-~

J. Ramanujan Math. Soc. .32, No.I (2017) 51-74

Tame ramification and group cohomology = -

Chandan Singh Dalawat! and Jung-Jo Lee?*

\Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019,
India ’
e-mail: dalawat@gmail.com

2Department of Mathematics., Seoul National University, Shillim- dong Gwanal\ -gu.
Seoul 151-742, Korea
_e-mail: jung/olee@gmail.com

© Communicated by: Dipendra Prasad

Received: January 13, 2016

Abstract. We give an intrinsic parametrisation of the set of tamely
ramified extensions of a local field with finite residue field and bring to
the fore the role played by group cohomology. We show that two natural
_definitions of the cohomology class of a tamely ramified finite galoisian
extension coincide, and can be recovered from the parameter. We also
give an elementary proof of Serre’s mass formula in the tame case and
in the simplest wild case, and we classify tame galoisian extensions of
degree the cube of a prime.
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Let K be a local field with finite residue field k of characteristic p and
cardinality ¢g. Let ¢ > 0 be an integer such that ¢ # 0 (mod. p) and let
f > 0 be an arbitrary integer. Consider the set 7, r(K) of K-isomorphism
classes of finite (separable) extensions of K of ramification index e and residual
degree f. This set was investigated by Hasse in Chapter 16 of his treatise [10],
by Albert in [1], by Iwasawa in [11] and by Feit in [9] (sometimes with the
restriction that K be of characteristic 0, or that the extensions be galoisian, or
that f £ 0 (mod. p)). .

Our purpose here is to give a more intrinsic parametrisation of this set, and

to bring to the fore the role played by group cohomology, a.theory-which=had=——"""

not yet been fi fullyformalised=at=thé-time of Hasse and Albert, although only

ff;ﬁﬂz‘ﬁrst few cohomology groups (which were known under different names) -

are needed.

*JJL was supported by NRF grant No. 2012-005700, Republic of Korea.
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We are able to recover properties of L € 7 (K directly from its parameter.
These properties include those of being galoisian, or abelian, or cyclic over K.
For every L, the parameter determines the galoisian closure L of L over K.
When L|K is galoisian, the parameter of L|K determines the cohomology
class of the extension of groups T

1 - Gal(LIK ) — Gal(L|K) = Gal(K s|K) — 1

corresponding to the tower L | K¢ | K, where K s is the maximal unramified

extension of K in L; it also determines the smallest extension K - of K s such

* that the extension of groups corresponding to the tower LK 7 | K 7 | K be split.

We also give an easy elementary proof of Serre’s mass formula [14] in the

- tame case (and in the case when the degree is divisible by p but not by pz),
analogous to the recent proof [4] in prime degrees [ (in both the cases [ # p
and [ = p). We explicitly work out all galoisian extensions of K of degree 13
(for every prime [ # p), including the case | = 2 of (tamely ramified) octic
dihedral or quaternionic extensions.

Let K be the degree- f unramified extension of K, wy : K}‘ — Z its
normalised valuation, k the residue field of K¢, and Gy = Gal(Ks|K).
We shall show that T, s(K) is in canonical bijection with the set of orbits
for the action of Gy on set of what we call ramified lines D C K}‘/K}‘” or
_equivalently on the set of sections of s : K }( /K }“’ — Z./eZ; ramified lines
are precisely images of sections of w . . '

We begin by recalling some basic facts about cohomology of groups in §1
and apply them to the cohomology of finite fields in §2, where we verify an
important compatibility between two different definitions of the cohomology
class of an extension of a cyclic group by a cyclic group. We then recall in
§3 some basic properties of the Kummer pairing such as its equivariance. The
fundamental notion of ramified lines is introduced in §4. In §5 we parametrise.
“the set 7,1 (K) arid_ give a proof in the spirit of [4] of Serre’s mass formula in
“degree ¢ (and also in degree ep when combined with the results of [4]). We
then provide in §6 an analogue in degree e (prime to p) of the orthogonality
relation in prime degree [4]. In §7, we give the parametrisation of 7, 7 (K)
and show how the various invariants of an L € 7, ¢(K) can be recovered
from its parameter. Finally, we work out a number of instructive examples

in §8.

1. Cohomology of groups

Most readers can skip this §, except perhaps (/.8) where we compute the
‘number of G-orbits in a G-module C (when both groups ar cyclic) — this is
the key to Roquette’s determination of the cardinality of 7, ¢(K) (7.1.4). For
an account of group cohomology by one of its creators, see [5].
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1.1 The group H%(G, C)g

Let G be a group and C a G-module, both written multiplicatively, and
6 : G — Aut(C) the action of G on C. An extension of G by C is a short
exact sequence 1| - C — I' - G — 1 such that the resulting conjugation
action of G on C is equal to the given action 8. Two extensions I', I’ of G by
C are isomorphic if there is an isomorphism of groups I' — T" inducing Id¢
on the common subgroup C and Idg on the common quotient G. Isomorphism
classes of extensions of G by C are classified by the group H2(G, C)g. The
class [I'] € H(G, C)g vanishes if and only if the extension I is split in the
sense that the projection I' — G admits a section, which happens precisely
when I' is isomorphic to the twisted product C xy G, the product set C x G
with the law of composition (c, g){d, i} = (c6(g)(d), gh).

1.2 The group H'(G, C)g

The group H'(G, C)g is the set of sections of the projection C x9 G — G
up to C-conjugacy; it can be identified with the set of supplements of C in I’
(subgroups D C C xg G suchthat CN D =1, CD = T') up to I'-conjugacy
(or C-conjugacy, which comes to the same). If the action @ is trivial, then
H'(G, C); = Hom(G, C).

1.3 The restriction map in general

Let G be a group and C a G-module. Let ¢ . G' — G be a morphism of -

groups; it allows us to view the G-module C as a G’-module via the action
6 o . Let C' be a G'-module (with action €’), and let y : C — C’ be
a morphism of G’-modules. For i = 1,2, the pair (¢, ) induces a map
H'(G,C)s = H' (G, C")g on cohomo]ogy called the restriction map.

For i = 1, it sends the class in H'(G, C)y of a section g +— (5(g), 8)
of the prOJectlon C x9 G — G to the class in H'! (G’, C")g' of the section
g' = (y(a(p(g))), g') of the projection C’ x¢g G' — G’.

For i = 2, the restriction map H%(G, C)g — H2(G’ C’)g coming from
the pair (¢, w) will be defined in two steps. In the first step, C’ = C and
w = Id¢, and in the second step, G’ = G and ¢ = Idg-.

When €’ = C and y = Id¢, the map H%(G, C)g — H?*(G/, C)gop cOMing
from the pair (¢, Id¢) sends the class of an extension ' of G by C to the class
of the extension I',_of G’ by.C consisting-of-those=(y7g’y € T X G’ §uch that

5 EeE)inG. _ | _
When G’ = G and ¢ = Idg/, the map H*(G',C)g — H2*(G, c')(,/
coming from the pair (Idg’, w) sends the class of an extension I'” of G’ by
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C to the class of the extensmn V,I“ = (C’ x I )/y/ (C) of G’ by C’ where
y'(c) = (i), c™"). | e

The testriction. map HZ(G C)g — HQ(G’ C')@/ commg from a general
pair (¢, y) is defined by first applying (¢, Id¢) and’ then app]ymg ‘(dg', w)-
to get the extension l,,(1"¢,) of G’ by C':In the special case when ¢ : G’ — G
is surjective and C’ = C, the restriction map is called the mﬂatzon map; it will
be of particular relevance in what follows.

1.4 The case of cyclic groups -

Recall how the groups H'(G, C)g and H2(G, C)g can be computed when G
is cyclic of order n > 0. Let o be a generator of G, and define the elements
o —land N, = 140 4 --- 40"~ in the group ring Z[G] (over which C
is.a left module via ). We have N;.(c — 1) = 0 and (a — 1).N, =0, and
therefore we get a complex

o—1 Ng' a—1
c c O c O ¢ (1.4.1)

The cohomology groups of (1.4.1) are canonically isomorphic to H'(G, C)g
and H%*(G, C)p respectively. If € is trivial, then H'(G,C); = .C and
H*(G,C), =cC/C".

Let G’ be another cyclic group, ¢ : G’ — G a surjective morphism of '
groups, and ¢’ a generator of G’ such that ¢(¢') = . Let C’ be a G’-module
and y : C — C’ a morphism of G’-modules. Then the restriction map
H(G, C)y — H(G', C")g is simply given by restriction to subgroups and
passage to the quotient from the map y : C — C’.

1.5 The case of cyclic modules

Spkcialise further to the case when C is also cyclic, of some order m > 0, and
letia € Z be such that @(¢) = a in (Z/mZ)* (so that a" = 1 (mod. m)). The
orders of the cyclic groups H' (G, C), and H(G, C), can then be computed in
terms-of @, m and n because forevery r € Z, the order of the kernel ,C (resp. the

image C7) of the endomorphism ()" of C is gcd(m, r) (resp. m/ ged(m, r)).,

Takingr =a —landr = 1+a+ -+ a"~! respectively gives the result.
To get a presentation of the extension I' of G by C corresponding to a given
class in H2(G,.C)4, choose generators t € C, o € G and identify the class of
I" with the class of an element s.€ Z such that (a — D5 =0 (mod m) (modulo
‘those which are = =(1+a+---+ a” ')t for:somet €. Z); for a suitable lift
6 € T of o, we then have

F=(,6 |t"=1,6"=1%|6t6"" = 19). (1.5.1)

For a direct derivation of this presentation, see for example [12, 9.4].
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Example 1.5.2. Take n = 2 and m = 4. The possibilities for a (mod. 4) are
1 and —1. Whena = 1, we have H2(G, O) = C/Cz, and the two extensions
I' (1.5.1) are the direct product C x G and the one in which the group T is
cyclic. When a = —1, we have H%(G, C)-1 = ,C, the split extension is the
twisted product C x _y G (I.1) and called the dihedral group D4 >, while the
other is called the quaternionic group Q4 5.

1.6 Commutativity and cyclicity

Let us determine the order of ¢ in I' (1.5.1), and the conditions for I" to be
commutative or cyclic.

Remark 1.6.1. Although s € Z is not unique in (1.5.1), r = ged(m, s) is
uniquely determined; m/r is the order of 7° in the group I'. We claim that the
order of the element ¢ € T (1.5.1)is mn/r. Indeed, the order of & 1s a multiple
dn of the order n of its image o € G; we have to show thatd = m/r. Now,
from the relation 6" = 7%, it follows that 69" = 79 = 1,s0d is a multiple of
the order m /r of 7°. But conversely, it follows from &""/" = ¢"$/" = | that
dn divides mn/r and therefore 4 divides m/r. Hence d = m/r, and the order

of g ismn/r.

Remark 1.6.2. Note that the group I' (1.5.1) is commutative if and only if
7 and ¢ commute, which happens precisely when a = 1 (mod. m), in view of

the relations 1™ =1, 616 ~" = 79,

Remark 1.6.3. Suppose that ¢ = 1 (mod.m). In this case, the extension
(1.5.1) of G by C splits if and only if s = 0 (mod. gcd(m, n)). Indeed, this
congruence is equivalent to the existence of at € Z such thatnt = s (mod. m),
which is equivalent to s = (1 +a + --- + a”;')z (mod. m) in view of
a =1 (mod. m).

For a prime / and an integer x # 0, denote by v;(x) the exponent of [ in the
prime decomposition of x. The following proposition has been extracted from
[1, Theorem 13] and the proof has been simplified.

Proposition 1.6.4. Suppose that a = 1 (mod. m). The (commutative) group
I" (1.6.2) is cyclic if and only if s is prime to gcd(m, n).

Proof. Suppose first that s is prime to gcd(m, n); we have to find an element of

order mn in T". The idea is to find an element y; € T of order. Joi(mn) forevery -~

prime / in each of the three (exhaustive) cases vi(m)o;(n) > 0, v;(m) = 0, and
“oi(n) = 0.

If v;(m)v;(n) > 0, then! divides gcd(m, n) and is prime to s, so ged(mz, §) is
prime to! and m/ ged(m, s) is divisible by 1% ") Consequently, mn/ ged(m, s)
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is divisible by /"™ and hence there is an element y; € T" of order /% (")
in view of the fact that the order of 6 € T is mn/ ged(m, s) by (1.6.1). Even
if v;(m) = 0 (so that v;(mn) = v;(n)), the subgroup (of order a multiple
of n) generated by & has an element y; of order /%™ _ Finally, if v;(n) = 0,
then the subgroup (of order m) generated by 7 has an element y; of order
[orm) — poitmn) These y; are trivial for almost all I (because v;(mn) = 0 for
almost all 1), so their product over all [ exists, is independent of the sequence
of the factors because I" is commuative by (1.6.2), and has order mn.
Conversely, suppose that the group I' is cyclic, so that T; = T/ e
(= T ® Z)) is also cyclic and has order /(") for every prime . Suppose
(if possible) that there is a prime [ dividing all three numbers m, s, n; we shall
get a contradiction by showing that T; would then have order < [%(™")_ This
follows from the fact that it is generated by the pair 7, G € T (images of 7 and
o respectivély) each of which has order < [*/"") | because v;(m) < v;(mn)
and v;(mn/ ged(m, s)) < vi(mn) by hypothesis (recall that the order of ¢ is
mn/ ged(m, s) by (1.6.1)). O

1.7 The inflation map in the bicyclic case

Let G’ be another cyclic group, of order cn for some ¢ > 0, let o’ be a generator
of G’,and let ¢ : G’ — G be the surjection such that ¢(6’) = o. Regard
C as a G’-module via 6’ — ¢ — (). As before, the group H*(G', C),
. can be identified with the kernel ,_|C of ( )““1 : C — C modulo the
image of ()!*a+-+a“™" . C . (C.Notice that | + a + --- + a1 =
Q+a+---+ a™ "¢ (mod. m), Hence there is a commutative diagram

0O°

a.—lc — a—lC

(1.7.1)

H?*(G,C), — H%(G’,C),

in which the vertical arrows are the passage to the quotient. We claim that the
lower horizontal arrow — induced by ( )¢ — is the same as the restriction map
(1.3) coming from the pair (¢, Id¢). ’

Proposition 1.7.2. The map H*(G,C); — H?*(G',C), in the above
diagram is the inflation map corresponding to the quotient ¢ : G' — G.

Proof. Letaclass in H*(G, C), be represented by an extension " of G by C
having the presentation (1.5.1). The inflated extension I'“of G’ by C consists of
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(a; B) € T x G suchthata = ¢(B)in G (1.3). Asalifté’ € I of the generator
g

o' € G', we choose ¢’ = (6,0’). We then have ¢’ <" = (6,06’ ") =
(¢, 1) = % and we are done, because I'" admits the desired presentation
I'=(t,6/ | t"=1,6""=1%,5'r6' 7' =19). a|

1.8 The number of orbits

The following lemma captures one of the basic ingredients in Roquette’s
computation [10, Chapter 16] of the number of tamely ramified extensions of
given ramification index and residual degree (7.1.4).

Lemma 1.8.1. Let C be a cyclic group of order m > 0, let a > 0 be prime
to m, and make Z act on C by 1 — ()?. The number of orbits for this action
is 2 1m @(t)/ xa(t), where xa(t) denotes the order of a in the group (Z/tZ)*
of order ¢ (1).

Proof. 1If x,y € C are in the same orbit, then they have the same order in C.
The possible orders are the divisors of m; for each divisor 1 of m, there are ¢ (¢)
elements of order t. Also, the orbit of an x € C of order ¢ has y, () elements.

. . . -1 .
Indeed, if the orbit consists of the r elements x, x4, ..., x% , then  is the
smallest integer > O such that x¢ = x, or equivalently r is the smallest integer
> O such thata” = 1 (mod. t), sor = y,(1). O

| 2. Cohomology of finite fields

We now apply the results of §1 to some galoman modules arising from finite
fields.

Let p be a prime number, & a finite extension of F,, with ¢ elements, k¢
the degree- f extension of k (for every f > 0), and Gy = Gal(ks|k). Let
e > 0 be an integer such that qf 1 (mod. e). We are interested in the
groups H2(Gy, k7 /kxe)q and H%(Gy, ek )¢, Where k is the group of
e-th roots of 1 in k;fA Every ¢ € k; such that f’i'] IS k}fe gives rise to a class
in each of these two H?2; we prove their compatibility (2.2). For a given class
in H2 (Gy, kf /k )q, we also determine (2.3.4) the smallest multiple f of f

such that the mﬂated class vanishes in H? (Gf= kf k2 }(e)q‘

2.1 The classes in H? (Gf,k /kx"’)q and H? (Gf, ,_,kf)q

LecE € kX “If the i 1mage e kX /kxe is such that £4-! = 1, then it has a
class [&] € Hz(Gf, f/kxe)q. But there is also a way to attach a class in
H%(Gy, ¢k )q to such & which was inspired by [8, 6.1].
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Write £9-1 = a* for some a € k¥,and put¢ = Ny (a), where N : kY —
k> is the norm map. We then have

C=Np@®) =Ny =1,

S0 € gk}‘. At the same time ¢ € k™ (being the N of something in k}‘ ),
s0 ¢97! = 1. In other words, ¢ is in the kernel of ( )4~! : k’< - ek}‘,
and so has a class [¢'] € Hz(Gf, ekf)q If now we replace a by ea for some
€€ kf, then ¢ gets replaced by Ny(e)(. As Ny(e) = g't9+" +977" the

class [¢] € H?(G, ekf)q is uniquely determined by ¢ and does not depend
on the choice of a.

2.2 The compatibility of the two classes .

Recall that g/ = 1 (mod.e). The two groups k¥ /kxe, ek}( are cyclic of
the same order e and they are canonically 1somorphlc as G y-modules by

- f("f‘])/e. Therefore we get a canonical isomorphism

H*(G,k} [k} > HX(G, ok},

Proposition 2.2.1.  Under this isomorphism, the class [¥] of any & € k }‘ such
X

that &9 ¢ k}(e gets mapped to the class [(] of { = Ny(a) for any a € k Y
such that £9~1 = qg°.

Proof. PutS =14g+---+¢q/ ' Notice first that the condition £9~! € kf
is equivalent to £@/=0/e ¢ kX because kx“’ (resp. k* = kfs) is the subgroup

of order (¢/ — 1)/e (resp. g — 1) of the cyclic group k}‘ of order’ qf — 1.
Indeed, if w is a generator of k}‘ and if & = @, then the condition &9~ ¢ k}‘e
is equivalent to x(g — 1) = 0 (mod.¢), and the condition é’(’/f")_/e € k*
is equivalent to x(gf — 1)/e = 0 (mod. §). But these two congruences are
equivalent (and are clearly satisfied when ¢ € k*; they might sometimes be
satisfied even by some ¢ ¢ k).

Now let & e k;f be such that ¢4~ = ¢ for some a € k;, or equivalently,
as we’ve seen, d_‘(qf‘l)/" = pS for some f € k}‘. We have to show that
Ny(a) = a% and B35, which are both in the kernel of the endomorphism
( )‘1—' of ek}‘, define the same class in H*(G, ek}‘) or equivalently that
(Ba=1)S = 45 for some 5 € ek}‘.

Choose a generator w of k}‘ and write & = o*, a = o, f = o’ with
x,a,b € Z, so that
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g/ —1

)x:bs+(qf—1)d
e

(g = Dx =ae+ (¢’ — 1), (

for some ¢, d € Z. We then have (b — a)S = (qfe——l)(cS —de), so if we take

z-f—l .
n= a)(l—f—)‘, then n € ek}‘ and 75 = (Ba~")S, hence a® has the same class
as 5 in H2(G, ek}(), which was to be proved. ]

2.3 The inflation map

Let f* > Obeamultiple of f. By ournotational convention, k ;- is the degree- f”
X

extension of k and G ;7 = Gal(k s+]k). The inclusion kf — k;‘, induces a map
on the quotients k;ﬁ / k}‘e — k}‘/ / k}‘,e. The reader may wish to compare the
following lemma with [7, Satz 3.6].

Lemma 2.3.1. Fora given ¢ € k;, the smallest multiple ' of f such that
E97V =1in k;,/k}‘,e is f' = df, where d is the order of #97" in k;f/k;fe.

Proof Clearly, f’ being a multiple of f, the relation £9=! = 1 holds in
k;f,/k;f,e if and only if £97! ¢ k;ff. The result follows from the fact that the
degree of the extension k 7 (v/&9~1) over ks equals d. O

- Next, for every divisor ¢ of e, we have k.;y = kf( v k}() and the natural
map 1 : kp/k7C — k[ kS s ralsmg to the exponent ¢” in the sense
¢S —1
that if we choose a generator w, € kcf and put o = w, qf ‘ (which is a
generator ofk ), then 1(w) = @ in kcf/k” Indeed, since ¢/ = 1 (mod. ¢),
we have
g/ -1

T =g D 4. 447 +1=c (mod.e).

Now, the map 1 : k7 /kxe — kcf/kxe is Gcf-equivarié‘{nt and hence induces
the inflation map

HY Gk} k) — H(Gey, k 2Tk (23.3)

Lemma 2.34. For a given & € k>< such that £~ = 1 in kx/kxe

smallest multtple f off such that [f] =0in Hz(Gf, k> /kxe)q is f = cf

- Proof. We have seen that for every divisor ¢ of e, 1 : kf /k}‘e cf/kxe is
“raising to the exponent ¢”, which is compatible with the inflation map (2.3.3)
by (1.7.2). SO
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3. Kummerian extensions

We need to recall some basic facts about abelian extensions of exponent
dividing d of a field F which contains a primitive d-th root of 1 and which is
galoisian of finite degree over some other field F’.

3.1 Background

Essentially as a consequence of the Hilbert-Noether vanishing theorem for a
certain H! (Satz 90), the maximal abelian extension of F of exponent dividing
dis M = F(¥/FX), and there is a perfect pairing

Gal(M|F) x (FX/F*?) — 4F*, (0,%) = ”—(yy—) G?=x) (3.1.1)

between the profinite group Gal(M|F) and the discrete group F*/F*<.
For any closed subgroup H C Gal(M|F), we have M = F(J/D) where
D c F*/F*4 is the orthogonal complement of H for the above pairing.
Conversely, for every subgroup D C F*/F*9, the orthogonal complement
H C Gal(M|F) is a closed subgroup and M .= F({/D). Also, for every
subgroup D C F*/F*4, the pairing (3.1.1) gives an isomorphism of
(profinite) groups Gal(F (¥/D)|F) — Hom(D, 4F*).

3.2 Equivariant pairings

Now suppose that F is a galoisian extension of finite degree over some field F’,
of group G = Gal(F|F").f D ¢ F*/F*?isa subgroup such that F (YD)
is galoisian over F’, then the group Gal(F(</D)|F) may be considered
as a G-module for the conjugation action coming from the short exact
sequence

1 - Gal(F(YD)|F) — Gal(F(YD)|F') —» G — 1. (3.2.1)

Proposition 3.2.2. The extension F (/D) is galoisian over F' if and only
if the subgroup D C F*/F*? is G-stable. If so, the isomorphism of groups
Gal(F(«d/B)|F) — Hom(D, 4F*) is G-equivariant.

Proof. Suppose first that D is G-stable. We have to show that F (&/D), which
is clearly separable over F’, coincides with all its F’-conjugates. The notation
F(Y/D) stands for F((¥/x),cp)> where D C F* is the preimage of D. For
o € G, wehave o (x) = y?x’ for some x’ € D and some y € F* (because D
is G-stable), and therefore /o (x) = y~/x’ is in F (¥/D), so this extension is
galoisian over F’.
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Conversely, suppose that F(</D) is galoisian over F’, and let & be an
extension of some ¢ € G to an F’-automorphism ofF(('/B). Foreveryx € D,
we have 6 (4/x)? = 6(x) = ¢ (x), so 6 (x) € D (because it has the d-th root
6 (¢/x) in F(¥/D)), and hence D is G-stable.

Finally, to check that the isomorphism Gal(F((I/B)|F) — Hom(D, jF>)
(when D is G-stable) is G-equivariant, it is enough to check that the pairing
@ Ga](F({’/B)IF) x D = 4F* (3.1.1)is G-equivariant in the sense that
p(o.1,0.x) = 0.9(z,x). Indeed, for every lift 6 € Gal(F(&/D)|F) of a
o € G, wehave 5 (¥/x)¢ = o (x) and

(6.1,0.0) = Gra (G ({x) _ a1({x) _a(f(\”/;)) — 001, %)
T &2 B T¢7:5 B N7 Ak
for every t € Gal(F(¥/D)|F) and every x € D. |

Remark 3.2.3. When d is prime, F’ contains a primitive d-th root of 1,
and G is a cyclic d-group, the class in H? of the extension (3.2.1) has been
computed in [15]. In the case of interest to us, F’ is a local field, F is finite
unramified over F’, d is prime to the residual characteristic, and D is a G-stable
“ramified line” (4.7); we will see later (§7) how to compute the class of (3.2.1)
from D.

3.3 Orbits and equivalence

Proposition 3.3.1. The set of cyclic extensions of F of degree d up to
F’-isomorphisms is in natural bijection with the set of orbits for the action of
G on the set of cyclic subgroups of F* | F*9 of order d.

Proof. Suppose first that the order-d cyclic subgroups Dy, Dy ¢ F*/F*¢
are in the same G-orbit, so that D, = (D)) for some ¢ € G, and let
L) = F(¥Dy), Ly = F(¥/D,).Let D be generated by the image of x € F*,
so that D; is generated by the image of o (x); we have

Ly =F[T)/(T? =x), Lz =FIT)(T" -0o(x)).

Consider the (unique) F’-automorphism ¢ of F[T] such that & (a) = o (a) for
a € Fand 6(T) = T. Composing it with the projection F[T] — L induces
a F’-morphism L; — L which is an F’-isomorphism because L and L,
have the same degree over F’.

Conversely, if L; = F(¢/x;) for some x; € F* whose images in F*/F xd. -
~ have order d, and if we have an F’ —isomorphism 6 : Ly — Lj, we have
to show that Dy = ¢ (D) for some ¢ € G, where D; C F*/F*4 is the
subgroup generated by the image of x;. Now, ¢ (F) = F because F is galoisian
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over F’, and hence 6 |F = ¢ for some ¢ € G. Also, o (x1) has a d-th root in
Ly (namely 6 (&/x71)) and its image has order d in F*/F >4, so it generates
the same subgroup as the image of x;. In other words, D, = ¢(D)), and we
are done. ' O

4. Ramified lines

Let K be a local field with finite residue field k of characteristi¢ p and
cardinality ¢. Denote by o (resp. p) the ring of integers of K (resp. the unigue
maximal ideal of 0, so that k = o0/p). We have the decomposition 0% = Uy .k*
in which Uy = 1 +pisa Z,-module. As aresult, for every integer ¢ > 0 such
that ¢ # 0 (mod. p), we have the exact sequence

1= k*/k¢ > K*/K*¢ 5 Z2/eZ - 0
in which @ is induced by the normalised valuation w : K> — Z.
4.1 The definition of ramified lines

The set R.(K) of ramified lines consists of subgroups D < K> /K>*¢ such
that the restriction D — Z/eZ of @ to D is an isomorphism; ramified lines
are precisely the images of sections of w. As the conjugation action of Z/eZ
on k* / k€ resulting from the above exact sequence is trivial, the number of
ramified lines is equal to the order g = gcd(g — 1, ) of

HY(Z/eZ,k*/k*¢); = Hom(Z/eZ, k> | k*¢) = k> /k*¢.

Every uniformiser z of K gives a bijection of the set R, (K') of ramified lines
with the group k> /k*¢; to the class u € k*/k*¢ of u € k™ corresponds the

ramified line generated by the image of un in K> /K *¢. Notice that the map
-1 .
X > x % identifies the group kX /k*¢ with the kernel &% of ()¢ : kX — k*.

With this identification, to £ € k™ corresponds the ramified line generated

by ur for any u € k* such that u'F = £
4.2 The galoisian action on the set of ramified lines

Forevery f > 0, let K s be the unramified extension of K of degree f, k its
residue field, and Gy = Gal(Ks|K). The group G s acts on the set R.(K )
of ramified lines in K;/K}“’. Indeed, if D is generated by the image of a
uniformiser w of K , then o (D) is generated by the image of the uniformiser
o (w) and hence ¢ (D) is a ramified line. Also, Card R.(K ) = g, where
gr =ged(g/ —1,e) (4.1).
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For every uniformiser = of K, the bijection k}‘/k}‘e — Re(Kyp) (4.1) is
G r-equivariant. Therefore Card R, (K ;)¢ = g, where g = gcd(g — 1, €) is
the order of ,_; (k}‘/k;e). '

Proposition 4.2.1.  The number of orbits for the G g-action on Re(Ky) is
2iig, P/ 2q(1) (1.8.1).

Proof. Using a uniformiser of K, this amounts to computing the number of
orbits for the action of Gy on k% / k7¢. As the canonical generator of G s acts

on the cyclic group k}‘ / k}‘e of order g by the gutomofphism ()4, the result
follows from (1.8.1). 0

4.3 The cohomology class of a stable ramified line, first defintion

Suppose that g/ = 1 (mod. ¢) (if not, replace e by gr = ged(e, gt - 1).
Denote the canonical generator of G ¢ by o, let & be a uniformiser of K and
let D C K}(/K;e be the ramified line generated by ¢z for some ¢ € k}‘.
If D is G g-stable, which amounts to ¢ (D) = D, then (Ein)én) ' e k}‘e or
equivalently 971 = 1 in k}‘/k;fe.

If we replace © by #’ = ur (u € k™), then ¢ is replaced by &' = &u.
But the norm map Ny : k7 — k* is surjective, so u = a'rat+el ™ for
some a € k}(, and hence [£] = [¢'] in Hz(Gf, k;/k;”)q. Thus, the map
Re(K)°F — HX(Gy, k¥ /k7%)q does not depend on the choice of 7. This
defines the class D in H*(Gr, k7 /ki")g.

4.4 The cohomology class of a stable ramified line, second defintion

We assigns a class in HZ(Gf, ek}( )gtoD e Re(Kf)G.é. following [8, 6.1].
If D is generated by &7, then £9~! = a for some a € k;f; put{ = Ny(a).
We have seen (2.7) that ¢ defines a class in Hz(Gf, ek?)q which does not

depend on the choice of a. Moreover, if we replace 7 by 7’ = ur (u € k*),
then & gets replaced by ¢’ = &u~!, and then &9~ = &9 1 (w19 = a¢, so
we may use the same a for 7’ as for . In other words, the class [¢'] depends
only on D. We thus get a similar map R.(K )¢/ = H*(Gy, ckf)q-

4.5 The compatibility of the two definitions .

Recall that we have an isomorphism H?(G, k;/k}“)q — H*(Gyf, ckyg),
(2.2); let us show that it is compatible with the two maps from R.(K f)Gf .



64 © ' Chandan -Singh Dalawat and 'Jl)n,g-jo Lee

Proposition 4.5.1. When g/ = 1 (mod.e), the two definitions of the
cohomology class of D € R.(K f)Gf “are compatible with the above
isomorphism. : :

Proof. This follows from the preceding constructions and (2.2.1). O

.

4.6 The restriction map

Let f/ > 0 be amultiple of f.If D € R.(K) is a ramified line, generated
by the image of some uniformiser w of Ky, then the image of w in
K}(,/K}‘,e generates a ramified line, defining the map R.(Ks) — R.(K ).
It sends G y-stable ramified lines to G y-stable ones; so we get the following
diagram in which the lower horizontal arrow is the restriction map (2.3.3)

ReK))Sr —  Ro(K)Cr

| I

B2(Gy, k}/K} )y — H2(Gpr, k3/kS)g.

Proposition 4.6.2. The diagram (4.6.1) is commutative.

Proof. This follows from (1.7.2) upon choosing a uniformiser of K. -0

5. Totally tamely ramified extensions

Let e > 0 be an integer # 0 (mod. p). Let us first study the set 7, 1 (K) of
(K -isomorphism classes of) totally ramified extensions of K of degree e.

5.1 The parametrisation of 7 ; (K)

Proposition 5.1.1.  The set T, 1(K) of totally ramified extensions of K of
degree e is in canonical bijection with the set R (K) of ramified lines in
K> /K *¢. In particular, the cardinality of 7. (K) is g = gcd(g — 1, e).

Proof. For every uniformiser = of K, the polynomial T¢ — z is irreducible
(Eisenstein’s criterion) and the extension F (/) is totally ramified of degree e.
Conversely, let L|K be a totally ramified extension of degree e (so that the
residue field of L is k), let # be a uniformiser of K, and write # = ulw?,
where u (resp. @) is a l-unit (resp. uniformiser) in L, and & € k*. Since the
group of 1-units of L is a Z,-module and e € ZI’,‘, there is a (unique) 1-unit v
of L such that u = »¢, so the uniformiser £ ™'z of K has the e-th root vw in
L and therefore L = K (/¢ !x).
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For any two uniformisers 71, 72 of K, the extensions K (/7), K ({/72)
are K -isomorphic if and only if the unit 7| /77 € 0 is in 0™¢, which happens
precisely when 7; and 7 generate the same ramified line in K * /K *€¢. This
completes the proof. 0O

Proposition 5.1.4. For L € 7,1(K), the group Autg (L) is canonically
isomorphic to k> and hence it is cyclic of order g = ged(g — 1, e).

Proof. Indeed, L = K(Yx) for some uniformiser # of K, and the
K -conjugates of ./ in L are precisely &/, where & is an e-th root of 1 in
K.The map ¢ > o (/n)/</ is thus an isomorphism Autg (L) — k™.

This isomorphism is independant of the choice of z. Indeed, every other
uniformiser 7’ of K such that L = K (/7' is of the form 7’ = ¢°x for some
¢ € k> (ignoring l-units of K, which we can). We may thus take ¢/ for
7', and we have

o (V7)) _aedm) _ ea(%) _ o™
! - 8\"/; o 8\(‘/}[— — ﬁ

for every o € Autg (L), which was to be proved. ‘ O

Corollary 5.1.5. Some L € 1,(K) is galoisian over K if and only if e
divides q — 1. If so, then every L € T, 1(K) is galoisian (and indeed cyclic)
over K.

Proof. A finite separable extension L of K is galoisian over K if and only if
Autg (L) has order [L : K]. Foran L € 7,1(K), this happens precisely when
ged(g—1l,e)=¢e (5.1.4), or equivalently when e divides g — 1. ]

5.2 Serre’s mass formula in tame degrees

For the next corollary, we need to recall the statement of Serre’s mass formula
[14].Letn > Obeany integer and denote by 7, 1 (K') the set of K -isomorphism
classes of finite (separable) totally ramified extensions of K of ramification
index n. Forevery L € 7, 1(K),putcx (L) = w(dyx) — (n — 1), where ok
is the discriminant of L|K. The mass formula asserts that

1 —ex (L)
> g W =y, (52.1)
LeT 1K) | Autg (L)] ]

 where | Autg<(L)| s the-ordef of the group of K -automorphisms of L.

Corollary 5.2.2, Serre’s mass formula (5.2.1) holds over K in every tame
degree e (prime to p). '
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Proof. Indeed, for every L € 7, (K), we have cx (L) = 0, |Autg (L) = g
(5.1.4) and there are g such L (5.1.1), where g = ged(g — 1, ). O

In fact we can do slightly better if we use the results of [4] where a new
proof of Serre’s mass formula in degree p was given. Let K. be a separable
algebraic closure of K, and let E C K run through totally ramified extensions
of degree n over K, which we express by [E] € 7, 1(K). Serre [14] shows
that (5.2.1) is equivalent to

Z g~k E) = . ’ (5.2.3)
ECK, [E}leTn\(K)

Proposition 5.2.4. Serre’s mass formula (5.2.3) holds over K in degree
n = ep (with e # 0 (mod. p)).

Proof. Let E C K be a totally ramified extension of degree ep over K, and let
L be the maximal tamely ramified extension of K in E; we have [L : K] = e.
By the formula for the transitivity of the discriminant, we have

w(ogk) = (e~ 1)p+ wr(dgL)

where w (resp. wr) is the normalised valuation of K (resp. L). It follows
that cx (E) = cL(E). Next, notice that there are precisely e totally ramified
extensions of K in K of degree ¢ over K, since there are g = ged{g — 1, €)
isomorphism classes in-7, 1(K) (5.1.1), and each class [L] is represented by
e/g extensions L C K ,because g = | Autg (L) (5.1.4). Now, by decomposing

the sum 2 g gy, (5:2.3) a8 D1 k1= 2.[E:L)=p> We have

Z q—CK(E): Z Z q—CK(E): z Z q‘('L(E)'

[E:K]=ep [L:K}=e [E:L]l=p [L:K]=e |E:Ll=p

But Y p1=, 9 tE) = pby[4,th.35), andhence 3" .k 1,, 4~ E) = ep,
as was to be proved. O

Remark 5.2.5. The same dévissage reduces the proof of (5.2.3) for arbitray n
to the case n = p”. Note that a proof of (5.2.1) for n prime can also be found
in [4].

6. The o'rthogonélity relation

Let us make some remarks about the special case ¢ = 1 (mod. ). More
precisely, suppose that the (cyclic) group K> C K> of e-throots of 1 in K
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has order ¢, and let M = K (/K ¥) be the maximal abelian extension of K of
exponent dividing e. We have the perfect pairing (3.1.1)

Gal(M|K) x (K*/K*¢) — ,K*

of free rank-2 (Z/eZ)-modules, defined by (0, %) = o (y)/y for any y € M*
such that y* = x. .

Proposition 6.0.1. The orthogonal complement of the inertid subgroup T'g
of Gal(M|KY) is the subgroup k™ /k*¢ of K™ /K *¢ (and conversely).

Proof. Indeed, the fixed field M0 of the inertia subgroup is the maximal
unramified extension My of K in M. It is easy to see that, w being a generator
of k>, the extension K (/w) of K in M is unramified and of degree e over K.
At the same time, the ramification index of M|K is at least e, as it contains

K (Ym) for any uniformiser 7 of K. As [M : K] = e“, we must have
My = K (Vk*), which was to be proved. ‘ . O

Proposition 6.0.2. For every subgroup D C K*/K>¢ the maximal
unramified extension of K in K(</D) is K (</Dg), with Dy = D N (k* /k*°).

Proof. Let L = K(¥/D), and let Ly be the maximal unramified extension of
K in L; it is clear that K (&/Dg) C Lg. Conversely, if C C k> /k*¢ is the
subgroup such that Lo = K(J/C), then C ¢ D and hence C C Dy. It follows
that C = Dy. ' O

Remark 6.0.3. Asacorollary, L = K (+/D) is totally ramified over K if and
only if DN (k™ /k*¢) = {1}. The analogue of (6.0.1) in degree p can be found
in [3] (§1) if K has characteristic O and in [3] (§5) if K has characteristic p.

7. The parametrisation of 7, r(K)

Recall that 7, ¢ (K) is the set of K -isomorphism classes of separable extensions

of K of ramification index ¢ (Z 0 (mod. p)) and residual degree f. We will see

~ that it can be identified with the set of orbits for the action of G y = Qal(K 7IK)
on the set R.(K r) of ramified lines in K /K}(e

There is a canonical surjection 7, 1(K 7 = T s(K), and a canonical

bijection 7. 1(Kf) — R.(Ky) (by (5.1.1), applied to Kf) so the question

is: When are the extensions defined by two distinct ramified lines in K /K% e

1somorph1c as extens1ons of K (although they are not K ;- 1somorphlc)"

7.1 The parametrisation of T, ¢ (K)- -- - -

Proposition 7.1.1. The extensions L, L' corresponsing to two ramified lines
D,D' C K;/K}“3 are K-isomorphic if and only if D' = o (D) for some
ceG f v ' ’
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Proof. The proof is similar to that of (3.3.1), although there the extensions
L,L’ were kummerian whereas here they need not even be galoisian
(over K 7). Suppose first that D’ = ¢ (D), and let w be a uniformiser of Ky
whose image generates D, so that the image of ¢ (w’) generates D’, and

L=K/T)/(T* - w), L =K/TI/(T~0o(w)).

Consider the (unique) K -automorphism ¢ of K ¢[T]such that 5 (¢) = o (a) for
everya € Ky and ¢ (T) = T.Composing it with the projection K s[T] — L’
induces a K-morphism L — L’ which is a K -isomorphism.

Conversely, if L = K ;(&/w) for some uniformiser @ of K 7, and if we have
a K -isomoriphism ¢ : L — L', then its restriction to the maximal unramified
extensions of K in L and L’ is a K-automorphism ¢ : Ky — K, and the
uniformiser o (@) of K f hasthe e-throoté (Jw)in L',so L' = K s (/o (w)).
In other words, D’ = o (D). O

Corollary 7.1.2.  The set T, ;(K) is in natural bijection with the set of orbits
Re(Kf)// Gy for the action of Gy on R.(K 7). O

Corollary 7.1.3. An extension L € .7, 1 (K y) is galoisian over K if and
only if the corresponding G r-orbit consists of a single D € R (Kf) and
g/ =1 (mod.e).

Proof. Indeed, for L to be galoisian over K it must be galoisian over K,
which is equivalent to g/ = 1 (mod. e) (5.1.5), and all K-conjugates of L
" must coincide, which is equivalent to D € R(,(Kf)cf (3.2.2). a

Remark 7.1.4. It follows from the parametrisation (7.1.2) that the set
1, r(K) has Ztlgf ¢(l)/Xq(t) elements, in the notation of (4.2.1), where
g&r = ged(g/ —1,€).If g/ = 1 (mod. e) (in which case gf = e), precisely
g = gcd(g — 1, e) of these are galoisian over K, by (7.1.3) and (4.2).
If g = 1 (mod.e) (in which case gy = g = e), the Gy-action on the
set Re(Ky) is trivial, so 7o, f(K) contains e extensions and all of them
are abelian over K (1.6.2). These are the only galoisian or abelian cases.
Cf. [10, Chapter 16].

Remark 7.1.5. For L € 7, s(K) galoisian of group G = Gal(L|K) and
inertia subgroup G, the short exact sequence | - Gg —> G —» G/Go — 1
splits if and only if L = K (&) for some uniformiser z7 of K. Indeed,
suppose firstthat L = K s (/7 ), and let E = K (/7). As E is totally ramified
of degree e over K, the extension L of E is unramified (and hence cyclic) of
degree f; it can be seen that Gal(L|E) is a supplement of Gg in G. Conversely,
if Gg has a supplement S in G, then the extension LS of K is totally ramified
of degree ¢ and hence of the form K (/) for some uniformiser = of K, and

L= K;(Jm). 0
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7.2 The presentation of the group

Suppose that g/ = 1 (mod. ¢) and let D € ’RL)(Kf)Gf, so that the extension
L = Ks(/D) is in 7, s(K) and galoisian over K (7.1.3). The inertia
subgroup I'g = Gal(L|K ) of I' = Gal(L|K) is canonically isomorphic to
Hom(D, eK}‘) = C,K}‘ (because D is isomorphic to Z/eZ by ©), or more
simply by (5.1.4)), and the identification I'g = eK;f is G s-equivariant (3.2.2).
We thus have an extension

] > eK}(—>l"—>Gf—> 1 (7.2.1)

and we would like to compute its class in HZ(Gf, EK}()(, in terms of the
parameter D of L. '

Proposition 7.2.2. The class of the extension (7.2.1) is the same as the class
[D] e HX(Gy, ck})y of D (4.5.1).

Proof. We will actually compute a presentation of the group I (as in [8] and
observe that it is the extension corresponding to the class of D as defined in
(4.4).

Let 7 be a uniformiser of K and suppose that the G s-stable ramified line
D is generated by (the image of) & for some & € k;ﬁ (such that £97! = ¢

for some o € k7), so that L = K ().

Choose a generator 7 of Iy, so that 1(J/En) = (/Ex for a certain
(generator) ¢ € eK;ﬁ. Notice that Nf-(f)‘/_' = 1,50 N(a)® = 1, and
hence Nr(a) = ¢° for some s (mod.e). As N¢(a) € k™, we must have
(g — s =0 (mod. ¢).

Also choose a lift ¢ € ' of the canonical generator o € G . Now,

6 (JEm) =5 (n) =& ¢ = (av/én)’,

so that 6 (/Ex) = ¢/ a/Ex for somie j (mod. ). Replacing & by 17/§, we
may assume that g (/&) = a/Ex. We then have 62(YEn) = 6 (a)a./En

and soion, hence

6/ (Jen) = Nf(a)\/é‘n = JEr = ().
It follows that 6/ = ¢°. Finally,

15 (Jen) = 17(a/en) = (Taen =5 (V) =G (Jen),

~and hence gtd’ L;__ri_We,héve. found -that -the‘group--F—"('of.-order‘e'f)' s

generated by (r, o), and the relations

=1, 6f=1°, G167 =17
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hold. But we have seen that the group (1.5.1) with this presentation has ef
elements, sg.this is indeed a presentation for I". So the class of D is the same
as the class of the extension (7.2.1): a

7.3 The invariants of an orbit

We are now going to review a certain number of invariants of a G s-orbit in
Re(K r) which recover the invariants of the corresponding L € 7, y(K) such
as the galoisian closure L of L over K, or the smallest extension K ; of Ky
for which the exact sequence 1 - I'g = IT' — I'/Ty — 1 splits, where
I = Gal(LK |K) and Iy is the inertia subgroup of T,
- (73.D)In oeneral let L € 7, r(K), and let L be the galonslan closure of L~
over K. Itis clear that Lis tamely ramified over K, so Le T;.c; (K) for some
multiple ¢ of ¢ and some ¢ > 0. As ¢ (and hence ¢) divides qu —1(7.1.3), cis
a multiple of the order r of g/ in (Z/eZ)*, and therefore K,r C L. Replacmg
Lby LK,r, we assume that ¢/ = 1 (mod. e).

Let D € R.(K s) be aramified line representing theGf-orbitcorr'esponding
‘to Landlet{ € k}‘ be such that D is generated by &# (sothat L = Kf((/f_n)‘).
The order d of £9~! in k7 /k7¢ depends only on L, not on the choices of

D and #, and the galoisian closuw of Lover K is L = de(\/ﬁ) (2.3.1).
In particular, ¢ = e.

Indeed, if we 1eplace 7 by ' = urn for some u € k*-and D by o(D)
for some ¢ € Gy, then & gets replaced by o (Eia~'). But then &97! and
a(fu")" ! have the same order because ¢ is an automorphlsm of k% /kx"

(7 3 2) Now suppose that L € 7, f(K) is galoisian over K What is the
smallest ¢ > 0 such that the extension L = LK;y splits over K in the
sense that [ = ch(f) for some uniformiser = of K ? This is equivalent
to the extension Gal(L|K) of G:y by [.K being split. Now, the class in
Hz(Gf, FK 7.)q of the extension | — Kf — Gal(L|IK) > Gy — listhe

same as the class of its parameter D € R.(K f)Gf 4.5.1), (7.2. 2) and hence
¢ is the.order of this class (2.3.4).

8. Examples

Recall the notation in force: K is a local field with finite residue field k of
characteristic p and cardinality q. For f > 0, K7 is the unramified extension
of K of degree f, ky is its residue field, and Gy = Gal(K 7| K). In order to

write down extensions of K explicitly, we choose a uniformiser # of K and =

a compatible system of generators wy of the cyclic groups k}‘. Fore > 0
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such that e # 0 (mod. p), 7, s(K) is the set of K-isomorphism classes of
extensions of K of ramlﬁcatlon index e and residual degree f. The choice of
n allows us to identify 7, r(K') with the set of orbits for the action of Gy on
k}( / k}‘e.

We compute all Gi-extensions of K (p # 3), all rame G3-extensions of K
(p = 3) and, for every prime [ # p, all galoisian extensions of K of degree
I3 which are not abelian over K. We also analyse all extensions L in T32(K)
(p #3)(8.2) or T4 2(K) (p # 2) (8.6) by determining their galoisian closure
L over K and the smallest f such that ZK] splits over K in the sense of (7.3.2).

Proposition 8.1. Jf g = —1 (mod. 3), then K has a unique Gi-extension,
namely K (N1, Y7). If g = 1 (mod. 3), then K has no Gs-extensions, and if
p = 3, then K has no tamely ramified G3-extensions.

Proof. Let L be an Gs-extension of K. If p # 3, we have (e, f) = (3, 2)
(so L is tame even when p = 2) : for in all other cases &3 would have to
have a quotient of order 3. A similar reasoning shows that if p = 3, then
e = 0 (mod. 3), making L wildly ramified over K.

So assume that p # 3.1f g = 1 (mod.3), then every L € T32(K) is

abelian over K, so K doesn’t have any Gs-extensions. If g = —1 (mod. 3),
then the only extension in 73 2 (K ) which is galoisian is L = K (</1, ¥/7), and
Gal(L|K) = Gs. a

Remark 8.2. When p = 3, Gj-extensions of K correspond bijectively to
separable cubic extensions which are not cyclic over K; they are classified in
[4]. (More generally, for any p, all separable extensions of degree p over K are
parametrised, and the ones which are cyclic have been characterised). Suppose
now that p # 3.1f g = 1 (mod. 3), then 73 2(K) consists of three extensions,
all three abelian (in fact cyclic) and split over K. If g-= —1 (mod. 3), then
T3.2(K) consists of two extensions, the G3-extension K (+/1, J7) and the
extension L = Kz(\/m which is not galoisian over K . The galoisian closure
of L over K is L = K¢(¥/m) which is split over K . The spec1al case K Qa,
m = 2 is treated in [7, Belsptel 3.1].

(8 3) Let!/ be a pnme Recall that there are exactly two- groups I' of order

3 which is not commutative; see for example {2]. The centre Z C I" of both
these groups has order [, and the quotient I'/Z is commutative of exponent /
(and order [?). For [ = 2, they are the dihedral group D4 » and the-quaternionic
group 4.2 (1.5.2). When! # 2, one I has exponent [ (the “Heisenberg group”
$);3) and the other has exponent /2. The latter is the twisted product (Z/[%Z) x,
(U1 /U,), where 1 is the natural action of Aut(Z/1'Z) = (Z/I!Z)* = Z:/U;
(with Uy =Tl i Z7) " Wedenote this group by D jz.j-(More generally;oniehas -
the twisted product D: jn-r = (Z/1"Z).x, (U, /U,) of order 1271 for every
n > Oand every r € [1,n].)



72 Chandan Singh Dalawat and Jung-Jo Lee

Lemma 8.4. If K has a galoisian extension of degree 1> (I # p) which is
not abelian, then (e, f) = (I*,1) and v;i(g — 1) = 1.

Proof. If K has such an extension L, then K has an abelian extension of degree
12 and exponent [ (8.1), so we must have v;(qg — 1) > 0 (7.2.4). Next, we
must have (e, ) = {2, ) because L|K is not abelian. For the same reason,
g £ 1 (mod.[?),sov;(g —1) = 1. O

Proposition 8.5. If p # 2, then K hasa D4 2-extension or a 114 2-extension
ifand only if g = —1 (mod. 4). If so, K has a unique D4 3-extension and a
unique 4. 2-extension.

* Proof. If K has an extension of degree 23 which is galoisian but not abelian,

then we must have vy(g — 1) = 1 (or equivalently ¢ = —1 (mod. 4)) and
(e, f) = (4,2), by (8.4).
Suppose that ¢ = —1 (mod. 4). There are three orbits for the action of G,

on k;/k2><4, namely {1}, {cb%}, and {wy, &)2—]}. So there are two extensions
in 74,(K) which are galoisian over K, namely LO = Ky (YY) and

L@ = K(Jwir). Of these, L is split over K, so Gal(LD(K) is the

‘dihedral group D4, (1.5.2), whereas L@ is not split over K, so Gal(L(2)|K )
is the quaternionic group Q42 (1.5.2). This concludes the proof. O

Remark 8.6. An explicit generation of the 4 -extension when K = Q,
(and p = —1 (mod.4)) can be found in [6]. Let us analyse the set 74 7(K)
when p £ 2. If ¢ = 1 (mod. 4), then it consists of four extensions, and all
four are abelian over K, but only two of them are split over K ; the other two
(which are cyclic) splitin 74 4(K). If ¢ = —1 (mod. 4), then 74 2(K) has only
three extensions, only two of which are galoisian over K ~and only one of them
(the D4 2-extension, namely K((‘/T, Jm)) is split; the other (the £42-
extension) splits in 74 4(K). The galoisian closure of the third L € 74 2(K) is
L = LK4, and L splits only in T3 g(K).

Proposition 8.7. Ifl # 2, p, then K has a galoisian extension L of degree I3
whichis not abelian if and only ifv;(q — 1) = 1. If so, there arel such extensions
L, and the group Gal(L|K) is lsomorphzc to Dp = (Z/1’Z) x, (U] Uy)
(8.3) for each L.

Procf. If K has such an extension, then v;(g — 1) = ! and (e, f) = (%, 1)
(8.4). Conversely, suppose that v;(¢ — 1) = 1. Extensions in 72 ;(K') which are
galoisian over K correspond to the fixed points for the action of G; onk;* / k,X[ 2
- This group is cyclic of order /2 because ¢/ = 1 (mod. 12). Asged(g—1,1%) =1,
there are [ fixed points, so there are [ extensions L € 7 ,(K) galoisian over
K ; none of them is abelian over K because /? does not divide g — 1. For each
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such L, the groupI' = Gal(L|K') has order I3 and contains the cyclic subgroup
Gal(L|K/) of order 12,50 Tis isomorphic to D2 ; (8.3). The same conclusion

can also be arrived at by showing that H%(G;, k[ /k,x’ )¢ vanishes. O

Corollary 8.8. Forl # 2, the Heisenberg group $;3 (8.1) does not occur as
Gal(L|K) for any local field K of residual characteristic p # 1. O

The reader may wish to analyse the set 72 ;(K) in the same way as we
analysed 7,2 ,(K) in (8.6).

Example 8.9. Consider the case ¢ = 1 (mod. 2%). We have seen that every
galoisian extension in 7y ,(K) is in fact abelian. But for some m > 2, there
might be galoisian extensions in Tom 2(K) which are not abelian. A necessary
and sufficient condition for that to happen is that 2" divide g2 — 1 butnotg — 1.
In view of va(g + 1) = 1, this condition is equivalent to v2(¢ — 1) =m — 1.

When vy{(g —1) = m—1, there are 2m=1 extensions L € Tam 2(K') which are
galoisian but not abelian; for every such L, the resulting short exact sequence
(7.2.1)

l —» 2/11K2x —> Gal(LlK) — Gy > 1
splits because the group H2(Go, k) /k)*"

)q Vvanishes. For some related
results, see [13,1.2]. '

Remark 8.10. It is possible to determine all galoisian extensions of K of
degree I” (foranyprime! # pandanyn > 0)by fixing f = I” and considering
e = [? (such thata + b = n). Feit [9] counts the number of G-extensions of K
when G has order prime to p; one should be able to recover his results from
the foregoing.
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