
MDD 

Model-driven Development 
in C 
ACOjha* 

Model Driven Development 
(MDD) is rapidly gaining 
popularity in sofeware 
development. The Unified 
Modeling Language (UML) is 
accepted as the industry standard 
modeling language to support it. 
Companies are realizing the 
benefits from this approach by 
reducing development time while 
producing higher quality 
sofeware meeting customer 
expectations through removing 
defects in the early stages of 
sofeware development. However, 
the application of UML is well 
known in object-oriented 
programming languages and 
very little or not known in 
function-oriented programs. This 
article presents a mapping of 
VML to C programming 
constructs and explains how to 
apply VML for modeling 
sofeware applications developed 
using C programming language 
to get benefits of MDD. 

Introduction 
The increasing complexity of software 
systems is posing many challenges for 

-software engineers. Document-driven 
approach to software development that has 
been a predominant approach in the past falls 
short to address these challenges. Although 
document-driven approach has been a bit 
successful, it fails to unambiguously _capture 
the system requirements which leads to a 
system developed not meeting the customer 
expectations most of the time. 

Th~ problem of requirements 
specification has been attempted to solve 
with formal approach to software 
development. Formal approach specifies the 
system precisely and unambiguously. The 
system specifications can be verified and 
validated automatically for correctness .. 
It can produce executable code with tool 
support. However, formal languages such 
as Z, which mostly ·take their basis from 
mathematics, are inherently complicat~d to 
interpret and use by software engineers and 
customers of the software system. Thus, the 

. approach does not find a better place in the software industry for widespread acceptance 
of it. 

The emerging Model Driven Development (MDD) is an OMG (Object 
Management Group) initiative that provides an approach to system development based 
on model definition and transformations. Models are used throughout the software 

. . 

* Faculty Member, The ICFAI School of Information Technology (!SIT), Hyderabad. 
Email: acojha2002@yahoo.co.in 

. © 2005 The ICFAI University Press.All Rights Reserved._ 



Model-driven Development in C 

development life cycle for analysis, design, construction, deployment and 
maintenance. A model is a description of a system written in a powerful and 
expressive language. The language has a well-defined syntax and semantics, which 
is suitable for automated interpretation and manipulation. The OMG's Unified 
Modeling Language (UML) has become the most widely used standard for specifying 
and documenting a software system through several models. It is a visual and general 
purpose modeling language that can be applied to all the application domains and 
implementation platforms. Its extensive nature allows a software engineer to model 
software systems with all the major development methodologies. However, UML 
seems to be very popular where object-oriented methodology is used for software 
development. 

The C is a general purpose programming language well known for powerful 
function-oriented programming. Software developers, who are content with C, 
use informal structured analysis and design methodology to develop systems. With 
rising popularity of modern object-oriented programming 
languages like Java and C#, object-oriented analysis and r--11•••••----, 

Models are used 
throughout the · 

software 
development life 
cycle for analysis, 

design, construction,. 
deployment and 
maintenance 

design methodology have become the mainstream approach 
for software development. Still a large chunk of software 
developments use C programming language with 
traditional document driven structured analysis and design 
approach. In particular, the embedded software developers 
who are more accustomed to C programming language, 
experience tough challenges from today's increasingly 
complex embedded systems. As time-to-market issues 
archive greater focus, enhancement of developers 
productivity and quality of system are major concerns, 
software developers sought alternative approach to find 1.---11•••••----' 
relief. One elegant approach is to move to UML and MDD to accrue many visible 
benefits. 

The article is structured as follows. Section 2 describes the mapping of UML to C 
programming constructs. Section 3 discusses the benefits of MOD and then the article 
concludes with a positive note. 

Mapping UML to C 
Although UML is extensive and can be applied to any methodology, it is more biased 
towards object oriented design techniques. The basic concept of the object is easy to 
understand and adopt in C. While the key concepts of Object Oriented (00) 
methodology like abstraction, encapsulation, data hiding, and code reuse can be 
effectively applied to C, the concept of inheritance seems to be complicated. Thus, a 
pragmatic subset of 00 approach should be used to preserve its essence while 
implementing UML in a procedural language like C. · 

8 December 2005 • The /CFAJ Journal of Information Technology 



' 

Figure I: Class Diagram 

Timer 

+seconds: int 

+minutes: int 

+~ick () 

+reset() 

Let's take the example of a Timer object that could 
have the responsibility m keep track of time. It could 
have attributes such as minutes and seconds and 
perhaps operations such as reset and tick. The reset 
operation could initialize the attributes to zero and 
the tick operation could increment the time by one 
second. In UML this could be shown in a class 
diagram having a single object called Timer that has 
attributes minutes and seconds and the type integer 
as well as public operations tick() and reset(). 

While the timer object is realized as a type class in ah object oriented language, in 
C a structure type can be exploited for it. Thus, in C, the code should look like the 
following: 

type struct 
{ 

int seconds; 
int minutes; 

} Timer; 
void tick(Timer *this); 
void reset(Timer *this); 
Like normal C code, the attributes are contained inside the structure and the 

operations that act on these attributes kept outside. However, to distinguish which 
object these operations are to act upon, a pointer argument of type Timer is passed to 
these operations so that the attributes can be manipulated without any confusion. 

Thus, the operations, for example, reset() and tick() can be defined as follows: 

void reset(Timer *this) 
{" 
this-> seconds= O; 
this->minutes=O; 

} 
void tick(Timer *this) 
{ 
this->seconds=this->seconds+ 1; 
if (this-> seconds> = 60) 

{ 
this->minutes=this->minutes+ 1; 
this-> seconds =O; 
} 

} 

-- -~ -- - -- . 

-T-he·ICFAJcdoumal o{lnformiiJion Technology ~-December 2005 g 



Model-driven Development in C 

Initialization and clean up of an object is done with constructor and destructor 
functions which can be handled in C as well. A function init{) to initialize the object 
upon creation and a function cleanup() to clean up the object upon destruction can 
be defined. 

void init(Timer *this); 
void cleanup(Timer *this); 
An instance for an object can be created and destroyed statically or dynamically. 

However, the init{) and cleanup() functions are not invoked automatically during 
static creation and destruction of the object. The static instance is very straightforward 
and is done as follows: 

Timer time; 
The instance is destroyed automatically when created statically. The dynamic 

creation and destruction of instance can be handled by creating create{) and destroy() 
functions that allocate and release memory manually. 

Timer * create() 
{ 
Time *this; · 

this 
= (nmer*)malloc(sizeof(Timer)); 

init(this); 
return this; 

} 

void destroy(Timer *this) 
{ 

} 

cleanup(this); 
·free(this); 

Figure 2: Association Relation ----------------------1 
Timer 

+seconds: int 

+minutes: int 

+tick () 

+reset () 

1 

Display 

J 

+Show () 

In UML the operations can be public or private. This can be achieved by using two 
different files for an object, a specification (.h) file and an implementation (.c) file. 
The private functions that are only visible to the object are declared and defined in 
the implementation file, but not available in the specification file. The public functions 
are declared in the specification file but defined in the implementation file. The 
specification file is included whenever· the use of the object is required in a file. Thus, 
it preserves the fundamental concepts of abstraction, encapsulation, hiding and reuse. 

In UML, the objects exploit some sort of relationship in order to interact with each 
other and invoke each other's functions. For example, the Timer object interacts with 
a Display object to show the time. If the Timer object has to invoke the show() function 
of the Display object, then an association relation from the Timer to the Display object 
can be established. Also a multiplicity can indicate how many instances of the Display 
object the Timer requires. The UML diagram will be as Figure 2. 

IO December 2005 • The /CFAI Journal of Information· Technology 



MOD 

The resulted C code for the Timer object is: 
type struct 
{ 

int seconds; 
int minutes; 
Display *display; 
} Timer; figure 3: Dependency Relation 

If the multiplicity is a constant 
greater than one, then an array 
of pointers of type Display could 
be used. If the multiplicity is many 
and varies with time then perhaps 
a linked list is required. 

Timer 

+seconds: int 

+minutes: int 

+tick(}. 

+reset () 

Display 

+Show () 

The function call for..._ ___________________ ___. 

show(), inside the function tick() of Timer object could be as follows: 

_ tkk(Timer *this) 
{ 

show (this-> display, this-> seconds, this-> minutes) ; 
} 

In this case, the Timer object has an attribute that is an instance of the Display 
object. It is a structural relationship where one object contains an instance of another 
.object. In certain situations a non-structural relationship holds between the two objects. 
It is called a dependency relation. In a dependency relation, one object uses another 
object by accepting it as an argument in the signature of its operation. The argument 
can be passed by value or by reference. The UML diagram for the Timer and the 
Display objects holding a dependency relation looks like as shown in the Figure 3. 

The C code for the _tick() function of the Timer object would be: 

tick(Timer *this, Display *device) 
{ 
show(device, this->seconds, this->minutes); 
} 

A summary of these mappings is presented. 

• The basic concept of object is mapped to a structure in C that uses two files, a 
specification (.h) file and an implementation (.c) file. The specification file holds 
the structure definition having the attributes of the object as part of the structure. 

The JCFN Journal of Information Technology • December 2065 11 



Model-driven Development in C 

The functions that operate on these attributes are declared outside the structure 
and defined in the implementation file. Other objects use the specification file to 
gain access to that object through its public interfaces. 

• All the private and public instance attributes are declared in the structure. Mutator 
and accessor functions to change these attributes can only be used and made 
private or public as required. This discipline has to be maintained to implement 
data hiding. 

• Class attributes, if any, are declared in the implementation •--------t--i 
file·. Private class attributes do not appear in the Modelsimulationand 
specification file. They are marked as static in the codegeneration 
implementation file. Public class attributes are declared enablefasterdesign 
bare in the implementation file and marked as extern in iterations that 
the specification file. 

• Instance operations of the object have a standard first produce desired 
parameter called 'this', a pointer to the object data. Class functionality, 
operations are just normal functions in C. Private perfonnanceand 
operations do not appear in the specification file. They scalability 
are defined in the implementation file only and marked 
as static. Public operations are declared in the 
specification file and defined in the implementation file. 
(A case study using these concepts is provided separately in Developers' Zone in 

this issue.) 

Benefits of MDD 

Model-driven developmeQt is a significant shift in software development that promises 
many improvements of the software development process to deliver business benefits. 
• Improved ProQ_uctivity: MDD supported by tool can generate code automatically 

through model transformation. In fact a tool can generate code between 65-90% of 
the entire system from the models and remaining 10-35% is the code that the 
developers write for function bodies. This.is a significant improvement of developers' 
productivity during initial system development, refinement and system 
maintenance. This enables the developers shifting focus from coding to modeling, 
thus paying more attention to solving the business problem at hand. 

• Better Quality: MDD produces quality code by assuring conformance to requirement 
specifications, removing construction defects through model validation, refinement, 
and simulation, maintaining uniformity and consistency through the use of coding 
standard. Model simulation and code generation enable faster design iterations 
that produce desired functionality, performance and scalability. 

• Reduced Cost and Time: Automatic code generation removes repetitive and 
mechanical parts of the coding process and reduces the manpower requirements. 
It enables low development cost and reduced time-to-market the software. 
Development process becomes ·more predictable thereby lowering the project risks. 

12 December 2005 • The /CFAI Journal of Jnfonnation Technology 



• Increased Business Agility: MDD helps respond to the changing business 
requirements quickly by modifying the models or code easily to fit in changes. This 
is due to the fact that the mapping between the model and code is kept very 
straightforward and roundtrip-engineering tool makes the correct synchronization. It 
helps in better maintenance. A business-focused approach to software development 
produces software that meets business agility. 

• Documentation: Since model describes the system at different levels of abstraction, 
they are used for better documentation and communication. Thus documentation 
process is also automated. 

• Solving Complexity through 00 Concepts: Object-oriented paradigm itself has 
several benefits over function-oriented approach. Abstraction, encapsulation, 
inheritance and reuse are the key 00 concepts. They reduce complexity of· 
developing large systems. They help provide better structured, more extensible 
and maintainable systems. A 'C' developer can leverage these benefits. 

Conclusion 
Models support software development at a higher level of abstraction bringing greater 
communication, maintainability and flexibility. MDD can solve many pains of C 
developers through requirement visualization, model simulation and quality code 
generation from the validated models. It requires a shift in culture from document 
driven code-centric development to model-centric development. UML models and 
00 co~cepts are basic building blocks for this approach. However, the technical 
complexity of UML modeling and a different approach to software development in 00 
paradigm throw some concerns for C developers. They find difficulty in transition 
from a C development environment to an 00 development environment for adoption 
of MDD. Still then, the benefits of MOD are significant and the C developers must 
cope with the transition to experience it. er, 

Reference # 35}-2005-12-01-01 

References 

1. Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User 
Guide, Addition-Wesley, 2000. 

2. Byron S Gottfried, 'Theory and Problems of Programming with C, Schaum's Outline 
Series, McGraw Hill Publishing Company, 1990. 

3. Richard Soley, "Model Driven Architecture", OMO white Paper, November, 2000, 
at http://www.omg.org. 

4. Marin Bakal, "UML for C Programmers", C/C+ + Users Journal, May 2005. 
5. Mark Richardson, "Object Based Development Using the UML and C", Dedicated 

System Magazine, 2001. 

6. Website at http://www.ilogix.com 

fhe TCFAJ Journal of Information TechMlogy • December 2005 13 



Learning for Leadership 
ICFAI University Press publishes over 300 new books, every year that are focused to impart relevant 
and contemporary knowledge and cutting edge skills to corporate executives, consultants, academicians 
and students. You can learn to win and lead ! 

for online registration 
Visit us at: 

www.icfaipress.org/bookclub 
J_(?in T_oday &: Enjoy ,these benefi,s for 5 years 

• Four Categories of Membership: .• Books at special discounts 
Standard, Silver, Gold and exclusively for members. 
Platinum. • Free books through Booklovers 

• Online Membership Registration scheme .. 
Facility. • Savings on Subscription of 

• Membership valid for 5 years. Magazines and Journals. 
• Big savings now-Join today and ♦ Easy payment options through 

select up to 10 books Free. Online/Cheque/DD/Credit 
• Growing catalogue of books. Card(VISA/MasterCard). 
• Choice of the latest Books on • Custqmer Service through All 

Management, Finance, IT & India Network. 
allied areas. • Free Delivery of Books at your 

• Fortnightly electronit newsletter. doorstep. 

M®Hhtttii4Mi·Wi¥_. 
Category Membership Free Books 

Fee (Rs.) Number Value(Rs.) 

Standard 500 3 900 

Silver 750 5 1500 

Gold 1000 7 2100 

Platinum ·1250 10 3000 

On subsequent purchase of books, members 
receive discounts : Standard (33%), Silver 
(40%), Gold (45%) and Platinum (50%). 

To seek membership in ICFAI University Press Book Club, please contact: 

14 

The Manager, ICFAI University Press Book Club, 52, 
Nagarjuna Hills, Punjagutta, Hyderabad 500082. 

Ph: 040-2343 5368/6970/72-74. Fax: 040-2335 2521/4302. 
E-mail: bookclub@icfaipress.org 


