20, to 

increase the performance of tumor recognition. 

Convolutional Layers: The Four pooled levels are utilized to extract image feature 

mappings in addition to the 14 convolutional layers and 14 Relu levels. The feature 

mappings for subsequent RPN levels and full interconnectivity levels are identical. 

Region Proposal Networks (RPN): This approach produces the area selections. The 

RPN model generates suggestions after going through 34 convolutional layers that 

create foreground anchoring and boundary box-regressed intervals. This area 

recommendation system takes a feature mapping created by convolutional from a 

baseline layer as feed and generates anchoring by applying sliding windows 

convolutional to the feature mapping. 

RoI Pooling: While using network layers, obtain the proposals into the entire 

connection layer that followed various feature mappings. The Region-of-Interest 

layers, which serve the identical purpose as Fast R-CNN in turning varying RPN area 

offers into fixed-size features maps, get the result of the area proposals as inputs and 

transfer it to the next layers. 

Softmax and Bounding Box Regression: In order to flatten the images, and feature 

mappings prior to delivering the outputs of two simultaneous fully connected layers, 

which are assigned a distinct task, two fully-connected layers receive the feature 

dimensions acquired by the Region-of-Interest pool. 
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In equations 3.31, the loss functions of the FRCNN are indicated. in which    being a 

thing.    *           + is a vector containing the 4 parametric parameters .Truth 

region by the affirmative anchoring   
 . 3.32. The logarithm loss objective and non-

target are shown as in Equation 3.33 as     (     
  ).  
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represents the only the foreground       (  
   ) has a regression loss. The       

and      are utilize the     and     of *  + and *  +, respectively. The deep learning 

method's categorized outcomes are the normalized findings. This dynamic 

computation uses deep learning to accomplish long-tailed categorization while 

reducing the entire processing cost. The accuracy of categorization training 

performances will increase with the creation of such a Faster RCNN. 

3.4.1 Multilevel Layer modelling for Survival Prediction 

 Depending on available data, dynamic systems can change their variables, and 

architecture, or select important spatial or temporal regions in the inputs. Considering 

that various parameters may require for preprocessing. it is typical to carry out 

prediction utilizing dynamic architectures based on each input. One can change the 

network depth and width as well as execute dynamic routing that consists of several 
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feasible channels. In addition to avoiding pointless computations for conventional 

'easy' patterns, systems with dynamic designs also maintain overall representational 

capability while recognizing non-canonical 'difficult' sample data. The investigators 

found the total of 80 people led to enhanced performance for malignant identification 

on a distinct tumor through 10-fold cross-validation. 

3.4.2 Multi-Scale Dense Network (MSDnet) 

 Interpretation with variable complexity is an easy approach to eliminate extra 

processing using deep neural networks to get deeper and deeper to recognize more 

challenging data. The high-resolution characteristics lack the coarse-level data 

necessary for classification, which leads to disappointing early departure conclusions. 

This multi-scale dense network (MSDNet) uses two techniques to solve the issue at 

hand: 1) a multi-scale framework made up of a large number of sub-networks for 

producing coarse-level characteristics appropriate for categorization depending on 

attribute spatial information of different pixel density and size 2) interconnection to 

utilize initial and enhance model. Such a specially constructed framework 

significantly increases the overall effectiveness of the network's classifications. 

 The classifier inside coarse-scale systems at their coarsest level use dense 

connection features as a component of MSDNets, S ,  l  utilises all the characteristics 

 s

l

s xx ,1
. The model delivers the most current prediction in the anytime phase after 

propagating the input across the networks till the resource is exhausted. That after 

classification, a sample exits the networks
kf  If the forecast confidence in the 

batching cost setting using the softmax probabilities maximum value—exceeds a 

predetermined cutoff point at testing time 
k . Let that q  is consistent across all 
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levels, allowing us to determine the likelihood that a sample can leave classification k 

as:  

  qqzq
k

k

1
1


                                                  3.34 

3.5 Result Analysis  

The various evaluation parameter was used for prediction which is described 

below. According to these factors, the outcomes are determined. A thorough 

assessment was presented by Wankhede, D. S.et al.,(2021) and compares the 

suggested MFCM-RSGWO-FRCNN to the previous CNN Abdel-Gawad et.al.,(2020) 

- Miao, J., et al.,(2020), Yogananda, C.G.B et al.,(2020)- Zaw, H., et al.,(2019), and  

VGG16  Kaur, G.et al.,(2020)  techniques. It had been suggested Veeramuthu, A. et 

al.,(2022)- S. L. Bangare, et al.(2018) to use combined approaches to classify the 

brain tumor. This research used a core python programming approach. 

Using a Core i7 processor running at its highest possible frequency of 3.5GHz 

and 8 GB of devoted DDR4 class memory under Windows 11 Home, the operating 

status of the suggested ways in the platform 3.8.0. To reach the desired outcome, the 

simulation must run for about five to ten minutes with a maximum of 100 iterations 

detailed result analysis shown in following table 3.1. 
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Table 3.1- Result Analysis 

Method Accuracy (%) Sensitivity (%) Specificity (%) Time (sec) Parameter Layer 

CNN-Inception-V3 92.01 91.96 89.2 20.34 24 million 43 

CNN-AlexNet  92.96 91.96 89.1 73.97 60 million 13 

VGG16 91.5 92.5 91 45.1 138 million 16 

Proposed MFCM-

RSGWO-FRCNN 

Model  

93 93.12 93.43 10.99 2 million 48 

3.5.1 Description of Available Datasets 

The publically available Kaggle dataset, as well as the private dataset collected 

from TMC, were utilized as the basis of the construction of the suggested solution. It 

comprises 1000 MRI scans of brain tumor images. This available dataset relates to the 

expression of genes in glioma. Malignant brain tumor, which are the development of 

aberrant brain tissue, are what are known as malignant tumor. The 70% training data 

select randomly. The 30% testing data were used. 

3.5.2 Simulation Output 

Real-time brain images of patients with tumor and people without tumor are 

used to assess the effectiveness of the suggested its outcomes are evaluated to those of 

conventional methods FCM, two distinct real-time MRI brain images are used for 

identifying abnormalities in the brain. 
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          Normal            Tumor 

Figure 3.3: Represent the Normal and Tumor Images 

Source: TMC Data Shared Normal images  

 

 A representative MRI image of the brain from the dataset is shown in Figure 

3.3. The publically available dataset was retrieved from Kaggle. The datasets contain 

two sets of brain MRI images; normal, and glioma. The dataset can be categorized 

into two units 70% is used for training, and 30% is used for testing. 

  

(a) (b) 

Figure 3.4: Filtered Images of Brain Tumor 

 The processed are shown in Figure 3.4. The crucial step is to examine images 

with a suitable brain tumor and determine are filtered using the histogram 

normalization technique. 



103 

  

(a) (b) 

Figure 3.5: segmented Image of Brain Tumor  

Figure 3.5 shows the segmented image of a brain tumor with various regions. The 

Green region (C1) shows the enhanced region. Blue region (C2) shows the necrotic. 

T1 shows the hypo-intensive region i.e, abnormal. C4 and C5 show the hyper 

intensive region with FLAIR. 

 

Figure 3.6: Overall Survival rate Probability of patients 

 The Time duration of survival rate of the various therapies are depicted in 

Figure 3.6 with respect to the age of patients. The results demonstrate that the risk 

profile succeeded well in determining the survival rate of Glioblastoma. 
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Figure 3.7: High-quality (HG) versus Low-quality (LG) specimens 

  Brain cancer types with high and low grades tumor are contrasted in Figure 

3.7. The proposed method was utilized to show how high-grade and low-grade 

histological data were separated. There is a lot of as shown in Figure 3.7. 

3.5.3 Performance Evaluation Parameter and Comparative Result Analysis  

This research measured the various performance parameters used for 

predicting the survival rate from various dataset sizes which contain 50 to  1000 brain 

images. 

3.5.3.1 Segmentation Time 

Time measuring the duration of image segmentation for a pre-processed MRI 

brain image(  ).  

                                                                             3.35 
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Figure 3.8: Bar represents the Comparative analysis of Segmentation Time  

Figure 3.8 shows the total segmentation time findings from various MRI images with 

50 to 1000 sizes of the brain image. It shows the segmentation time of the suggested 

method is marginally faster. The suggested method segments the images in 10.99 

seconds, while the results of the existing method are 20.34,73.97 seconds, 45.1 

seconds, and 62.78 seconds, respectively. The proposed strategy, which is illustrated 

in Figure 3.8, is ideal for precisely segmenting the tumor area. 

3.5.3.2 Sensitivity Rate 

Sensitivity is a metric for how well a tumor's damaged area can be found in 

the given MRI brain image. Whenever the outcome is affirmative, highly sensitive 

testing is much more useful. Equation 3.36 indicate the sensitivity. 

   
   

        
                                                                         3.36 

Where,     shows the tumour is present and detected images,      shows the 

tumour not present and not detected in MRI image.  
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Figure 3.9: Bar represents the Comparative analysis of Sensitivity rate 

Figure 3.9 depicted the overall sensitivity approaches for the whole dataset of MRI 

images which ranges from 50 to 1000. The proposed method generates an overall of 

90% about any set of image data between 50 and 1000  image size. In comparison, the 

suggested DL technique performs significantly superior in terms of predictions and 

identification of the total survival rate of patients. 

3.5.3.3 Specificity Rate 

The ability to accurately spot the tumor-free zone on a collection of MRI 

dataset images is known as specificity rate. Maximum survival prediction rate 

findings lead to maximum specificity scores. Equation 3.37 indicates the specificity 

formula. 

   
    

         
                                                                 3.37 

Where,      is the total number of MRI images that the tumour is not present 

but is detected. 
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Figure 3.10: Bar represents the Comparative analysis of Specificity rate  

Figure 3.10 shows the overall specificity, It is found that the proposed 

approach gives the maximum specificity as compared to existing algorithms. As a 

result, the suggested DL technique extracts improved non-tumor identification from 

the provided images. 

3.5.3.4 Dice Score (Index) 

Disc score is used to measure the overlap between two or more two images. 
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2
                                              3.38 

 Where,  1,0A  is the extracted tumor area .The maximum disc score is 

represented by 1. The maximum disc score shows more overlap between the images 

with good performance. 
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Figure 3.11: Bar represents the Comparative analysis of Dice Score  

 Figure 3.11 shows the Disc score of actual MRI images. Furthermore, the Dice 

score gauge segmentation results are used to measure the MRI Image dataset 

segmentation effectiveness. 

3.5.3.5 Mean Square Error 

The square in the forecasting system of the numerical data is which is a 

measurement of the fluctuation between the data. It is expressed in equation 3.39 and 

is widely regarded as an extraordinary error measure for mathematical data 

forecasting. 

    (       )
                                                 3.39 

Where E is the calculated value and A is the real value of MRI brain images  

The MSE rate is 78 percent higher for dataset sizes ranging from 50 to 1000 as 

comparable algorithms like CNN-AlexNet and VGG16. By using the square 

procedure to evaluate a strategy's capacity to identify distinct sections, this metric 

increases the influence of the segmented image in the sample of brain image 

information. 
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3.5.3.6 Peak Signal to Noise Ratio 

The PSNR is quantified in decibels (dB). The PSNR is measured using 

equation 3.40 as shown below. 

             
  

(       ) 
                                              3.40 

Where   is maximum pixel intensity present in MRI images.  

The Peak-to-Signal-Noise ratio (PSNR) of various MRI brain images with the 

size of 50 to 1000 image pixels. The PSNR value is around 45% is the maximum as 

compared to an existing one. 

3.5.3.7 Survival Prediction Rate 

MRI brain images among all MRI brain images is known as the survival 

prediction rate. This metric is also known as the accuracy score of survival 

successfully predicted based on the classification of brain tumor. This can be 

measured and expressed in percentage, as shown below. 

      
   

     
                                                             3.41 

Where,       is the survival prediction rate or survival accuracy score,      is 

the proportion.   
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Figure 3.12: Bar represents the Comparative analysis of survival prediction rate  

Figure 3.12 analysis of the standard benchmark MRI image dataset. As per the 

final experimental findings, the accuracy score of prediction is roughly 10% higher 

than the comparative methodologies for every different database. For example, the 

minimum size of the dataset is 50, and the proposed strategy yields 94.1%, compared 

to 72.67 and 80.1 for the approaches, respectively, from the existing methodologies. 

The proposed strategy gives an approximately 93.0% accuracy score in predicting the 

total survival rate of brain tumor for most other kinds of datasets as well. 

Contribution of this Chapter  

 This chapter proposed a model based on MFCM-RSGWO-FRCNN approach 

for the detection. 

 The suggested method consists of four steps. The initial stage involves 

gathering the MRI brain data for utilization from a fixed website and 

preprocessing it to get rid of all the impurities. The MRI brain images also 

include several types of distortion, such as salted and speckle noise and 

Gaussian distortion. Furthermore, in certain instance, MRI images are 
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collected using different scanning devices, and imaging intensity is used to 

normalize the MRI images.  

 As a result, preprocessing includes Pixel by statistical normalizing and 

denoising using filtering is to build the database by removing unwanted data 

and restoring missing features from MRI images.  

 The MFCM classification technique is then used for segmentation utilizing 

radiomic characteristic data. Countless features may be retrieved from the 

segmented MRI brain images. The most important and instructive aspects 

from the retrieved important features.  

 The categorization for overall survival rate estimation is then completed to 

features chosen in MRI brain images using a FR-CNN technique. As a result, 

the suggested classifier improves accuracy while requiring shorter training 

time and a faster converging rate. 

 The proposed strategy gives an approximately 93.0% accuracy score in 

predicting the total survival rate of brain tumor for most other kinds of 

datasets as well. 
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CHAPTER 4 

Recurrence risk prediction based on deep neural networks for brain 

glioblastoma multiform 

4.1 Overview 

As per the World Health Organization, the 722 to 80 age peoples in the US has the 

largest frequency of Glioblastoma, and it rises over time. The highly malignant 

astrocytic tumor exhibit fast cellular proliferation, necrotic, intravascular 

development, and structural variability as morphological features. Due to 

improvements in multimodal therapeutic options and MRI technologies, Glioblastoma 

patients have poor prediction thoroughly describe by Wu, W. et al.(2021). Sick people 

who don't obtain some therapy after being diagnosed pass away quickly, while those 

who get the best care often survive. Long-term survivability or just a few successful 

cures have now been documented by Li, H.,et al.,(2020). Ultimate mortality ratio 

estimated by Chato, L., & Latifi, S. (2021). Malignant tumor therefore has a poor 

prediction depending on the increased risk of tumor progression mentioned by Shim, 

K. Y. et al.,(2021).  Following an average survival duration of 33 to 37. 

4.1.1 Recurrent Glioblastoma Following Nivolumab and Bevacizumab 

People with recurrent Glioblastoma have survival ratios after two years that range 

from 27% to 34% on existing therapeutic options 4-6, and survival rates for 5 yrs are 

fewer than 11%. New techniques are thus needed to enhance Glioblastoma treatment 

prognosis investigated by Priya, S. et al.,(2021). The main pathophysiology of GBM 

involves angiogenesis, which is characterized by increased production of vascular 

endothelium development factors. Several cutting-edge anti-angiogenesis methods 
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may hold promise for patients with recurrent Glioblastoma conveyed by Zuo, S.et 

al.,(2019). Patients with Glioblastoma had an improvement in PFS and good 

radiographic response times in 2010 mentioned by  Hajianfar, G. et al. (2019). Due to 

the encouraging PFS outcomes, bevacizumab may not alter total survival in certain 

periods. Bevacizumab generated inconsistent results in respect of OS and PFS in large 

RCTs, in contrast to several similar anti-VEGF treatments as cediranib (a VEGF 

inhibitor), participants were also given analysed by Hashemzehi, R. et al.,(2020). 

Therefore, a meta-analysis incorporating VEGF and anti-VEGF is urgently needed 

mentioned by Lee, M. et al.,(2019) to examine the outcomes of gbm therapy for 

individuals with recurrent Glioblastoma. 

4.1.2 Medical Image Modalities 

Tumor grade, medication effectiveness evaluation, diagnostics, treatments, and other 

cerebral abnormalities are all important aspects of MRI. Many additional MR imaging 

methods have been developed to evaluate several biophysical characteristics of brain 

cells objectively discussed by Amin, J. et al(2018) - Özyurt, F. et al.,(2019). With a 

92% efficiency and 86% specificity, Hsieh et al. proposed the logistic regression 

approach to effectively distinguish glioma from diffused lower-grade glioblastoma 

concluded by Thakur, T. et al., (2021). These are more approachable and resistive in 

the various analyses and acquiring procedures, but the data on the recurring tumor is 

lacking. In earlier studies, the results of patients who had their recurrent Glioblastoma 

tumor removed were evaluated subsequently Deepa, B et al.,(2021). In a minimum 

one of the trials, it was discovered that the amount of surgical intervention, the period 

between the first and second operations, baseline KPS grade, and aging were all 
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significantly related to Survival verify by  Shim, Ka.et al.,(2020). It didn't offer any 

prior instructions while they thought about doing treatment on sick people.  

4.2 Proposed RNN-GAN Model 

 People with gbm with grade IV tumor, suffer a short overall survival. Doctors 

are extremely interested in of recurring gbm tumors for treatment planning and 

accurate treatment. To forecast the diagnosis of an illness, a brain MRI study uses. As 

a result, helpful data is provided for customized therapy. Tumor shrinking is a 

possible relevant secondary aim if it correlates with increases in either patient's well-

being or Survival. PFS and ORR are employed to quantify the postponement of tumor 

progression. These relationships have since been consistently demonstrated for other 

cancers and traditionally minimal stability is seen for glioma. 

 

Figure 4.1: Architecture of Proposed RNN-GAN Model 
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 The general structure of the suggested framework based on RNN-GAN is 

shown in Figure 4.1. Preprocessing, Z-score normalization, and spatial resampling are 

performed in step 1, followed by recurrent GAN techniques for tumor segmentation in 

step 2, radiomices texture based feature extraction (FE) is done based on wavelet 

band-pass filtering in step 3, and RF classifier was used to predicted recurrent 

glioblastoma in step 4.  

4.2.1 Patient Population  

 There is no requirement for specific aware permission for this retrospective 

analysis, and it has been allowed by the regional Institutional Assessment Boards. 

Therefore, 80 patients in all were recruited for this study. Before beginning any sort of 

therapy or procedure, multiparametric MRI exams were carried out, except for Grade-

I glioblastoma. The prediction deep models are constructed using an ML technique 

depending on the AUC and ROC of this network as determined by a 10-fold cross-

validation. The effectiveness of the deep learning approach was contrasted with that 

of Bevacizumab and Nivolumab. Subsequently, 80 individuals were enlisted together 

with their medical characteristics. 

4.2.1.1 Multi-Parametric MRI Dataset 

 For accurate medical medication selection, the characteristics from a 

multiparametric MRI-based radiomic feature analysis are used for forecasting, 

diagnosis, and identification assessment.  

 

  



116 

4.2.2 Pre-processing 

 Image Pre-processing is usually necessary following image capture to 

minimize physiological responses, such as breathing and head motions, as well as 

artifacts and biases in MRI data induced by MRI screening. It then contains image co-

registration, bias field correction, intensity normalization, image pixel size re-

sampling to lessen quality volatility, and skull reduction. 

4.2.2.1 Resampling Image Pixel  

 Upsampling and pixel size quantization are necessary pre-processing 

processes in radiomics investigation, although it is unclear how pixel size and slice 

thickness affect radiomic features. Consequently, ICC was used to verify feature 

resilience: 

   ECER
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MSkMS
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                         4.1 

 Where n is total patients, RMS  is represents as CMS , The ICC technique is used 

to evaluate the consistency and repeatability of numerical data in groups. It offers the 

advantage of enabling evaluations between more than two variable sets. 

4.2.2.2 Z-Score Normalization 

 The Z-Score method includes removing the mean intensity of the area or 

whole images of concern, then dividing each pixel value by the associated standard 

deviation.  
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                                                         4.2 

 Spatial data preprocessing is required during training in as to ensure that 

regions across MRI brain images have connections and comparable spatial 

arrangement, and it is important since CNNs often do not take into account the 

metadata related to brain images. A frequent spatial preprocessing technique in 

medical brain imaging is resampling. 

4.2.2.3 Recurrent Generative Adversarial Network for Image Segmentation 

 This research presents the recurrent GAN approach for semantic segmentation 

of medical brain images. g  is the GAN model which is based on traditional GAN  

         zgdEydEgdV zy
dg

 1loglog,maxmin            4.3 

The discriminator utilizes the real data and the final output to determine if the 

predicted label is accurate or false, even though the final predicted segmentation is at 

the pixel levels. 

         zxgxdEyxdEgdVL zxsegyx
dg

adv seg
,,1log,log,maxmin ,,      4.4 

 In addition, the investigation employed a combined classification accuracy 

score by giving the less characterized set of pixels a higher value. The loss accl  as 

given in equation 4.4 reduces unbalanced training data while elevating their 

significance throughout the learning process.  Equation 4.5 is then used to calculate.. 

       gLgLgdLgdL
acclLadvGANRNN  1,,                            4.5 
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 To reduce the impact of uneven pixel labelling on medical brain images, 

Given that the mechanism takes the premise that all possible transition possibilities 

are equal, categorizing cross-entropy loss combined with adversarial loss provides an 

unbiased estimation for minimizing the risk. Complementary labels can produce more 

precise outcomes for a semantic segmentation challenge in addition to the usual 

losses.  

As a result, when the MRI sequence is not specifically designed to identify tumor, two 

different lesions may seem practically similar and exact segmentation can be difficult. 

4.2.2.4 Radiomic Feature Extraction  

 To further create the radiomics signature, additional components from both 

inferred and original MRI images are included. Additional Wavelet transform-based 

features have bigger significance coefficients regarding survival rate, which affects 

the radiomics signature model. 

4.2.2.4.1 Contrast-Enhanced T1-Weighted MRI Imaging 

 The gold standard for detecting brain tumor is contrast-enhanced T1-weighted 

MRI scanning. It is straightforward to execute and accurately depicts the borders of 

typical brain tumor as well as dual-based lesions. T2-FLAIR imaging is widely 

employed in such circumstances because it differentiates abnormal signals from the 

normal brain parenchyma. Low-grade gliomas seldom ever show vasogenic edema, 

hence T2-FLAIR imaging is quite helpful for evaluating tumor size. All are 

hyperintense in T2-FLAIR sequences, however, high-grade gliomas provide a 

challenge for T2-FLAIR imaging because it cannot reliably discriminate between 
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infiltrating tumor and vasogenic edema. Enhanced imaging methods are routinely 

utilized to differentiate recurrent/residual tumor from post-treatment changes. The 

most often used enhanced imaging methods are MR spectroscopy, PWI, and DWI. 

Each of these can typically enable the radiologist to employ a careful synthesis after a 

tumor is appropriately differentiated from post-treatment modifications; thus, neither 

of these approaches has shown to be particularly precise. Drawn to identify the 

radiomic properties as the input volume. The 87 radiometric characteristics, 

comprising, were obtained from nine different MR sequences. Eleven different form 

characteristics were used in the investigation. 

4.2.2.4.2 Wavelet Band-Pass Filtering  

The scaled and translated functions  rnm, , the wavelet transforms 

correlates to the disintegration    QLxS 2 . 
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,                                        4.6 

where the whole inverse function is expressed by Qk  , Qk  , and    . 

An experimental bandpass wavelet function's shifting and scaled variations, as well as 

low-pass scaling functions  zR  shifted versions, a single-dimensional signal  zy  is 

defined by the discrete wavelet transform (DWT): 

 r  can be represented as: 
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The Haar function 
nm ,  is known as real line Q  using the equation 

   nrr m

nm

m

 22 2

,  , Qr   for each pair nm,  of integers in Z . 

The single-dimension DWT separates the MRI images into sub-images, and the three 

sub-bands offer data about this division and one offers an estimate. The brain MRI 

images produced via estimate will look similar to the original yet have varying sizes. 

The DWT separates a picture into horizontal and vertical components based on poor 

resolution. The high and low pass filters separate the picture into several sub-bands. 

When taking into account the DWT, the final result produced by estimation approach. 

When the approximate image is obtained, the process is paused, and the average 

outcome is calculated.  

The convolution of the observed vibration signals by 

     thtsts cb                                                            4.8 

Where  tsb
 

HL ff ~ . With changing, the filter's properties may be made 

suitable. Zero phase shift was carefully designed into the wavelet-based band-pass 

filter. The wavelet cluster as an electronic filter creates the analytic signal and 

simultaneously performs envelopes demodulation. 

To guarantee that retrieving precision is represented for every approach, a protocol for 

feature extraction has been followed. This building shows the combination of all the 

basic parts. 
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4.2.2.4.3 Recurrence Risk Prediction  

 Glioblastoma tumor recurrence risk prediction is crucial because it raises 

patient survival ratios and decreases patient mortality. This problem is thought to be 

resolved by the effectiveness of the RF and DNN approaches.  

4.2.2.4.3.1 Random Forest for Classification    

 Predicting the likelihood of a glioma tumor recurrence is essential. Depending 

on the outcome feature.  It is believed that the success of the RF and DNN techniques 

will overcome this issue. To assess the importance of features and balance data in 

classification jobs, RF is a powerful approach. The RF technique is ideal for diverse 

datasets like these comprising patients with recurrent gbm since it resists overfitting 

due to the abundance of decision trees in the forest. All of such characteristics were 

initially assessed for their predictive power. The highest 128 attributes were used as 

input for the random forest method. The RF method was tested on the tested cohort 

using the learned RF techniques. 

4.2.2.4.3.2 Deep Neural Network (DNN) Technique 

All units in the layers are completely linked. The encoder has one or more data 

elements and a weight vectors X. The weighted sum of the outcomes for the 

preceding level 1kh  is utilized to determine the output k

jh  for the layer k  comprising 

j  units (especially xh 0  ). 

NkbhWg kkkk   1,1                                     4.9 

 kk gfh                                                             4.10 
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The thk  weight matrix between thk  layer and  thk 1  layer can be 

represented as kW , Simultaneously, in the DNN structure, the softmax function for the 

output layer ( thN  layer) is employed as an activation function and is specified as:  
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The weights is assigned to each layers of network based on the truncated 

normal distribution, as explained by 
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in  and on is the set of input/output unit. The deep learning approach 

fundamental architecture, that consists of numerous layers, is depicted in Figure 4.2.  

 

Figure 4.2: Layers of DNN 
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The gbm recurrence risk prediction job in this study is a binary classification 

problem, and the DNN model's objective function, also incorporates L2 regularization 

to help reduce the overfitting of the deep model. To minimize the loss function, the 

suggested DNN approach is described as follows: 
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Where, L is the errors among the labels' real values and the prediction results. 

 iyt
 is the actual label for the thi  class,  iyt

ˆ  is the predictive value to get the output 

layer. N  is the batch size.  
kk nm

k

ji

k wW


  is the thk  weight matrix and K  ( 5K ). 

4.2.2.4.3.3 IBCGA 

IBCGA is an adaptive approach for dealing with problems in optimization 

techniques that involve several factors. OED is also investigating how various 

influences affect the response parameter at the same time. The degree of an element 

influences its worth, and the OED is employed to discover the optimal level 

combination. An orthogonal array may compare the levels of items as a result of the 

analysis, which reduces the number of levels required proportionally. Every row in an 

orthogonal array shows the level of components in a certain combination, whereas the 

column shows which parts may be modified for each combination. The predominant 

impact of one factor on the response parameter is referred to as the major effect, and it 

is independent of the major effect of any other element. For example, an orthogonal 

design with p  rows and 1p  columns having two levels (values of elements) is 
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designated as  12 P

PL . The entity's major impact x  having a level y  is 

represented by 

kkxy FfS  . ,  Pk ,,1        4.14 

1,,1  Px                               4.15 

0,1y                                           4.16 

Where, 
kf  represent the function that is used to measure the accuracy score 

from combined k  and 1kF . 

4.3 Result Analysis 

 The results of the recommended model, which uses a Deep Neural Network 

and Random Forest to accurately classify tumors, are shown in Table 4.1. A RF-

DNN-based intelligent healthcare system is designed to accurately identify and 

classify brain cancers. The four categories that made up the publicly accessible 

Kaggle dataset included one no-tumor and three distinct types of tumors. Figure4.3 

shows an example picture of a brain tumor, respectively. 
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Table 4.1- Result Analysis 

Method Accuracy (%) Sensitivity (%) Specificity (%) Time (sec) Parameter Layer 

CNN-

Inception-

V3 

94.23 94 81.1 20.34 24 million 43 

CNN-

AlexNet 
82 80 96 73.97 60 million 13 

VGG16 
95 95 96 45.1 

138 

million 
16 

Proposed 

RNN-GAN 

Model 

95.11 97 98 9.45 7 million 20 

 

Figure. 4.3: Sample Images for MRI Brain Tumour 

The 10000 MRI brain tumor brain images were employed in the suggested model. 

The proposed deep learning approach comprises two distinct phases: training and 

testing. In the training phase, 81% of the input photos are selected from each class, 

and 19% are used in the testing phase. Miss rate (MR) and precision are used to gauge 

how effective the model is. 
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Table 4.2: illustrates the simulation system configuration of the suggested task. 

System Configuration 

OS Windows 11 Pro 

Memory  16 GB DDR4 

Microprocessor Intel Core i7 @ 2.7GHz 

Simulation Time 10.190 seconds 

The suggested method is then examined and put to the test. The suggested work runs 

on Windows 11 Pro and has a 16 GB DDR4 memory capacity. The simulation 

duration for the job is 10.190 seconds, and it also uses an Intel Core i7 @ 2.7GHz 

CPU. 

The RNN-GAN model applied to brain tumor glioma analysis, the hyperparameter 

settings depend on both the generator and discriminator networks, as well as their 

training strategies. Following are the hyperparameter configuration of suggested 

model. 

Learning Rate: 0.0001 (for both generator and discriminator) 

Batch Size: 32 

Epochs: 100 (or more depending on the convergence) 

Optimizer: Adam optimizer  

Number of Layers: 2 

Units per Layer: 128 units for each LSTM/GRU layer 

Dropout: 0.2 (to prevent overfitting) 
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Activation Function: ReLU activation for the hidden layers 

Output Activation: Tanh activation (to scale the generated outputs) 

4.3.1 Statistical Analysis 

The PFS and OS forecasts were assessed using the Kaplan-Meier technique. The 

suggested approach was then computed for survival assessment that utilized the 

significance threshold. 

 

Figure. 4.4: Analysis of survival of RNN-GAN 

 Figure 4.4 shows the survival analysis of individuals with Glioblastoma. The 

patient derived from primary Glioma cells is then described, along with a prediction 

for both long- and short-term survivability. The survival study shows a short-term 

survival of fewer than 14.6 months and a long-term surviving of more than 14.6 

months. As a result, the threshold values for the suggested approach are, 
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correspondingly, 3%, 2%, 45%, and 40% for limited entrance, various patients with 

long surviving, and less than short-term surviving. 

ROC analysis was used for each brain imaging characteristic to classify both long- 

and short-term survivability. The two categories that performed the best were the size 

and texturing. 

 

Figure. 4.5: Progression-Free Survival Score 

 Figure 4.5 shows the Progression-Free Survival score of the proposed model. 

Progression-Free Survival is the time from randomization to the first sign of 

malignancy or the time till death from any cause. The Progression-Free Survival was 

then not markedly different between the Glioblastoma and the controls for various 

months. 

 

Figure. 4.6: Overall Survival Rate   
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 The Overall Survival is predicted using the suggested approach as shown in 

Figure 4.6. The Overall Survival is assessed using the Kaplan-Meier technique; it was 

a primary result. The Overall Survival did not differ considerably from the 

Glioblastoma and the controls. 

 

Figure. 4.7: Object Response Rate 

Figure 4.7 illustrates the suggested approach to the objective response rate. As a 

result, it shows that individuals receiving nivolumab medication had a noticeably 

higher percentage of objective response than those receiving bevacizumab 

medication. This implies that nivolumab therapy was more effective than 

bevacizumab medication in terms of patient response. 

4.3.2 Validation 

The abnormal cell areas' segmentation outcomes were examined for manual 

segmentation based on the expertise of the radiologists. The Dice score was used to 

assess the spatial congruence between semi-automated and manual segmentation. 

 
   

   mantissueNBtissue

mantissueNBtissue

tissue
AA

AA
Dice

,,

,,
2





                      4.17 

0

5

10

15

20

25

30

Nivolumab Bevacizumab

O
b

je
ct

 R
es

p
o
n

se
 

R
a
te

(%
) 



130 

Where 
 mantissueA ,

 represents the region selectively segmented for the identical cell 

even by radiologists and 
 NBtissueA ,

  . 

 

Figure. 4.8: Hausdorff Distance of the Proposed Work 

 The Hausdorff distance of the suggested model was shown in Figure 4.8. The 

Hausdorff distance is also computed to control the separation between segmentation 

borders.  

 

Figure. 4.9: Local Recurrence Graph of RNN-GAN  

 The deep learning model is recommended as a local recurrence graph, as 

illustrated in Figure 4.9. Furthermore, it showed the AUC as 0.73, 0.81, 0.73, 0.88, 
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and 0.95 and the ROC folding value as 1 to 5. The average AUC is thus 0.82, and the 

TPR steadily rises in tandem with the rising false positive ratio. 

 

Figure. 4.10: Long term Recurrence of RNN-GAN 

 The long-term recurrence graph was shown in Figure 4.10. It also involves 

raising the FPR to raise the TPR. The AUC scores are then shown to be 0.90, 0.94, 

0.83, 0.85, and 0.79, with the overall AUC value being 0.82. 

 

Figure. 4.11: Graph 1 Probability of Survival Rate of Patient  

 Figur 4.11 shows the effectiveness curve for the likelihood of survival. It also 

reflects the intake value that is standard.  The Figure includes two graphs, one with a 
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maximal SUV of 3.15 or larger and the other with a maximal SUV of 3.15 or less. 

The maximal SUV is more than 3.15, and this produces a higher likelihood of survival 

rate than other SUVs. 

 

Figure 4.12 Graph 2 Probability of Survival Rate of Patient 

 The probability curve for the overall survival rate is shown in Figure 4.12. For 

various months, a total probability score greater than 1.64 indicates a higher 

likelihood of surviving than the other probabilities. 

 

Figure 4.13: Graph 3 Probability of Survival Rate of Patient  

 The survival probability rate for various months is shown in Figure 4.13. As a 

result, there are two categories: one is for SUV values larger than 2.47 and the other is 
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for SUV values less than or equal to 2.47. The survival probability also drops since 

the proposed model shows the survival chance reduces with increasing months. 

 

Figure 4.14: Training and Validation performance of RNN-GAN.  

 Figure 4.14 shows the training and validation performance accuracy score of 

RNN-GAN model. The proposed model training size ranges from 0 to 4000. As a 

result, it shows that the validation performance is steadily increasing while the 

training performance has a high value. 

 

Figure 4.15: Bar represents the specificity and sensitivity score of RNN-GAN model with 

other deep learning models 
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 The comparative analysis of suggested techniques with existing methods in 

terms of specificity and sensitivity score is shown in Figure 4.15. Moreover, the 

ability of aggregate MAqCI scores to accurately identify patients. As a result, both the 

score of specificity and the sensitivity of the recommended model are growing. 

 

Figure 4.16: Comparative analysis of proposed model with other methods in terms of 

Sensitivity Score 

 Figure 4.16 shows the comparative result of RNN-GAN model with other 

deep learning models in terms of sensitivity score. The proposed method is then 

contrasted with the already-existing CNN-Inception-V3, CNN-AlexNet [26] and 

VGG-16 models. The RAN-GAN model outperforms the other deep learning 

techniques, outperforming the current CNN-Inception-V3 Model by 1.11%, CNN-

AlexNet method by 0.15%, and the existing VGG-16 by 0.61%. 
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Figure 4.17: Bar represents the specificity score of RNN-GAN model with other deep 

learning models  

Figure 4.17 illustrates the comparative result of RNN-GAN model with other deep 

learning models in terms of specificity.  Furthermore, it shows that the CNN-

Inception-V3, CNN-AlexNet [26] and VGG-16 models are evaluated to the provided 

model. The RNN-GAN model outperforms the CNN-Inception-V3 Model by 12%, 

CNN-AlexNet Model by about 4% and the VGG-16 by almost 2%. 

 

Figure 4.18: Bar represents the accuracy score of RNN-GAN model with other deep learning models 

 The accuracy score of RNN-GAN model with other deep learning models is 

shown in Figure 4.18. The CNN-Inception-V3, CNN-AlexNet and VGG-16 

approaches are used to compare the final accuracy score with the proposed RNN-
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GAN model. Therefore, the RNN-GAN model outperforms the current CNN-

Inception-V3 approach by 0.88%, the CNN-AlexNet by 13%, and the VGG-16 by 

0.11% 

 

Figure 4.19: Confusion Matrix of Suggested Model 

Figure 4.169 shows the confusion matrix for the RNN-GAN model on brain tumor 

glioma analysis demonstrates strong predictive performance, with high true positive 

rates for all four classes: T1, T1-Contrast, T2 and FLAIR, each correctly classified in 

451 out of 475 instances. Misclassifications are relatively low and uniformly 

distributed, with off-diagonal values indicating minor confusion among the classes (7-

10 samples being misclassified into other categories). The overall accuracy of 95.11% 

signifies that the model performs well in distinguishing between the different types of 
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brain tumor images, though there is still a small margin for reducing misclassification 

rates. 

Contribution of this Chapter  

 This chapter proposed RNN-GAN Model for detecting the glioblastoma brain 

tumor and also predicting the survival rate of patients. This model performs 

the several steps as; 

 Preprocessing, Z-score normalization and spatial resampling are performed in 

step 1, followed by recurrent GAN techniques for tumor segmentation in step 

2, radiomices texture-based feature extraction (FE) is done based on wavelet 

band-pass filtering in step 3, and RF classifier was used to predicted recurrent 

glioblastoma in step 4. This research sought to evaluate the efficacy of the 

preoperative and postoperative recurrent risks amongst glioma patients 

receiving a combination of bevacizumab and nivolumab therapy. Tumor 

regions of interest were segmented from T1 images that had undergone 

contrast enhancement. Utilizing a variety of textural features, the recurrence 

risk for GBM patients is predicted using the RF approach. The characteristics 

from MRIs were extracted using CE-T1W-MRI imaging information. 

 Recurrence prognosis, survival rate, PFS, ORR, accuracy score, specificity, 

and sensitivity are the performances of the suggested research. The suggested 

approach is contrasted with the CNN-Inception-V3, CNN AlexNet and 

VGG16 forecasting techniques already in use. 
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 The specificity of the study is around 4% higher than the previous approaches, 

and the sensitivities of the suggested approach is almost 5% better. The 

efficiency of the suggested approach is 3% greater than the previous 

methodologies. 
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CHAPTER 5 

Comparative Result Analysis 

5.1 Overview  

This study proposed two hybrid deep learning models for the prediction of 

glioblastoma brain tumors and also for predicting the survival rate of patients. This 

chapter discussed the comparative result analysis of both proposed models, MFCM 

RSGWO-FRCNN Model and RNN+GAN Model. According to the analysis of the 

final result of both models, select one of the best models for the prediction of brain 

tumors.  This selected model is compared with the existing methods. 

5.2 Comparative Analysis of Both Models 

Table 5.1: Comparative result analysis of the MFCM RSGWO-FRCNN Model with the 

RNN+GAN Model  

Parameters MFCM RSGWO-FRCNN Model RNN+GAN Model 

Accuracy  93% 95.11% 

Sensitivity 93.12% 95.11% 

Specificity 93.43% 98% 

Survival Rate 1.64 (16%) 2.47 (25%) 

 

 

Figure 5.1: Bar represents the Comparative result analysis of MFCM RSGWO-FRCNN 

Model with RNN+GAN Model 
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Figure 5.2: Survival rate Prediction of MFCM RSGWO-FRCNN Model with RNN+GAN 

Model 

Figure 5.1 and 5.2 shows the comparative analysis of the MFCM RSGWO-FRCNN 

Model with the RNN+GAN Model. It clearly shows that our second RNN+GAN 

Model gives a better result as compared to the first MFCM RSGWO-FRCNN Model. 

The RNN+GAN Model achieves a 95.11% accuracy score; Sensitivity is 95.11% and 

Specificity is 98%. The RNN+GAN Model increases the survival rate which is 2.47 

(25%) after diagnosis and overall treatment of patients.   

5.3 Comparative Analysis with Existing Methods 

This section shows the comparative analysis of the RNN+GAN Model with 

previously existing methods. The proposed RNN+GAN Model is compared with 

some previous methods in terms of accuracy score.  Table 5.2 shows the comparative 

result in terms of the accuracy score of the RNN+GAN Model with existing methods. 
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Table 5.2: Comparative Accuracy score of RNN+GAN Model with Existing methods 

State-of-Art Methods Accuracy Score in % Parameter 

Almalki Y.E. et. al. (2022) 95.3 4 million 

N Varuna Shree et. al. (2018) 95.00 3 million 

P. Gokila Brindha et. al. (2020) 71.51 50 million 

S. Deepak et. al. (2020)  94.26 8 million 

Jianming Ye et. al. (2021) 93.00 5 million 

Khan et al. (2020) 89.00 70 million 

Amena Mahmoud(2023)  95.10 5 million 

Proposed RNN+GAN Model  95.11 7 million 

 

 

Figure 5.3: Bar represents the Comparative result of the Proposed RNN+GAN Model with 

existing methods  
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Table 5.3 Comparative Analysis of Architecture with Existing CNN Architecture 

All 

Architecture 

CNN-

InceptionV3 

CNN- 

Alexnet 

CNN-

VGG16 

Proposed 

MFCM 

RSGWO-

FRCNN 

Model 

Proposed 

RNN-GAN 

Model 

 

Layers 42-layers 13 layers 16 layers 48  layers         20 layers 

Parameters    24 million 60 million  138 million 2 Million 7 Million 

Image Size 224x224 224x224 224x224 224x224 224x224 
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CHAPTER 6 

Conclusion and Future Scope 

6.1 Conclusion  

An awful and frequent form of brain tumor is glioma. For individualized 

treatments, an accurate pre-operative prediction for Glioblastoma patients is needed. 

Therefore, therapeutic management is essential to raising the survival rate or life 

expectancy of glioma patients. Healthcare professionals and investigators can employ 

image processing tools to identify bodily processes and issues before invasive 

procedures. The data from an MRI scanning is adequate for clinical assessment. The 

typical course of treatment for Glioblastoma is surgical removal and either 

radiotherapy or chemotherapy. The intrinsic variability of Glioblastoma causes a 

significant variation in total surviving rate and a broad range of diagnoses for the 

individual. The standard methods that have been tested up to this point have several 

drawbacks including complexity, the issue of data overfitting, similar to human flaws, 

and others.  

This research proposed the two hybrid deep learning models for the prediction 

of glioblastoma brain tumors and also for predicting the survival rate of patients. In 

this chapter, we discussed the comparative result analysis of both proposed models 

MFCM RSGWO-FRCNN Model and the RNN+GAN Model. According to the 

analysis of the final result of both models, select one of the best models for the 

prediction of brain tumors.  This selected model results are compared with the 

existing state-of-art methods. 
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In the first model, a dynamically Deep Learning technique for Glioblastoma 

brain cancer survival prediction rate was put out to address the aforementioned 

problems. Data preprocessing is the initial phase. The MRI brain images were 

improved by intensity normalization using histogram normalization, de-noising via 

bilateral filtering, and the removal of information contaminants. Probabilistic noise, 

salted and pepper distortion were also taken out. Secondly, radiomic feature 

segmentation was completed using the MFCM clustering approach. Then, Rough Set 

Theory-based Grey Wolf Optimization was used to choose the most important and 

instructive aspects from the obtained characteristics. Later, using FR-CNN, the 

overall survival predictions are categorized by selecting the important feature in MRI 

brain images.  

           The proposed MFCM-RSGWO-FRCNN approach is tested against state-of-art 

CNN-Inception-v3, CNN AlexNet and VGG16 approaches. Evaluation parameters 

like Accuracy, specificity, precision, sensitivity, PSNR, MSE, and Segmentation 

Time were used to examine the technique. The proposed MFCM-RSGWO-FRCNN 

has the advantages of less converging and the corresponding characteristics. 

 The algorithm was successful to accurately predict the survival rate using 

classifications and required only a segmentation time of around 10 sec. 

 With a lowered error rate of 2.3 percent in case of MSE compared to other 

approaches' 4.6 percent and 5 percent, it is significantly more efficient. 

 The method generates a minimized noise ratio for the complete collection of 

photos for any different data sizes, as well as improved classification and 

forecasting performance of roughly 95%. 
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            When compared to techniques like CNN-Inception-V3 , CNN AlexNet and 

VGG16, MFCM-RSGWO-effectiveness FRCNN's is able to forecast the right images 

in the data resource. The FCM, which was suggested to segments based on grouping, 

was shown to be less reliable than the MFCM-RSGWO-FRCNN.  There are various 

methods to expand the suggested technique. The approach may start by performing a 

thorough type, time-based examination of the occurrence, distribution, and volume of 

the tumor. As a result, there are several issues that need to be resolved, such as the use 

of various validity indexes, heterogeneity measures, and comparing with different 

hybrid techniques for shortening segmentation duration. 

In the second method hybrid deep learning model is designed to detect the 

glioblastoma tumor based on the recurrence risk. For the preprocessing, Z-score 

normalization, and spatial resampling are performed in step 1, followed by recurrent 

GAN techniques for tumor segmentation in step 2, radiomices texture-based feature 

extraction (FE) is done based on wavelet band-pass filtering in step 3, and RF 

classifier was used to predicted recurrent glioblastoma in step 4. This research sought 

to evaluate the efficacy of the preoperative and postoperative recurrent risks amongst 

glioma patients receiving a combination of bevacizumab and nivolumab therapy. 

Tumor regions of interest were segmented from T1 images that had undergone 

contrast enhancement. The radiomic feature-based MRI signals were derived from 

multi-parametric MRI data of sick people with glioblastoma to ascertain their 

connections with responses to OS and PFS. Utilizing a variety of textural features, the 

recurrence risk for GBM patients is predicted using the RF approach. The 

characteristics from MRIs were extracted using CE-T1W-MRI imaging information. 

Every stage is thoroughly explained in the next subtopics. 
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 Recurrence prognosis, survival rate, PFS, ORR, accuracy score, specificity, 

and sensitivity are the performances of the suggested research. The suggested 

approach is contrasted with the CNN-Inception-V3, CNN AlexNet and 

VGG16 forecasting techniques already in use. 

 The specificity of the study is around 4% higher than the previous approaches, 

and the sensitivities of the suggested approach is almost 5% better. The 

efficiency of the suggested approach is 3% greater than the previous 

methodologies. 

The probability of glioma recurring can therefore be effectively predicted using the 

suggested approach, and further research is needed to measure the specific 

immunological ecosystem of the brain during cancer settings. 

After analysing both models, the second RNN+GAN Model gives a better result as 

compared to the first MFCM RSGWO-FRCNN Model. The RNN+GAN Model 

achieves a 95.11% accuracy score; Sensitivity is also 95.11% and Specificity is 98%. 

The RNN+GAN Model increases the survival rate which is 2.47% after diagnosis and 

overall treatment of patients.   

6.2 Future Scope 

1. The proposed segmentation algorithm focuses on two dimensional anatomical 

structures. It can also be extended to three dimensional volumetric structures.  

2.  As the intensity and orientation-based segmentation method is capable of 

extracting the features of the medical images accurately, it can also be applied 

to the fusion image. 



147 

3.  As the online service is used for the detection of a brain cancer type, the 

research can be extended to other brain cancer types and locations also. 

4.  There is currently no publicly accessible dataset of large MRI sequences 

provided globally. To develop a huge capacity, open a test dataset, and testing 

the suggested techniques using the aid of the novel dataset to confirm their 

efficacy and continuously enhance it, efforts might be taken in the coming days 

to reach in touch with several other labs conducting relevant studies. 
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RECOMMENDATION 

An awful and frequent form of brain tumor is glioma. For individualized treatments, 

an accurate pre-operative prediction for Glioblastoma patients is needed. Therefore, 

therapeutic management is essential to raising the survival rate or life expectancy of glioma 

patients. Healthcare professionals and investigators can employ image processing tools to 

identify bodily processes and issues before invasive procedures. The data from an MRI 

scanning is adequate for clinical assessment. The typical course of treatment for 

Glioblastoma is surgical removal and either radiotherapy or chemotherapy. The intrinsic 

variability of Glioblastoma causes a significant variation in total surviving rate and a broad 

range of diagnoses for the individual. The standard methods that have been tested up to this 

point have several drawbacks including complexity, the issue of data overfitting, similar to 

human flaws, and others.  

This research proposed the two hybrid deep learning models for the prediction of 

glioblastoma brain tumors and also for predicting the survival rate of patients. In this chapter, 

we discussed the comparative result analysis of both proposed models MFCM RSGWO-

FRCNN Model and the RNN+GAN Model. According to the analysis of the final result of 

both models, select one of the best models for the prediction of brain tumors.  This selected 

model results are compared with the existing state-of-art methods. 

  



In the first model, a dynamically Deep Learning technique for Glioblastoma brain 

cancer survival prediction rate was put out to address the aforementioned problems. Data 

preprocessing is the initial phase. The MRI brain images were improved by intensity 

normalization using histogram normalization, de-noising via bilateral filtering, and the 

removal of information contaminants. Probabilistic noise, salted and pepper distortion were 

also taken out. Secondly, radiomic feature segmentation was completed using the MFCM 

clustering approach. Then, Rough Set Theory-based Grey Wolf Optimization was used to 

choose the most important and instructive aspects from the obtained characteristics. Later, 

using FR-CNN, the overall survival predictions are categorized by selecting the important 

feature in MRI brain images.  

           The proposed MFCM-RSGWO-FRCNN approach is tested against state-of-art CNN-

Inception-v3, CNN AlexNet and VGG16 approaches. Evaluation parameters like Accuracy, 

specificity, precision, sensitivity, PSNR, MSE, and Segmentation Time were used to examine 

the technique. The proposed MFCM-RSGWO-FRCNN has the advantages of less converging 

and the corresponding characteristics. 

 The algorithm was successful to accurately predict the survival rate using 

classifications and required only a segmentation time of around 10 sec. 

 With a lowered error rate of 2.3 percent in case of MSE compared to other 

approaches' 4.6 percent and 5 percent, it is significantly more efficient. 

 The method generates a minimized noise ratio for the complete collection of photos 

for any different data sizes, as well as improved classification and forecasting 

performance of roughly 95%. 



            When compared to techniques like CNN-Inception-V3 , CNN AlexNet and VGG16, 

MFCM-RSGWO-effectiveness FRCNN's is able to forecast the right images in the data 

resource. The FCM, which was suggested to segments based on grouping, was shown to be 

less reliable than the MFCM-RSGWO-FRCNN.  There are various methods to expand the 

suggested technique. The approach may start by performing a thorough type, time-based 

examination of the occurrence, distribution, and volume of the tumor. As a result, there are 

several issues that need to be resolved, such as the use of various validity indexes, 

heterogeneity measures, and comparing with different hybrid techniques for shortening 

segmentation duration. 

In the second method hybrid deep learning model is designed to detect the 

glioblastoma tumor based on the recurrence risk. For the preprocessing, Z-score 

normalization, and spatial resampling are performed in step 1, followed by recurrent GAN 

techniques for tumor segmentation in step 2, radiomices texture-based feature extraction (FE) 

is done based on wavelet band-pass filtering in step 3, and RF classifier was used to predicted 

recurrent glioblastoma in step 4. This research sought to evaluate the efficacy of the 

preoperative and postoperative recurrent risks amongst glioma patients receiving a 

combination of bevacizumab and nivolumab therapy. Tumor regions of interest were 

segmented from T1 images that had undergone contrast enhancement. The radiomic feature-

based MRI signals were derived from multi-parametric MRI data of sick people with 

glioblastoma to ascertain their connections with responses to OS and PFS. Utilizing a variety 

of textural features, the recurrence risk for GBM patients is predicted using the RF approach. 

The characteristics from MRIs were extracted using CE-T1W-MRI imaging information. 

Every stage is thoroughly explained in the next subtopics. 



 Recurrence prognosis, survival rate, PFS, ORR, accuracy score, specificity, and 

sensitivity are the performances of the suggested research. The suggested approach is 

contrasted with the CNN-Inception-V3, CNN AlexNet and VGG16 forecasting 

techniques already in use. 

 The specificity of the study is around 4% higher than the previous approaches, and the 

sensitivities of the suggested approach is almost 5% better. The efficiency of the 

suggested approach is 3% greater than the previous methodologies. 

The probability of glioma recurring can therefore be effectively predicted using the suggested 

approach, and further research is needed to measure the specific immunological ecosystem of 

the brain during cancer settings. 

After analysing both models, the second RNN+GAN Model gives a better result as compared 

to the first MFCM RSGWO-FRCNN Model. The RNN+GAN Model achieves a 95.11% 

accuracy score; Sensitivity is also 95.11% and Specificity is 98%. The RNN+GAN Model 

increases the survival rate which is 2.47% after diagnosis and overall treatment of patients.   

6.2 Future Scope 

1. The proposed segmentation algorithm focuses on two dimensional anatomical 

structures. It can also be extended to three dimensional volumetric structures.  

2.  As the intensity and orientation-based segmentation method is capable of extracting 

the features of the medical images accurately, it can also be applied to the fusion 

image. 

3.  As the online service is used for the detection of a brain cancer type, the research can 

be extended to other brain cancer types and locations also. 



4.  There is currently no publicly accessible dataset of large MRI sequences provided 

globally. To develop a huge capacity, open a test dataset, and testing the suggested 

techniques using the aid of the novel dataset to confirm their efficacy and continuously 

enhance it, efforts might be taken in the coming days to reach in touch with several 

other labs conducting relevant studies. 

 


