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Abstract. For an abelian variety A/ K over a number field K, we 
define the set of Tamagawa torsors of A at a prime v of K to be the set of 
principal homogeneous spaces of A over the completion Kv of Kat v that 
are split by an unramified extension of Kv. In this paper, we study some of 
the arithmetic properties of the Tamagawa torsors. We also give, following 
Mazur's theory of visibility, conditions under which non-trivial elements 
of the Tamagawa torsors of A may be interpreted as rational points on 
another abelian variety B. 

Introduction 

Let A/ K be an abelian variety defined over a number field K. The 
Shafarevich-Tate group of A, denoted by Ill(A/ K), is the set of isomor
phism classes of principal homogeneous spaces of A (also called A-torsors) 
defined over K that are split by every completion Kv of K, where v is a 
prime of K. In other words, the set of non-trivial A-torsors1 in Ill(A/ K) 
have a Ku-rational point for every prime v but do not have any K-rational 
points. The group Ill(A/ K) is a fundamental arithmetic invariant of A/ K 
and its conjectural finiteness can be potentially used in effectively determin
ing the set of rational points A(K). In this paper, we define a new arithmetic 
invariant of A. Specifically, we consider the set of A-torsors defined over Kv 
that are split by an unramified extension of K 0 • We c~Il this·the set of Tama
gawa torsors of A at v and denote it by TT(A/ K 0 ). The terminology is rather 

- --~prosaically explained by.the fact (proved .in Section 2) that TT(A/ KvJ.is a -~- ---~ 
finite\set of order cA,v, the usual Tamagawa number of A at v.2 

As we explain presently, this is a useful way of interpreting the Tamagawa 
number of A at v, particularly in the context of the Birch and S winnertoh-Dyer 

1 The trivial A-torsors are isomorphic to A over K. 
2We do welcome suggestions for a different terminology and/or notation. 
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(BSD) Conjecture. In this paper, we study some of the arithmetic properties 
of TT(A/ Kv) including its duality properties as well as its relationship to 
other invariants of A/ K such as the Selmer group of A as well as IIl(A/ K). 
We also show how to construct non-trivial elements of TT(A/ K 0 ) via the 
rational points on another variety B, also defined over K. 

Tamagawa torsors correspond to locally unramified cohomology classes 
and these have been fairly well-studied in the literature. Consequently, most 
of the theorems discussed in this paper are simple reinterpretations of known 
results. In particular, the idea of interpreting the Tamagawa number in terms 
of torsors is evident in [Maz72,Mil86] and directly stated in [Ste04]. The 
splitting property of these torsors is mentioned explicitly in [Gon]. Our aim 
has been to unify the somewhat diverse results by interpreting the Tamagawa 
number in terms of principal homogeneous spaces. 

We now briefly describe the contents and organization of this paper. 
In Section 1, we present some definitions and results involving the Neron 
model of A. In Section 2, we define the group of Tamagawa torsors and prove 
its basic finiteness property. In Section 3, we study the duality properties 
of Tamagawa torsors. In Section 4, we relate Tamagawa torsors to Selmer 
groups. Finally, in Section 5, we study visibility properties of Tamagawa 
torsors. We first show that every Tamagawa torsor is 'visible' in some ambient 
variety. We then prove an extension of a theorem of Mazur by means of 
which Tamagawa torsors of A can be interpreted as rational points on another 
abelian variety B also defined over K. 

1. Preliminaries 

Let K be a number field with ring of integers OK and let A/ K be an abelian 
variety over K. Let A denote the Neron model of A/ K over X = Spec OK 
[BLR90]. Thus A is separated and of finite type over X with generic fiber 
A/ K, and satisfies the Neron mapping property: for each smooth X-scheme 
S with generic fiber SK, the restriction map 

Homx(S, A) ➔ HomK(SK, A) 

is bijective. Alternatively, recalling [Mil80, §11.1] that A defines a sheaf 
(which we also denote as A) for the etale ·(or the flat fpqf) topology over 
Spec K, we consider the direct-image sheaf j*(A) for the etale (or fpqf) 
topology over X = Spec OK, where j : Spec K cc...+ X is the inclusion 
of the generic point. When the sheaf j*(A) is representable, the smooth 
scheme A ➔ X representing j*(A) will be called the Neron model of A.3 

Abusing notation, we identify the functor j*(A) itself as the Neron model of 

3It is a deep theorem of Neron that A exists, up to isomorphism. 
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A and write A= j*(A). Over the flat topology for X, we have a short exact 
sequence of group schemes (or sheaves): 

(1.1) 

where AO is the largest open subgroup scheme of A with connected fibers 
(also called the identity component) and <I> A ;;: A/ A 0 is the component group 
of A. If we regard <I> A as an etale sheaf over X and denote by <I> A,v its stalk 
at a prime v, then <I> A,v can be considered as a finite, etale group scheme 
over Spec kv. Equivalently, <I> A,v is a finite abelian group equipped with a 
continuous action of Gal(kv/kv), where kv is the residue field of Kv. Over 
Spec kv, we thus have an exact sequence of group schemes 

0---+ A~---+ Av---+ <l>A,v---+ 0 

The group scheme <I> A,v = Av! A~ of connected components is called 
the component group of A at v. The finite group <l>A,v(kv) is called the 
arithmetic component group of A at v and cA,v = #<I> A,v (kv) is called the 
Tamagawa number of A at v. Considering the natural closed immersion 
iv : Spec kv <-+ X, we find that 

<I> A = E9Civ)*<l> A,v (1.2) 
V 

where the direct sum is over all v or equivalently, over the finite set of v where 
A has bad reduction. The short exact sequence (1.1) of etale (or, flat) sheaves 
over X induces a long exact sequence of etale (or flat) cohomology groups: 

0---+ A 0(X) ---+ A(X) ---+ <I> A (X) 

---+ H 1(X, A 0)---+ H 1(X, A)---+ H1(X, <l>A) (1.3) 

where we can write, for all i, 

H\X, <l>A) = E9H1(Speckv, <l>A,v) 
V 

which follows from (1.2). The Neron mapping property implies that 

A(X) ;:: A(K) 

(1.4) 

Furthermore, it is also known (see the Appendix to [Maz72]) that, staying 
away from 2-primary components, 
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where III(A/ K) is the Shafarevich-Tate group of A. Thus, the exact sequence 
(1.3) becomes 

0 ➔ A 0 (X) ➔ A(K) ➔ EB<t>A,v(kv) ➔ H 1(X,A0
) ➔ III(A/K) ➔ 0 

V 

(1.5) 
In particular, staying away from 2-primary comppnents, we note that the 
group III(A/ K) may be expressed in two ways. First, the exact sequence 

EB<t>A,v(kv) ➔ H 1(X, A0
) ➔ III(A/K) ➔ 0 (1.6) 

V 

identifies III(A/ K) as a cokernel. Secondly, the exact sequence 

0 ➔ III(A/ K) ➔ H1(X, A) ➔ E9 H 1(Speckv, <l>A,v) (1.7) 
V 

identifies III(A/ K) as a kernel. 

2. Tamagawa torsors 

Let A/ Kv be an abelian variety defined over the completion Kv of K <1,t a 
prime v. Let Kir be the maximal unramified extension of Kv. The inclusion 
Gal(Kv/ Kir) C Gal(Kv/ Kv) induces a map 

Hr(Kv, A) --+ H 1(Kir, A) 

whose kernel corresponds to the unramijied subgroup of H 1 ( K v, A). The map 
may also be given as 

WC(A/ Kv)--+ WC(A/ Kir) 

where WC(A/Kv) ~ H 1(Kv,A) denotes the Weil-Chatelet group of A 
over Kv. In this situation, the kernel represents the set of principal homo
geneous spaces of A (or A-torsors) defined over Kv that are split by Kir. 
Since Kir is the directed union of finite unramified Galois extensions of Kv, 
it follows that the kernel corresponds to non-trivial A-torsors over Kv that 
do not have a Kv-rational point but have a Li-rational point for some finite 
unramified Galois extension Li of K 0 • We denote this kernel by TT(A/ Kv) 
and call it the group of Tamagawa torsors of A at v. In particular, TT(A/ K 0 ) 

is the subgroup of unramified cohomology classes in H 1 ( K v, A). In order to 
analyze the group TT(A/ Kv), we begin with the following proposition. 

Proposition 2.1. Let Li be a finite, unramijied Galois extension of Kv with 
residue field li, and let A/ Kv be an abelian variety over K0 • Then 

H1(Lif Kv, A(Li)) ~ H 1(lifkv, <l>A,v(h)) 
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Proof Let Ch; be the ring of integers of L; and mL; its maximal ideal so 
that Ii = 0 L;/mL;. In particular, Ii is a finite Galois extension of the finite 
field kv and there is a canonical isomorphism Gal(L;/ Kv) ~ Gal(h/ kv)- Let 
us denote this group as G;. Let Axv = AxxXv, where Xv= SpecOKv· 
In particular, Axv is the Neron model of A/ Kv over Xv. Since Ax

0 
is smooth 

over Xv, it follows that the reduction map 

is surjective [Mil80, §1.4.13]. Thus there is an exact sequence of Ci-modules 

0-+ At(OLJ-+ Axv(Ch;) ➔ <l>A,vUi) ➔ 0 

We also find that Ax
0 

0xv Spec OL; is the Neron model of A ®Kv L; so that 
in particular Ax

0 
(OL;);,:: A(L;). The above sequence now becomes 

0-+ A1JOLJ ➔ A(L;)-+ <l>A,v(/i)-+ 0 

It therefore suffices to show that Hn(G;, A1JOLJ) = 0 for n = 1, 2. Let 

[c;] E HI (Gi' At (OLJ) be represented by an At-torsor C. Since Ae is 
a connected algebraic group over the finite field kv, it follows from Lang's 
Theorem that the Ae-torsor C 0oKv kv is trivial so that C(kv) -:/=- 0. It now 
follows from Hensel's lemma that C(OKJ =I=- 0, and hence [c;] = 0. 

On the other hand, we find that H 2(G;, A 0x (OL /mrL)) = 0 for all r, 
V I I 

since G; has cohomological dimension 1. It follows [Ser79, XII §3 Lemma 3] 
that H 2 (Gi, Ax0 (OL)) = 0. □ 

V I 

Remark. The above proof, which follows that of Prop 3.8 in [Mil86], con
tains a subtle error which is explained and corrected in the errata for [Mil86], 
available at www.jmilne.org. 

Theorem 2.2. The setTT(A/Kv) is finite and#TT(A/Kv) = CA,v· 

Proof The inflation-restriction sequence 

0 ~ HI(Kir/Kv,A(Kir)) ~ HI(Kv,A) ~ HI(Ki\A) 

identifies the set of Tamagawa torsors with the injective image of the group 
HI (Kir / Kv, A(Kir)) in H 1 (Kv, A). There is an isomorphism 

H 1(Kir/Kv, A(Kir));,:: limH1(Lif Kv, A(L;)) 
--+ 

where the direct limit is over all finite, unramified Galois extensions Li of Kv. 
It now follows from Proposition 2.1 above that 

Hi(K:f Kv, A(K:));,:: ~H1(l;/kv, <l>A,v(li)) ~ H1(kv, <l>A,v) 
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But (I) A,v is a finite Galoi~ module over the finite field kv so that its Herbrand 
quotient is 1. This implies ~at 

I ·. 0 #H (Speckv, <l>A,v) = #H (Speckv, <()A,v) = CA,v □ 

Remark 2.3. The proof above shows that the set TT(A/ Kv) is trivial when 
A has good reduction at v. It also follows from the theorem that the direct sum 
EBv TT(A/ Kv) is the set of Tamagawa tor~ors of A over all v and has order 
f1vcA,v· . 

3. Local duality of Tamagawa torsors 

Let Av be the abelian variety dual to A over Kv. For any abelian group M, we 
denote by M* := Hom(M, Q/Z) the Pontryagin dual of Mor the character 
group of M. The main theorem in this section identifies the character group 
of TT(A/ Kv) as the arithmetic component group (I) Av ,v (kv)-

Theorem 3.1. There is a canonical pairing 

which induces an isomorphism 

Theorem 3.1 will follow as a consequence of two lemmas that we now 
· establish. To begin with, there is. a canonical, non-degenerate pairing due to 
Tate [Mil86, Cor 1.3.4], [Tat57] 

Av(Kv) x H 1(Kv, A) ➔ Q/Z 

which induces an isoinotphisin Av (Kv) ~ H 1 (Kv, A)* of locally compact 
groups. 

Lemma 3.2. Let Li be a finite, unramified Galois extension of Kv. Then 
there is a perfect pairing 

where Nm(Av (L;)) C Av (Kv) is.the image of Av (L;) in Av (Kv) under the 
norm mapping corresponding to Gal(L;/ Kv)-

Proof The restriction map 
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fits into a commutative diagram 

where the vertical arrows are isomorphisms by Tate's local duality. The 
bottom horizontal map is dual [Tat57] to the norm map 

NmL;/Kv : Av (Li) ➔,Av (Kv) 

so that there are isomorphisms [Tat57, §8, Corl] 

I ~ , 1 . I H (Li/Kv, A(Li)) = ker(H (Kv, A) ➔ H (Li, A)) 

~ ker(A/(Kv)* ➔ Av(Li)*) 

~ (coker(Av(L;) ~ Av(Kv)))* 

~(Av (Kv)/Nm(A v (Li)))* 

In particular, Nm(Av (Li)) c Av (Kv) is the exact annihilator of the sub
group H 1(Lif Kv, A(Li)) C H 1(Kv, A) under the Tate pairing described 
above. D 

Since H 1 (Li/ Kv, A(Li)) ~ H 1 (Zif kv, <1> A,v) by Proposition, 2.1 and since 
the latter group is finite, we conclude that Av(Kv)/Nm(Av(Li)) is finite as 
well. Subgroups of Av (Kv) of the form Nm(Av (Li)) for any finite extension 
Li will be called the norm subgroups of Av (Kv)- We define the group of 
universal norms on Av (Kv) from Kir to be 

,,•· 

Nm(A V (Kirn = n Nm(A V (Li)) 
L; 

where the intersection is over all finite, unrarnified extensions Li of Kv. 

It follows from Lemma 3.2 that TT(A/Kv) = ~L· H 1(Li/Kv, A(Li)) 

is the Pontryagin dual of Av(Kv)/Nm(Av(Kir)). To 
1

prove Theorem 3.1, 
it therefore suffices to show that 

Lemma 3.3. For an abelian variety A/ Kv, the arithmetic-component group 
<1>:A,v (k0 ) is-isomorphic to A~Kv) modulo _the subgroup _of universal no17J1,s -~ 
from K:, i.e. 

<l>A,v(kv) ~ A(Kv)/Nm(A(Kir)) 

Proof. The norm map A(Li) ➔ A(Kv) may be given as a map 

Axv(Ch;) ➔ Axv(OKv) 
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where Ax
0 

is as defined in the proof of Proposition 2.1. Choosing the finite, 
unramified extension L; such that [L; : Kvl = [l; : kv] is coprime to 
cA,v = #<I> A,v (kv), we find that there is an induced norm map 

0 · 0 0 · Nm : Axv(th;) ➔ Axv(OKJ 

whose kernel G = ker(Nm0) is a smo~th group scheme with connected fibers. 
Letx: SpecOK

0 
➔ At beanyOK

0
-pointofAt. TheNm0-pullbackofx 

is a smooth OK
0
-scheme Y that is also a G-torsor for the etale topology. The 

special fiber Yv = Y xspec Chu Spec kv is a torsor for a smooth, connected 
group scheme over the finite field kv. By Lang's Theorem, Yv has a kv-rational 
point. Since Y is smooth over O Kv, the reduction map 

is surjective and thus, Y has an OK., -point. We conclude that Nm0 is 
surjective. Now consider the commutative diagram 

0 =-----At (OL;) -Axv (OL;)-~ A(L;) - <l>A,v(l;) - 0 

lNmo l l 
o-At(OKv)-Axv(OKv) ~ A(Kv)-<I>A,v(kv)-o 

The left vertical map is surjective while the right vertical map is the O map. 
It follows that A(Kv)/ nL; Nm(A(L;) ~ <l>A,v(kv)- □ 

Remark 3.4. The pairing in Theorem 3.1 also follows directly from 
the canonical pairing <I>Av,v x <l>A,v ➔ Q/Z defined by Grothendieck 
[Mil86, Ill C.13]. 

Theorem 3.5. There are exact sequences 

0---+ III(A/ K) - H 1 (X, A) - ffiv TT(A/ Kv) 

where Av is the Neron model of Av. Assuming that III(A/ K) is finite, the 
images of the two-right hand maps are orthogonal complements of each other 
under the pairing described in Theorem 3.1. 

Proof The first exact sequence is 1.5 applied to Av while the second exact 
sequence follows from 1.7 and Theorem 2.2. The second part of the theorem 
follows from the main result in [Gan]. D 
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Remark 3.6. The second exact sequence in the theorem above also shows 
that the index [H1 (X, A) : III(A/ K)] divides Tiv CA,v, the product of the 
Tamagawa numbers of A. 

Remark 3.7. According to the discussion in [Gan], the cokemel of the map 
Av (K) ➔ ffiv <I> Av,v (kv) may be defined as the Neron class group of Av/ K 
anddenotedbyCAv,K_IftheimageofthemapH 1(X,A) ➔ ffiv TT(A/Kv) 
is denoted by Cl K' then the above theorem states that, assuming III(A/ K) 
is finite, there is a perfect pairing 

CAv,K X cl,K ➔ Q/Z 

It also follows that the short exact sequence 

0 ➔ CAv,K ➔ H 1(X,Avo) ➔ Ill(Av/K) ➔ 0 

has, as its dual, the short exact sequence 

0 ➔ III(A/K) ➔ H 1(X, A) ➔ Cl,K ➔ 0 

4. Selmer groups and Tamagawa torsors 

In this section, we relate the Tamagawa torsors to Selmer groups. We begin 
with the local case. Consider the Kummer exact sequence 

0 ➔ A(Kv) ® Z/nZ ➔ H 1(Kv, A[n]) ➔ H 1(Kv, A)[n] ➔ 0 

over Kv for any integer n. Passage to direct limits yields the exact sequence 

0 ➔ A(Kv) ® Q/Z ➔ H 1(Kv, Ator) ➔ H 1(Kv, A) ➔ 0 

Let H,h(Kv, Ator) C H 1(Kv, Ator) be the inverse image of TT(A/Kv) C 

H 1 (Kv, A) under the surjection H 1 (Kv, Ator) ➔ H 1 (Kv, A). We then have 
an exact sequence 

0 ➔ A(Kv) ® Q/Z ➔ Hfr(Kv, Ator) ➔ TT(A/ Kv) ➔ 0 

Identifying the injective image of A(Kv) 18) Q/Z in H 1(Kv, Ator) (as well as 
in H,h(Kv, Ator)) as the local Selmer group Sel(A/ K0 ), we have thus proved 
that 

_____ Proposition 4.1. LetB,h (K v, Ator) be defined as above. Then there is_ an~-----~--
exact sequence 

0 ➔ Sel(A/ Kv) ➔ Hfr(K~, Ator) ➔ TT(A/ Kv) ➔ 0 

In particular, the index of Sel(A/ Kv) in H,h(Kv, Ator) is' equal to the 
Tamagawa number of A at v. 



76 Saikat Biswas 

The global Kummer exact sequence is related to the local one by means of 
. the commutative diagram 

0 --+- A(K) ®Z/nZ -----+-H1(K,A[n]) -----+- H 1(K, A)[n] --➔ 0 

l ! ~ ! 
where the vertical arrows are induced by the inclusions Gal(K / K) . c 

. Gal(K0 /K0 ) and A(K) C A(Kv) for every v. The global n-Selmer group, 
denoted by Seln (A/ K), is the kernel of the diagonal map in the above diagram 
so that there is an. exact sequence 

0 ➔ Seln(A/K)::, H 1(K, A[n]) ➔ IT H 1(Kvi A)[n] 
V 

~t H.h(K·, A[n]) be the subgroup of H 1 (K, A[n]) that maps to 
EBv TT(A/ Kv)[n] ~ ITv H 1 (Kv, A)[n] under the map above. There is thus 
an exact sequence 

0 ➔ H,h(K, A[n]) ➔ H 1(K, A[n]) ➔ IT H 1(K:;r, A)[n] 
V 

Proposition 4.2. There is an exact sequence 

0 ➔ Seln(A/ K) ➔ !fti(K, A[n]) ➔ EBTT(A/Kv)[n] 
V 

Proof Apply the kemel-cokemel exact sequence [Mil86, I 0.24] to the pair 
of maps 

V V 

□ 

Let H.f,.(K, Ator) be the direct sum of the groups H,h(K, A[n]) and the 
Selmer group Sel(A/ K) be that of the groups Seln (A/ K) over all n. We find 
that 

Corollary 4.3. The index of the Selmer group Sel(A/ K) in H,h(K, Ator) 
divides ITv CA,v· 

Proof Pass on to the direct limit of the exact sequence in Proposition 4.2. 

□ 
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·. Remark 4.4. The results proved so far show that there is a commutative 
diagram 

0 0 

l l 
o- A(K) ® Q/Z Sel(A/ K) ---III(A/ K) --O 

II l l 
o-A(K) ® Q/Z - H,h(K, Ator) HJr(K, A) --➔ O 

l l 
E9TT(A/Kv) = E9TT(A/Kv) 

V V 

that relates the Mardell-Weil group, the Selmer group, the Shafarevich-Tate · 
group and the Tamagawa torsors of A. Here HJ/K, A) ~ HI(X, A) is the 
subgroup of HI (K, A) that maps to HI (Kir / Kv, A(Kir)) s; HI (Kv, A) 
for every v. The diagram shows, in particular, that index of Sel(A/ K) in 
H,h(K, Ator) as well as that of III(A/ K) in FiJr(K, A) divide Tiv cA,v, the 
product of the Tamagawa numbers of A. 

5. Visibility of Tamagawa torsors 

Let 1 : A <-+ J be an embedding4 of abelian varieties over Kv. The kernel 
of the induced map HI ( K v, A) ➔ HI ( K v, J) may be defined, following 
[CMOO], as the visible subgroup of HI (Kv, A) with respect to the embedding 
1 and denoted by Vis1 HI(Kv, A)5 i.e. 

Vis1 H\Kv, A):= ker(HI(Kv, A) ➔ HI(Kv, J)) 

The terminology can be explained by noting that if C = J / A then, over K 0 , 

there is a short exact sequence 

O ➔ A ➔ J~C~O 

ofGal(Kv/ Kv)-modules which induces a long exact sequence of cohomology 
groups 

0 ➔ A(Kv) ➔ J(Kv) ➔ C(Kv) ➔ HI(Kv, A) ➔ HI(Kv, J) ➔ · · · 

which can be trUncated to the exact sequence· 

0 ➔ J(Kv)/A(Kv) ➔ C(Kv) ➔ Vis1 HI(Kv, A) ➔ 0 

4i.e. a morphism that is also a closed immersion. 
5 Although the visible subgroup depends on the choice of embedding, it is 

usually clear from the context and is therefore omitted from the notation. 
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Let r; E Vis1 H 1(Kv, A) be the image of P E C(Kv)- Then n-1(P) 
is a coset of A in J, and thus is a torsor under A. This explains how 
elements in Vis1 HI (Kv, A) are 'visible' in J (Kv).6 Clearly we can define 
Vis1 TT(A/ Kv), the visible part of the Tamagawa torsors, as 

Vis1 TT(A/ Kv) := Vis1 HI (Kv, A) n TT(A/ Kv) 

Let Li be a finite, unramified Galois extension of Kv and let ResL;/ Kv (AL;) 
be the restriction of scalars of AL; from Li to K v. In particular, it is an abelian 
variety over Kv of dimension [Li : Kv]. dim(A) 

Proposition 5.1. Every element in TT(A/ Kv) is visible in ResL;/Kv (AL;) 
for some finite, unramified Galois extension Li of Kv. 

Proof There is a canonical embedding A L+ Res L;/ Kv (AL;) of abelian 
varieties over Kv which induces a map 

We thus have an exact sequence 

On the other hand, the inflation-restriction sequence with respect to the 
extension Li/ Kv is 

· 1 I r 
0 ➔ H _(Li/Kv, A(Li)) ➔ H (Kv, A) ➔ H (L;, A) 

A straightforward application of Shapiro's lemma [Ser97, I §2, Prop 10] 
implies that there is an isomorphism 

It follows that we have an isomorphism 

ViSResL;/Kv(AL;)(HI (Kv, A)) ~ H 1 (Li/ Kv, A(Li)) 

Upon passage to the direct limit over such Lis, we obtain isomorphisms 

~ ViSResL;/Kv(AL;)(H 1 (Kv, A))~~ HI(Li/Kv, A(Li)) 

~ HI(K~r/Kv, A(K~r)) 

~ TT(A/Kv) 

where the last isomorphism follows from the proof of Theorem 2.2. □ 

6Considering the embedding A "-+ J over the number field K, it can be shown 
[CMOO] that Vis1 H 1(K, A) is finite. 
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Having described the ambient variety (i.e. ResL;/Kv(ALJ) in which any 
Tamagawa torsor is always visible, we now give a method by means of which 
Tamagawa torsors of A may be interpreted as K -rational points on another 
variety B with which it shares a certain p-congruence. · The following is a 
variation of the main theorem proved in [AB 13]. 

Theorem 5.2. Let A and B be abelian varieties of the same dimension over 
a number field K, having ranks rA = 0 and r8 > 0 respectively and such 
that B has semistable reduction over K. Let N be an integer divisible by the 
residue characteristics of the primes of bad reduction for both A and B. Let 
p be an odd prime such that e p < p - 1, where e p is the largest ramification 
index of any prime of K lying over p, and such that 

gcd(p, N. #A(K)w, · 9 c,.,) = I 

Suppose further that B[p] ~ A[p] over K. Assuming that III(A/K) has 
trivial p-primary components, there is an injection 

B(K)/pB(K) '--+ E9TT(A/K0 )[p] 
V 

Proof We briefly sketch the proof, referring to [AB13] for details. The 
isomorphism A[p] ~ B[p] over K induces an isomorphism A[p] ~ B[p] 
over X = Spec th, where A and B are the corresponding Neron models 
(this is the heart of the proof as given in [AB13]). It then follows, given the 
conditions of the theorem, that we have a diagram 

0 

l 
III(A/ K)[p] 

·1 
B(K)/pB(K)--rp-~ H 1(X, A)[p] 

l 
ffiv H 1(Speckv, <l>A,v)[p] 

such that ker(<p) = 0. However, III(A/ K)[p J is trivial by the conditions of 
the theorem and H 1(Speck0 , <l>A,v)[p] ~ TT(A/K0 )[p] (see the proof of 
Theorem 2.2). The desired result now follows. D 

.. We may also say, in the language of [CMOO], that TT(A/ Kv) is 'explained' 
by B(K). We now reinterpret the example discussed in .[AB13], which was 
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first discovered in [Ste04]. Consider the optimal elliptic curves A = 114Cl 
and B = 57 Al. The data in [Cre97] shows that A has rank 0, A(Q)tor ~ Z/4Z 
and III(A/Q) has trivial conjectural order. On the other hand, we find 
that B(Q) ~ Z and fL c8 ,1 = 2. Furthermor6?--we have A[5] ~ B[5] 
over Q. Thus, the triple (A, B, 5) satisfies the hypothesis in Theorem 5.2 and 
we conclude that there is an injection Z/5Z c.....+ EBP TT(A/Qp) i.e. A has a 
Tamagawa torsor of order 5. This agrees with the available data, according to 
which TI1 cA,t = 20. 

Remark 5.3. For an optimal elliptic curve A/Q of rank 0, the second part 
of the BSD Conjecture states that 

where LA,Q(s) is the L-function asociated to A/Q, QA is the real volume of 
A computed using a Neron differential. Under the conditions of Theorem 5.2, 
Agashe has shown [AgalO, Prop 1.5] that p divides the left-hand side of the 
BSD formula. Since III(A/Q) is assumed to have trivial p-torsion, it follows 
that p must divide the Tamagawa numbers of A. With our interpretation of the 
Tamagawa number as the number of Tamagawa torsors, this implies that A 
must have a Tamagawa torsor of order p which is precisely what the theorem 
confirms. Thus one may also view Theorem 5.2 as providing theoretical evi
dence for the BSD Conjecture. 
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