On generalized graph ideals of complete bipartite graphs

Maurizio Imbesi ${ }^{1}$, Monica La Barbiera ${ }^{2}$ and Paola Lea Staglianò ${ }^{3}$
${ }^{1}$ University of Messina, Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, Viale F. Stagno d'Alcontres 31, I-98166 Messina, Italy
e-mail: imbesim@unime.it

${ }^{2}$ University of Catania, Department of Industrial Engineering, Viale A. Doria 6, Building 3, I-95125 Catania, Italy
e-mail: monicalb@libero.it
${ }^{3}$ University of Palermo, Department of Civil, Environmental, Aerospace, Material Engineering, Viale delle Scienze, Building 8, I-90128 Palermo, Italy
e-mail: paolalea.stagliano@unipa.it
Communicated by: R. Sujatha

Received: September 3, 2015

Abstract

Let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{i n}\right]$ be the polynomial ring in two sets of variables over a field K. Using the notion of linear quotients, we investigate significative classes of graph ideals of S that have a linear resolution, namely the generalized graph ideals, in order to compute standard algebraic invariants of S modulo such ideals. Moreover we are able to determine the structure of the ideals of vertex covers for such generalized graph ideals.

AMS 2010 Subject Classification. Primary 05C25; Secondary 05E40, 13C15.

Introduction

The present work föcuses on the study of monomial ideals of mixed products that arise from a simple graph, the so-called generalized graph ideals ([16]). They are generated by square-free monomials of fixed finite degree $q \geqslant 2$ associated to the paths of length $q-1$ of the graph, the $(q-1)$-paths. Let \mathcal{G} be a graph on vertex set $[n]=\left\{v_{1}, \ldots, v_{n}\right\}$ and $R=K\left[X_{1}, \ldots, X_{n}\right]$ be the
polynomial ring over a field K, with one variable X_{i} for each vertex v_{i}. The generalized graph ideal of \mathcal{G} is the ideal of R generated by all the square-free monomials $X_{i_{1}} \cdots X_{i_{q}}$ of degree q such that the vertex $v_{i_{j}}$ is adjacent to $v_{i_{j+1}}$, for all $1 \leqslant j \leqslant q-1$. It is denoted by $I_{q}(\mathcal{G})$. The monomial generators of $I_{q}(\mathcal{G})$ correspond to the $(q-1)$-paths of \mathcal{G}.

In [17] there are various results about monomial ideals of R associated to the edges of \mathcal{G}. Some problems arise when we will study good properties for monomial ideals and for some algebras related to such ideals ([8,9,14]). In the last years, monomial ideals of the polynomial ring $S=K\left[X_{1}, \ldots, X_{n}\right.$; $\left.Y_{1}, \ldots, Y_{m}\right]$ in two sets of variables over a field K were considered and some algebraic properties of them were studied ([12,14]). We are interested to investigate bipartite graphs because these graphs determine monomial ideals in S. More precisely, we say that a graph \mathcal{G} is bipartite if its vertex set $[n+m]$ can be partitioned into two disjoint subsets $[n]=\left\{x_{1}, \ldots, x_{n}\right\}$ and $[m]=\left\{y_{1}, \ldots, y_{m}\right\}$ such that any edge joins a vertex of $[n]$ with a vertex of [m]. In [16], the ideals of mixed products that describe the generalized graph ideals of complete bipartite graphs are considered. In particular, when \mathcal{G} is a bipartite complete graph, it is: $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell}$ if $q=\ell+1, \ell \in \mathbb{N}^{*}$, and $I_{q}(\mathcal{G})=I_{\ell} J_{\ell}$ if $q=2 \ell, \ell \in \mathbb{N}^{*}$, where I_{ℓ} (resp. J_{ℓ}) is the monomial ideal of S generated by all the square-free monomials of degree ℓ in the variables X_{1}, \ldots, X_{n} (resp. Y_{1}, \ldots, Y_{m}). In [15], the authors study the Rees algebra of $I_{q}(\mathcal{G})$ and they examine when $I_{q}(\mathcal{G})$ is of linear type.

In this note we prove that the generalized graph ideals $I_{q}(\mathcal{G})$ of a compete bipartite graph \mathcal{G} have linear resolution, by using the technique of studying the linear quotients of such ideals as previously employed in [10,12]. We also give formulae for standard invariants of $S / I_{q}(\mathcal{G})$ such as dimension, projective dimension, depth, and Castelnuovo-Mumford regularity. Moreover, we establish under what conditions $I_{q}(\mathcal{G})$ is Cohen-Macaulay. Lastly, we determine the generators of the ideals of vertex covers of $I_{q}(\mathcal{G})$.

The paper is organized in the following way. Section 1 contains notations and terminology on graphs and algebraic theory associated with them. In section 2 , according to results that characterize monomial ideals with linear quotients ($[3,5]$ it is proved that the ideals $I_{q}(\mathcal{G})$ have linear resolution. As a consequence of this, together with the computation of integers connected to $I_{q}(\mathcal{G})$, we are able to determine standard algebraic invariants of such ideals. Some of these will be useful for showing in what cases the ideals $I_{q}(\mathcal{G})$ are Cohen-Macaulay. In section 3 we consider algebraic aspects linked to a generalization of the notion of minimal vertex covers that holds for complete bipartite graphs. Let $I \subset S$ be a monomial ideal. The ideal of (minimal) covers of a monomial ideal I of S, denoted by I_{c}, is generated by all monomials $X_{i_{1}} \cdots X_{i_{k}} Y_{j_{1}} \cdots Y_{j_{1}}$ such that $\left(X_{i_{1}}, \ldots, X_{i_{k}}, Y_{j_{1}}, \ldots, Y_{j_{l}}\right)$ is an associated (minimal) prime of I. The ideal of vertex covers of $I_{q}(\mathcal{G})$ is denoted by $\left(I_{q}\right)_{c}(\mathcal{G})$. When \mathcal{G} is a complete bipartite graph, the structure of $\left(I_{q}\right)_{c}(\mathcal{G})$ is fully described.

1. Preliminary notions

Let \mathcal{G} be a graph with vertices v_{1}, \ldots, v_{n}. Let $R=K\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial ring over a field K with one variable X_{i} for each vertex v_{i}.

Definition 1.1. The generalized graph ideal of \mathcal{G}, denoted by $I_{q}(\mathcal{G})$, is the ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ generated by all the square-free monomials $X_{i_{1}} \cdots X_{i_{q}}$ of degree q such that the vertex $v_{i_{j}}$ is adjacent to $v_{i_{j+1}}$ for all $1 \leqslant j \leqslant q-1$.

Example 1.1. Let \mathcal{G} be the graph on vertex set $\left\{v_{1}, \ldots, v_{5}\right\}$

$I_{3}(\mathcal{G})=\left(X_{1} X_{3} X_{5}, X_{2} X_{5} X_{3}, X_{4} X_{2} X_{5}\right), I_{4}(\mathcal{G})=\left(X_{1} X_{3} X_{5} X_{2}, X_{3} X_{5} X_{2} X_{4}\right)$.
Definition 1.2. A path of length $q-1$ in \mathcal{G}, or $(q-1)$-path, is an alternating sequence of vertices and edges $\left\{v_{1}, z_{1}, v_{2}, \ldots, v_{q-1}, z_{q-1}, v_{q}\right\}$, where $z_{i}=\left\{v_{i}, v_{i+1}\right\}$ is the edge joining v_{i} and v_{i+1}, and all the vertices are distinct.

Remark 1.1. Two paths are equal if they consist of the same elements, independently of the order.

Remark 1.2. In general $I_{q}(\mathcal{G})$ is associated to the paths of length $q-1$ in \mathcal{G}. More precisely, the generators of $I_{q}(\mathcal{G})$ correspond to the $(q-1)$-paths in \mathcal{G}.

Remark 1.3. For $q=2, I_{2}(\mathcal{G})$ is the generalized graph ideal generated by square-free monomials of degree 2 corresponding to the edges of $\mathcal{G} . I_{2}(\mathcal{G})$ is the so-called edge ideal of \mathcal{G}, and simply denoted by $I(\mathcal{G})$.

We are interested to consider generalized graph ideals associated to bipartite graphs.

Definition 1.3. A graph \mathcal{G} is said to be bipartite if its vertex set $[n+m]$ can be partitioned into two disjoint subsets $[n]=\left\{x_{1}, \ldots, x_{n}\right\}$ and $[m]=\left\{y_{1}, \ldots, y_{m}\right\}$ such that every edge of $\mathcal{G} j$ joins $[n]$ with $[m]$.

Definition 1.4. A graph \mathcal{G} is complete bipartite if it is bipartite and contains every edge that joins $[n]$ with $[m]$. Such a graph is denoted by $\mathcal{K}_{n, m}$.

If \mathcal{G} is a complete bipartite graph, the generalized graph ideal $I_{q}(\mathcal{G})$ is a well determined ideal of mixed products.

Let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ be the polynomial ring over a field K in two sets of variables with $\operatorname{deg}\left(X_{i}\right)=\operatorname{deg}\left(Y_{j}\right)=1$, for all $i=1, \ldots, n$, $j=1, \ldots, m$. Given the non negative integers k, r, s, t such that $k+r=s+t$, in [16] the authors define the square-free monomial ideals of S :

$$
L=I_{k} J_{r}+I_{s} J_{t},
$$

where I_{k} (resp. J_{r}) is the monomial ideal of S generated by all the square-free monomials of degree k (resp. r) in the variables X_{1}, \ldots, X_{n} (resp. Y_{1}, \ldots, Y_{m}).

These ideals are called ideals of mixed products. Setting $I_{0}=J_{0}=S$, the following cases occur:

1) $L=I_{k}+J_{k}$, with $1 \leqslant k \leqslant \inf \{n, m\}$
2) $L=I_{k} J_{r}$, with $1 \leqslant k \leqslant n, 1 \leqslant r \leqslant m$
3) $L=I_{k} J_{r}+I_{k+1} J_{r-1}$, with $1 \leqslant k \leqslant n, 2 \leqslant r \leqslant m$
4) $L=J_{r}+I_{s} J_{t}$, with $r=s+t, 1 \leqslant s \leqslant n, 1 \leqslant r \leqslant m, t \geqslant 1$
5) $L=I_{k} J_{r}+I_{s} J_{t}$, with $k+r=s+t, 1 \leqslant k \leqslant n, 1 \leqslant r \leqslant m$.

Example 1.2.

1) $S=K\left[X_{1}, X_{2}, X_{3} ; Y_{1}, Y_{2}\right]$
$L=I_{2} J_{1}=\left(X_{1} X_{2} Y_{1}, X_{1} X_{3} Y_{1}, X_{2} X_{3} Y_{1}, X_{1} X_{2} Y_{2}, X_{1} X_{3} Y_{2}, X_{2} X_{3} Y_{2}\right)$.
2) $S=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}, Y_{3}\right]$
$L=I_{1} J_{2}+I_{2} J_{1}=\left(X_{1} Y_{1} Y_{2}, X_{1} Y_{1} Y_{3}, X_{1} Y_{2} Y_{3}, X_{2} Y_{1} Y_{2}, X_{2} Y_{1} Y_{3}, X_{2} Y_{2} Y_{3}\right.$, $X_{1} X_{2} Y_{1}, X_{1} X_{2} Y_{2}, X_{1} X_{2} Y_{3}$).
Let \mathcal{G} be a complete bipartite graph with vertices $x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}$.
The generalized graph ideal $I_{q}(\mathcal{G})$ is the ideal of S generated by all the square-free monomials of degree q corresponding to the ($q-1$)-paths of \mathcal{G}.
More precisely, $I_{q}(\mathcal{G})$ is an ideal of mixed products of the form:

$$
I_{q}(\mathcal{G})= \begin{cases}I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell} & \text { if } q=2 \ell+1, \ell \in \mathbb{N}^{*} \\ I_{\ell} J_{\ell} & \text { if } q=2 \ell, \ell \in \mathbb{N}^{*}\end{cases}
$$

Example 1.3. Let $\mathcal{G}=\mathcal{K}_{2,2}$, the complete bipartite graph on vertex set $\left\{x_{1}, x_{2} ; y_{1}, y_{2}\right\}$

In $S=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}\right]$ one has:

$$
\begin{aligned}
& I_{3}(\mathcal{G})=\left(X_{1} Y_{1} Y_{2}, X_{2} Y_{1} Y_{2}, X_{1} X_{2} Y_{1}, X_{1} X_{2} Y_{2}\right)=I_{1} J_{2}+I_{2} J_{1} \\
& I_{4}(\mathcal{G})=\left(X_{1} Y_{1} X_{2} Y_{2}\right)=I_{2} J_{2}
\end{aligned}
$$

The generators of $I_{3}(\mathcal{G})$ correspond to the paths of length $\overline{2}$.
The generator of $I_{4}(\mathcal{G})$ corresponds to the path of length 3 .

2. Linear resolutions and invariants

Throughout this section, \mathcal{G} will be a complete bipartite graph $\mathcal{K}_{n, m}$.
Here we illustrate some algebraic aspects of the generalized graph ideal $L=I_{q}(\mathcal{G})$ generated in degree $q \geqslant 2$ which arises from the paths of \mathcal{G}.

We prove that this ideal admits linear quotients and has a linear resolution.
We also compute standard algebraic invariants for $I_{q}(\mathcal{G})$ such as dimension, projective dimension, depth, Castelnuovo-Mumford regularity; and finally, we establish suitable conditions for which $I_{q}(\mathcal{G})$ is a Cohen-Macaulay ideal.

Let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$. For a monomial ideal $L \subset S$ we denote by $G(L)$ its unique set of minimal generators.

Definition 2.1. A monomial ideal $L \subset S$ is said to have linear quotients if there is an ordering u_{1}, \ldots, u_{t} of monomials belonging to $G(L)$ such that the colon ideal $\left(u_{1}, \ldots, u_{j-1}\right):\left(u_{j}\right)$ is generated by a subset of $\left\{X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right\}$, for all $j=2, \ldots, t$.

Remark 2.1. A monomial ideal L of S generated in one degree that has linear quotients admits a linear resolution ([3], Lemma 4.1).

For a monomial ideal L of S having linear quotients with respect to the ordering u_{1}, \ldots, u_{t} of the monomials of $G(L)$, let $q_{j}(L)$ denote the number of the variables which is required to generate the ideal $\left(u_{1}, \ldots, u_{j-1}\right):\left(u_{j}\right)$, and set $\mathfrak{q}(L)=\max _{2 \leqslant j \leqslant t} \mathfrak{q}_{j}(L)$.

Remark 2.2. The integer $\mathfrak{q}(L)$ is independent of the choice of the ordering of the generators that gives linear quotients ([6]).

In order to study the property of the ideal L of S of having linear quotients, we premise the following

Definition 2.2 (cfr. [13]). A monomial ideal L of S generated in one degree is called bi-polymatroidal if the following condition is satisfied:
forallmonomials $u=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}$ and $v=X_{1}^{c_{1}} \cdots X_{n}^{c_{i n}} Y_{1}^{d_{1}} \cdots Y_{m}^{d_{m}}$ in $G(L)$ and for each i with $a_{i}>c_{i}$ or k with $b_{k}>d_{k}$ one has $j \in\{1, \ldots, n\}$ with $a_{j}<c_{j}$ or $l \in\{1, \ldots, m\}$ with $b_{l}<d_{l}$ such that $X_{j} u / X_{i} \in G(L)$ or $Y_{l} u / Y_{k} \in G(L)$.

Proposition 2.1. The ideals $I_{q}(\mathcal{G})$ are bi-polymatroidal ideals.
Proof.
a) Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell}, q=2 \ell$. The set of the minimal generators of $I_{q}(\mathcal{G})$ is given by all the paths in \mathcal{G}, namely $\left\{X_{i_{1}} \cdots X_{i_{\ell}} Y_{j_{1}} \cdots Y_{j_{\ell}} \mid 1 \leqslant i_{1}<\cdots<\right.$ $\left.i_{\ell} \leqslant n ; 1 \leqslant j_{1}<\cdots<j_{\ell} \leqslant m\right\}$.
Let $u=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}, v=X_{1}^{c_{1}} \cdots X_{n}^{c_{n}} Y_{1}^{d_{1}} \cdots Y_{m}^{d_{m}} \in G\left(I_{q}(\mathcal{G})\right)$ with $0 \leqslant a_{i}, b_{j} \leqslant 1$, then $X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} \in I_{\ell}$ and $Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}} \in J_{\ell}$ such that $\sum_{i=1}^{n} a_{i}+\sum_{j=1}^{m} b_{j}=q$. Thus it easily follows by the structure of $G\left(I_{q}(\mathcal{G})\right)$ that for each i with $a_{i}>c_{i}$ or k with $b_{k}>d_{k}$ one has j with $a_{j}<c_{j}$ or l with $b_{l}<d_{l}$ such that $X_{j} u / X_{i} \in G\left(I_{q}(\mathcal{G})\right)$ or $Y_{l} u / Y_{k} \in G\left(I_{q}(\mathcal{G})\right)$.
b) Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell}, q=2 \ell+1$. The set of the minimal generators of $I_{g}(\mathcal{G})$ is given by $\left\{X_{i_{1}} \cdots X_{i_{6}} Y_{j_{1}} \cdots Y_{j_{+1}}, X_{i_{1}} \cdots X_{i_{\ell+1}} Y_{j_{1}} \cdots\right.$ $\left.Y_{j_{\ell}} \mid 1 \leqslant i_{1}<\cdots<i_{\ell+1} \leqslant n, 1 \leqslant j_{1}<\cdots<j_{\ell} \leqslant m\right\}$, corresponding to all the paths in \mathcal{G}.
Let $u=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}, v=X_{1}^{c_{1}} \cdots X_{n}^{c_{n}} Y_{1}^{d_{1}} \cdots Y_{m}^{d_{m}} \in G\left(I_{q}(\mathcal{G})\right)$ with $0 \leqslant a_{i}, b_{j} \leqslant 1$, then either $X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} \in I_{\ell}$ and $Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}} \in$ $J_{\ell+1}$ or $X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} \in I_{\ell+1}$ and $Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}} \in J_{\ell}$ such that $\sum_{i=1}^{n} a_{i}+$ $\sum_{j=1}^{m} b_{j}=q$.Thus it easily follows by the structure of $G\left(I_{q}(\mathcal{G})\right)$ that for each i with $a_{i}>c_{i}$ or k with $b_{k}>d_{k}$ one has j with $a_{j}<c_{j}$ or l with $b_{l}<d_{l}$ such that $X_{j} u / X_{i} \in G\left(I_{q}(\mathcal{G})\right)$ or $Y_{l} u / Y_{k} \in G\left(I_{q}(\mathcal{G})\right)$.
Theorem 2.1. The ideals $I_{q}(\mathcal{G})$ have linear quotients.
Proof. Let $u \in G\left(I_{q}(\mathcal{G})\right)$. Set $N=\left(v \in G\left(I_{q}(\mathcal{G})\right) \mid v<u\right)$ with $<$ the lexicographical order on $X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}$ induced by $X_{1}>$ $X_{2} \succ \cdots \succ X_{n} \succ Y_{1} \succ Y_{2} \succ \cdots \succ Y_{m}$. Then we prove that $N: u=(v / \operatorname{GCD}(u, v) \mid v \in N)$ is generated by monomials of degree one, that is a subset of $\left\{X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right\}$. Therefore we have to prove that for all $v \prec u$ there exists a variable of S in $N: u$ that divides $v / \operatorname{GCD}(u, v)$. Let $u=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}$ and $v=X_{1}^{c_{1}} \cdots X_{n}^{c_{n}} Y_{1}^{d_{1}} \cdots Y_{m}^{d_{m}}$ in $G\left(I_{q}(\mathcal{G})\right)$. Since $v<u$ there exists an integer i with $a_{i}>c_{i}$ and $a_{k}=c_{k}$ for $k=1, \ldots, i-1$. Hence by definition of bi-polymatroidal ideal there exists an integer j with $c_{j}>a_{j}$ such that $w=X_{j}\left(u / X_{i}\right) \in G\left(I_{q}(\mathcal{G})\right)$. Since $i<j$, it follows that $w \in N$ and $w=X_{j}\left(u / X_{i}\right) \in G\left(I_{q}(\mathcal{G})\right)$ implies $w X_{i}=X_{j} u$, that is $X_{j} \in N: u$. Since the j-th component of the vector exponent of $v / \operatorname{GCD}(u, v)$ is given by $c_{j}-\min \left\{c_{j}, a_{j}\right\}=c_{j}-a_{j}>0$, then X_{j} divides $v / \operatorname{GCD}(u, v)$ as required. If we suppose that $a_{k}=c_{k}$ for all $k=1, \ldots, n$, $b_{i}>d_{i}$ and $b_{l}=d_{l}$ for all $l=1, \ldots, i-1, i \in\{1, \ldots, m\}$ then we obtain $Y_{j} \in N: u$ and Y_{j} divides $v / \operatorname{GCD}(u, v)$. So the assertion follows.

Corollary 2.1. The ideals $I_{q}(\mathcal{G})$ have a linear resolution.

Proof. The statement descends from Theorem 2.1 and Remark 2.1.
We will now investigate standard algebraic invariants of $S / I_{q}(\mathcal{G})$. Recall the following
Definition 2.3. A vertex cover of $I_{q}(\mathcal{G})$ is a subset W of $\left\{X_{1}, \ldots, X_{n}\right.$; $\left.Y_{1}, \ldots, Y_{m}\right\}$ such that each $u \in G\left(I_{q}(\mathcal{G})\right)$ is divided by some variables of W.

Let $h\left(I_{q}(\mathcal{G})\right)$ denote the minimal cardinality of the vertex covers of $I_{q}(\mathcal{G})$.
Lemma 2.1. Let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ and $I_{q}(\mathcal{G}) \subset S$. Then:

$$
h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-\ell+1,
$$

where $\ell=\frac{q}{2}$ if q is even and $\ell=\frac{q-1}{2}$ if q is odd.
Proof.
a) Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell}, q=2 \ell$. The set of minimal generators of $I_{q}(\mathcal{G})$ derives from all the paths in $\mathcal{G},\left\{X_{i_{1}} \cdots X_{i_{\ell}} Y_{j_{1}} \cdots Y_{j_{\ell}} \mid 1 \leqslant i_{1}<\cdots<i_{\ell} \leqslant n\right.$, $\left.1 \leqslant j_{1}<\cdots<j_{\ell} \leqslant m\right\}$. Being I_{ℓ} (resp. J_{ℓ}) generated by all the monomials of degree ℓ in the variables X_{1}, \ldots, X_{n} (resp. Y_{1}, \ldots, Y_{m}), by the structure of $I_{q}(\mathcal{G})=I_{\ell} J_{\ell}$, one has:
for $q=2, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}$
for $q=4, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-1$
for $q=6, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-2$
for $q=2 \ell, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-\ell+1$.
b) Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell}, q=2 \ell+1$. The set of the minimal generators of $I_{q}(\mathcal{G})$ derives from all the paths in $\mathcal{G},\left\{X_{i_{1}} \cdots X_{i_{\ell}} Y_{j_{1}} \cdots Y_{j_{\epsilon+1}}\right.$, $X_{i_{1}} \cdots X_{i_{\ell+1}} Y_{j_{1}} \cdots Y_{j_{\ell}} \mid 1 \leqslant i_{1}<\cdots<i_{\ell+1} \leqslant n, 1 \leqslant j_{1}<\cdots<$ $\left.j_{\ell} \leqslant m\right\}$. Being I_{ℓ} (resp. $I_{\ell+1}$) generated by all the monomials of degree ℓ (resp. $\ell+1$) in the variables X_{1}, \ldots, X_{n} and J_{ℓ} (resp. $J_{\ell+1}$) generated by all the monomials of degree ℓ (resp. $\ell+1$) in the variables Y_{1}, \ldots, Y_{m}, by the structure of $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell}$, one has:
for $q=3, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}$
for $q=5, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-1$
for $q=7, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-2$
for $q=2 \ell+1, h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-\ell+1$.
In conclusion, for $q \leqslant \min \{n+m, 2 n+1,2 m+1\}$,

$$
h\left(I_{q}(\mathcal{G})\right)=\min \{n, m\}-\ell+1,
$$

with $\ell=\frac{q}{2}$ if q is even and $\ell=\frac{q-1}{2}$ if q is odd.

Lemma 2.2. Let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ and $I_{q}(\mathcal{G}) \subset S$. Then:

$$
\mathfrak{q}\left(I_{q}(\mathcal{G})\right)=n+m-q .
$$

Proof.

a) Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell}, q=2 \ell$.

For $q=2, I_{q}(\mathcal{G})=I_{1} J_{1}=\left(\left\{X_{r} Y_{s} \mid 1 \leqslant r \leqslant n, 1 \leqslant s \leqslant m\right\}\right)$. The maximum number of the variables which is required to generate the linear quotients of the ideal $I_{2}(\mathcal{G})$ is given by the subset $\left(X_{i_{1}}, \ldots, X_{i_{n-1}}\right.$; $\left.Y_{j_{1}}, \ldots, Y_{j_{m-1}}\right\} \subset S$. Hence $\mathfrak{q}\left(I_{2}(\mathcal{G})\right)=n+m-2$.
For $q=4, I_{q}(\mathcal{G})=I_{2} J_{2}$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\left\{X_{i_{1}}, \ldots, X_{i_{n-2}} ; Y_{j_{1}}, \ldots, Y_{j_{m-2}}\right\}$. Hence $\mathfrak{q}\left(I_{4}(\mathcal{G})\right)=n+m-4$.
For $q=6, I_{q}(\mathcal{G})=I_{3} J_{3}$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\left\{X_{i_{1}}, \ldots, X_{i_{n-3}} ; Y_{j_{1}}, \ldots, Y_{j_{m-3}}\right\}$. Hence $\mathfrak{q}\left(I_{6}(\mathcal{G})\right)=n+m-6$.
Thus, when $-I_{q}(\mathcal{G})=I_{l} J_{\ell}$, the maximum number of the variables which is required to generate the linear quotients is given by the subset $\left\{X_{i_{1}}, \ldots, X_{i_{n-\ell}} ; Y_{j_{1}}, \ldots, Y_{j_{m-\ell}}\right\} \subset S$. Hence $q\left(I_{2 \ell}(\mathcal{G})\right)=n+m-2 \ell$.
b) Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell}, q=2 \ell+1$.

For $q=3, I_{q}(\mathcal{G})=I_{1} J_{2}+I_{2} J_{1}=\left(\left\{X_{r} Y_{s} Y_{\sigma}, X_{r} X_{\rho} Y_{s} \mid 1 \leqslant r<\rho \leqslant n\right.\right.$, $1 \leqslant s<\sigma \leqslant m\}$). The maximum number of the variables which is required to generate the linear quotients of $I_{3}(\mathcal{G})$ is given by the subset of variables $\left\{X_{i_{1}}, \ldots, X_{i_{n-1}} ; Y_{j_{1}}, \ldots, Y_{j_{m-2}}\right\} \subset S$ or by $\left\{X_{i_{1}}, \ldots, X_{i_{n-2}} ; Y_{j_{1}}, \ldots, Y_{j_{m-1}}\right\} \subset S$. In any case it follows that $\mathfrak{q}\left(I_{3}(\mathcal{G})\right)=n+m-3$.
For $q=5, I_{q}(\mathcal{G})=I_{2} J_{3}+I_{3} J_{2}$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset $\left\{X_{i_{1}}, \ldots, X_{i_{n-2}} ; Y_{j_{1}}, \ldots, Y_{j_{m-3}}\right\}$ or by $\left\{X_{i_{1}}, \ldots, X_{i_{n-3}} ; Y_{j_{1}}, \ldots, Y_{j_{m-2}}\right\}$. In any case it follows that $\mathfrak{q}\left(I_{5}(\mathcal{G})\right)=n+m-5$.
For $q=7, I_{q}(\mathcal{G})=I_{3} J_{4}+I_{4} J_{3}$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\left\{X_{i_{1}}, \ldots, X_{i_{n-3}} ; Y_{j_{1}}, \ldots, Y_{j_{m-4}}\right\}$ or by $\left\{X_{i_{1}}, \ldots, X_{i_{n-4}}\right.$; $\left.Y_{j_{1}}, \ldots, Y_{j_{m-3}}\right\}$. In any case it follows that $\mathfrak{q}\left(l_{7}(\mathcal{G})\right)=n+m-7$.

Thus, when $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\epsilon+1} J_{\ell}$, the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\left\{X_{i_{1}}, \ldots, X_{i_{n-\ell}} ; Y_{j_{1}}, \ldots, Y_{j_{m-\ell-1}}\right\} \subset S$ or by $\left\{X_{i_{1}}, \ldots, X_{i_{n-c-1}} ; Y_{j_{1}}, \ldots, Y_{j_{m-\ell}}\right\} \subset S$. In any case it follows that $\mathfrak{q}\left(I_{2 \ell+1}(\mathcal{G})\right)=n+m-2 \ell-1$.

Inconclusion, $\mathfrak{q}\left(I_{q}(\mathcal{G})\right)=n+m-q$, for $q \leqslant \min \{n+m, 2 n+1,2 m+1\}$.

Theorem 2.2. Let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ and $I_{q}(\mathcal{G}) \subset R$. Then:

1) $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-\min \{n, m\}+\ell-1$, where $\ell=\frac{q}{2}$ if q is even and $\ell=\frac{q-1}{2}$ if q is odd.
2) $\operatorname{pd}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-q+1$.
3) $\operatorname{depth}_{S}\left(S / I_{q}(\mathcal{G})\right)=q-1$.
4) $\operatorname{reg}_{S}\left(S / I_{q}(\mathcal{G})\right)=1$.

Proof.

1) One has $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=\operatorname{dim}_{S} S-h\left(I_{q}(\mathcal{G})\right)$ (see [4]). Hence, by Lemma 2.1, $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-\min \{n, m\}+\ell-1$, where $\ell=\frac{q}{2}$ if q is even and $\ell=\frac{q-1}{2}$ if q is odd.
2) The length of the minimal free resolution of $S / I_{q}(\mathcal{G})$ over S is equal to $\mathfrak{q}\left(I_{q}(\mathcal{G})\right)+1\left([6]\right.$, Corollary 1.6). Then $\operatorname{pd}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-q+1$.
3) As a consequence of 2), by Auslander-Buchsbaum formula, one has $\operatorname{depth}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-\operatorname{pd}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-(n+m-q+1)=$ $q-1$.
4) $I_{q}(\mathcal{G})$ has a linear resolution, then $\operatorname{reg}_{S}\left(S / I_{q}(\mathcal{G})\right)=1$.

Remark 2.3. The computation of the algebraic invariants for mixed product ideals was made in [11] using different techniques with respect to the above theorem.

The following results explain conditions for which $I_{q}(\mathcal{G})$ is a Cohen-Macaulay ideal.

Proposition 2.2. Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell} \subset S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$, $q=2 \ell . I_{q}(\mathcal{G})$ is Cohen Macaulay if and only if $\ell=n+m-\min \{n, m\}$.

Proof. By Theorem 2.2 one has $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-\min \{n, m\}+$ $\ell-1$ and $\operatorname{depth}_{S}\left(S / I_{q}(\mathcal{G})\right)=q-1 . I_{q}(\mathcal{G})$ is Cohen Macaulay if and only if $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=\operatorname{depth}_{S}\left(S / I_{q}(\mathcal{G})\right)$. Hence the equality holds if and only if $n+m-\min \{n, m\}+\ell-1=q-1, q=2 \ell \Leftrightarrow 2 \ell=n+m-\min \{n, m\}+$ $\ell \Leftrightarrow \ell=n+m-\min \{n, m\}$.

Proposition 2.3. Let $I_{q}(\mathcal{G})=I_{\ell} J_{\ell+1}+I_{\ell+1} J_{\ell} \subset S=K\left[X_{1}, \ldots, X_{n}\right.$; $\left.Y_{1}, \ldots, Y_{m}\right], q=2 \ell+1 . I_{q}(\mathcal{G})$ is Cohen Macaulay if and only if $\ell=\ell=n+m-\min \{n, m\}-1$.

Proof. By Theorem 2.2 one has $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=n+m-\min \{n, m\}+$ $\ell-1$ and $\operatorname{depth}_{S}\left(S / I_{q}(\mathcal{G})\right)=q-1 . I_{q}(\mathcal{G})$ is Cohen Macaulay if and only if $\operatorname{dim}_{S}\left(S / I_{q}(\mathcal{G})\right)=\operatorname{depth}_{S}\left(S / I_{q}(\mathcal{G})\right)$. Hence the equality holds if añd only-if-$n+m-\min \{n, m\}+\ell-1=q-1, q=2 \ell+1 \Leftrightarrow 2 \ell=n+m-\min \{n, m\}+\ell-1$ $\Leftrightarrow \ell=n+m-\min \{n, m\}-1$.

3. Ideals of vertex covers for the generalized graph ideals of a complete bipartite graph

Definition 3.1. Let \mathcal{G} be a graph on vertex set $[n]=\left\{v_{1}, \ldots, v_{n}\right\}$. A subset C of $[n]$ is said a generalized vertex cover of \mathcal{G} if every path of \mathcal{G} is incident with one vertex in $C . C$ is said minimal if no proper subset of. C is a generalized vertex cover of \mathcal{G}.

Remark 3.1. There exists a one to one correspondence between generalized vertex covers of \mathcal{G} and prime ideals of $I_{q}(\mathcal{G})$ that preserves the minimality. In fact, \wp is a minimal prime ideal of $I_{q}(\mathcal{G})$ if and only if $\wp=(C)$, for some minimal generalized vertex cover C of \mathcal{G}. Thus $I_{q}(\mathcal{G})$ has primary decomposition $\left(C_{1}\right) \cap \cdots \cap\left(C_{r}\right)$, where C_{1}, \ldots, C_{r} are the minimal generalized vertex covers of \mathcal{G}.

An algebraic aspect linked to the generalized vertex covers of \mathcal{G} is the notion of ideal of vertex covers for the generalized graph ideals of \mathcal{G}.

Definition 3.2. The ideal of vertex covers for the generalized graph ideal $I_{q}(\mathcal{G})$, denoted by $\left(I_{q}\right)_{c}(\mathcal{G})$, is the ideal of R generated by all monomials $X_{i_{1}} \cdots X_{i_{r}}$ such that $\left(X_{i_{1}}, \ldots, X_{i_{r}}\right)$ is an associated prime ideal of $I_{q}(\mathcal{G})$.
Hence $\left(I_{q}\right)_{c}(\mathcal{G})=\left(\left\{X_{i_{1}} \cdots X_{i_{r}} \mid\left\{v_{i_{1}}, \ldots, v_{i_{r}}\right\}\right.\right.$ is a generalized vertex cover of \mathcal{G}) and the minimal generators of $\left(I_{q}\right)_{c}(\mathcal{G})$ correspond to the minimal generalized vertex covers.

The following generalizes to $\left(I_{q}\right)_{c}(\mathcal{G})$ the characterization of the ideal of vertex covers for the edge ideal of any graph \mathcal{G} given in [17].

Property 3.1. $\left(I_{q}\right)_{c}(\mathcal{G})=\left(\bigcap_{\left\{p_{i_{1}}, z_{1}, \ldots, v_{i q}\right\} \text { path in } \mathcal{G}}\left(X_{i_{1}}, \ldots, X_{i_{q}}\right)\right), \forall q \geqslant 2$.
From now on, let $S=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right], n \geqslant m$, be the polynomial ring in two sets of variables over a field K and $\mathcal{K}_{n, m}$ be a complete bipartite graph on vertex set $[n+m]=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}$.

Let $I_{q}\left(\mathcal{K}_{n, m}\right)$ denote the generalized graph ideals of $\mathcal{K}_{n, m}$, where $2 \leqslant q \leqslant \min \{n+m, 2 m+1\}$. It is known that the generators of $I_{q}\left(\mathcal{K}_{n, m}\right)$ correspond to the ($q-1$)-paths in $\mathcal{K}_{n, m}$.

In [7] the author illustrates a method for determining in degree q the number of ($q-1$)-paths in any connected graph \mathcal{G}, by using only the incidence matrix of \mathcal{G}. The composition of such paths and the generators of the generalized graph ideals $I_{q}(\mathcal{G})$ are also studied.

Let $\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$ indicate the ideal of vertex covers of $I_{q}\left(\mathcal{K}_{n, m}\right), \forall q$.
The following result establishes the structure of $\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$.
Theorem 3.1. Let $\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$ be the ideal of vertex covers for the generalized graph ideal associated to the complete bipartite graph $\mathcal{K}_{n, m}$, $n \geqslant m, 2 \leqslant q \leqslant \min \{n+m, 2 m+1\}$. It is structured as follows:

- if $q=2 p,\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$ has $\binom{n}{p-1}+\binom{m}{p-1}$ generators,

$$
X_{1} \cdots X_{n-p+1}, \ldots, X_{p} \cdots X_{n}, Y_{1} \cdots Y_{m-p+1}, \ldots, Y_{p} \cdots Y_{m}
$$

- if $q=2 p+1, p \neq m,\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$ has $\binom{n}{p-1}+\binom{m}{p-1}+\binom{n}{p}\binom{m}{p}$ generators,

$$
\begin{aligned}
& X_{1} \cdots X_{n-p+1}, \ldots, X_{p} \cdots X_{n}, Y_{1} \cdots Y_{m-p+1}, \ldots, Y_{p} \cdots Y_{m} \\
& X_{1} \cdots X_{n-p} Y_{1} \cdots Y_{m-p}, \ldots, X_{1} \cdots X_{n-p} Y_{p+1} \cdots Y_{m}, \cdots \cdots, \\
& X_{p+1} \cdots X_{n} Y_{1} \cdots Y_{m-p}, \ldots, X_{p+1} \cdots X_{n} Y_{p+1} \cdots Y_{m}
\end{aligned}
$$

- if $q=2 m+1,\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$ has $\binom{m}{m-1}+\binom{n}{m}$ generators,

$$
X_{1} \cdots X_{n-m}, \ldots, X_{m+1} \cdots X_{n}, Y_{1}, \ldots, Y_{m}
$$

Proof. Let's calculate for any $q \geqslant 2$ the generators and their number for the ideals of vertex covers $\left(I_{q}\right)_{c}\left(\mathcal{K}_{n, m}\right)$.
$-\left(I_{2}\right)_{c}\left(\mathcal{K}_{n, m}\right)$
Its generators are $X_{1} \cdots X_{n}, Y_{1} \cdots Y_{m}$; their number is $\binom{n}{0}+\binom{m}{0}=2$.
$-\left(I_{3}\right)_{c}\left(\mathcal{K}_{n, m}\right)$
Its generators are $X_{1} \cdots X_{n}, Y_{1} \cdots Y_{m}$,

$$
\begin{aligned}
& X_{1} \cdots X_{n-1} Y_{1} \cdots Y_{m-1}, X_{1} \cdots X_{n-1} Y_{1} \cdots Y_{m-2} Y_{m}, \ldots, X_{1} \cdots X_{n-1} Y_{2} \cdots Y_{m}, \\
& X_{1} \cdots X_{n-2} X_{n} Y_{1} \cdots Y_{m-1}, X_{1} \cdots X_{n-2} X_{n} Y_{1} \cdots Y_{m-2} Y_{m}, \ldots, \\
& X_{1} \cdots X_{n-2} X_{n} Y_{2} \cdots Y_{m}, \cdots \cdots X_{n}, \ldots Y_{1}, \\
& X_{2} \cdots X_{n} Y_{1} \cdots Y_{m-1}, X_{2} \cdots X_{n} Y_{1} \cdots Y_{m-2} Y_{m}, \ldots, X_{2} \cdots X_{n} Y_{2} \cdots Y_{m}
\end{aligned}
$$

their number is $\binom{n}{0}+\binom{m}{0}+\binom{n}{1}\binom{m}{1}=2+n m$.
$-\left(I_{4}\right)_{c}\left(\mathcal{K}_{n, m}\right)$
Its generators are:

$$
\begin{aligned}
& X_{1} \cdots X_{n-1}, X_{1} \cdots X_{n-2} X_{n}, X_{1} \cdots X_{n-3} X_{n-1} X_{n}, \ldots, X_{2} \cdots X_{n}, \\
& Y_{1} \cdots Y_{m-1}, Y_{1} \cdots Y_{m-2} Y_{m}, Y_{1} \cdots Y_{m-3} Y_{m-1} Y_{m}, \ldots, Y_{2} ; Y_{m} ;
\end{aligned}
$$

their number is $\binom{n}{1}+\binom{m}{1}=n+m$.
$-\left(I_{5}\right)_{c}\left(\mathcal{K}_{n, m}\right)$

Its generators are:
$X_{1} \cdots X_{n-1}, X_{1}^{1} \cdots X_{n-2} X_{n}, \ldots, X_{1} X_{3} \cdots X_{n}, X_{2} \cdots X_{n}, \ldots$
$Y_{1} \cdots Y_{m-1}, Y_{1} \cdots Y_{m-2} Y_{m}, \ldots, Y_{1} Y_{3} \cdots Y_{m}, Y_{2} \cdots Y_{m}$,
$X_{1} \cdots X_{n-2} Y_{1} \cdots Y_{m-2}, X_{1} \cdots X_{n-2} Y_{1} \cdots Y_{m-3} Y_{m-1}, \ldots, X_{1} \cdots X_{n-2} Y_{3} \cdots Y_{m}$,
$X_{1} \cdots X_{n-3} X_{n-1} Y_{1} \cdots Y_{m-2}, X_{1} \cdots X_{n-3} X_{n-1} Y_{1} \cdots Y_{m-3} Y_{m-1}, \ldots$,
$X_{1} \cdots X_{n-3} \hat{X_{n-1}} Y_{3} \cdots Y_{m}$,
$X_{3} \cdots X_{n} Y_{1} \cdots Y_{m-2}, X_{3} \cdots X_{n} Y_{1} \cdots Y_{m-3} \dot{Y}_{m-1}, \ldots, X_{3} \cdots X_{n} Y_{3} \cdots Y_{m} ;$
their number is $\binom{n}{1}+\binom{m}{1}+\binom{n}{2}\binom{m}{2}=n+m+\frac{n(n-1)}{2} \frac{m(m-1)}{2}$.

- $\left(I_{6}\right)_{c}\left(\mathcal{K}_{n, m}\right)$

Its generators are:

$$
\begin{aligned}
& X_{1} \cdots X_{n-2}, X_{1} \cdots X_{n-3} X_{n-1}, X_{1} \cdots X_{n-3} X_{n}, \ldots, X_{3} \cdots X_{n}, \\
& Y_{1} \cdots Y_{m-2}, Y_{1} \cdots Y_{m-3} Y_{m-1}, Y_{1} \cdots Y_{m-3} Y_{m}, \ldots, Y_{3} \cdots Y_{m},
\end{aligned}
$$

their number is $\binom{n}{2}+\binom{m}{2}=\frac{n(n-1)}{2} \frac{m(m-1)}{2}$.

- $\left(I_{7}\right)_{c}\left(\mathcal{K}_{n, m}\right)$

Its generators are:
$X_{1} \cdots X_{n-2}, X_{1} \cdots X_{n-3} X_{n-1}, \ldots, X_{2} X_{4} \cdots X_{n}, X_{3} \cdots X_{n}$,
$Y_{1} \cdots Y_{m-2}, Y_{1} \cdots Y_{m-3} Y_{m-1}, \ldots, Y_{2} Y_{4} \cdots Y_{m}, Y_{3} \cdots Y_{m}$,
$X_{1} \cdots X_{n-3} Y_{1} \cdots Y_{m-3}, X_{1} \cdots X_{n-3} Y_{1} \cdots Y_{m-4} Y_{m-2}, \ldots, X_{1} \cdots X_{n-3} Y_{4} \cdots Y_{m}$,
$X_{1} \cdots X_{n-4} X_{n-2} Y_{1} \cdots Y_{m-3}, X_{1} \cdots X_{n-4} X_{n-2} Y_{1} \cdots Y_{m-4} Y_{m-2}, \ldots$,
$X_{1} \cdots X_{n-4} X_{n-2} Y_{4} \cdots Y_{m}, \ldots \ldots \ldots \ldots \ldots \ldots$,
$X_{4} \cdots X_{n} Y_{1} \cdots Y_{m-3}, X_{4} \cdots X_{n} Y_{1} \cdots Y_{m-4} Y_{m-2}, \ldots, X_{4} \cdots X_{n} Y_{4} \cdots Y_{m} ;$
their number is $\binom{n}{2}+\binom{m}{2}+\binom{n}{3}\binom{m}{3}=\frac{n(n-1)}{2}+\frac{m(m-1)}{2}+\frac{n(n-1)(n-2)}{6} \frac{m(m-1)(m-2)}{6}$; and so on, until $q=\min \{n+m, 2 m+1\}$. It results:

- $\min \{n+m, 2 m+1\}=n+m$ if and only if $n=m$, hence $q=2 m$. $\left(I_{2 m}\right)_{c}\left(\mathcal{K}_{n, m}\right)=\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{m}\right)$; it has $2\left({ }_{m-1}^{m}\right)$ generators.
- $\min \{n+m, 2 m+1\}=2 m+1$ if and only if $n-m \geqslant 1$ (if $n=m+1$ then $2 m+1=n+m)$; hence $q=2 m+1$.
$\left(I_{2 m+1}\right)_{c}\left(\mathcal{K}_{n, m}\right)=\left(X_{1} \cdots X_{n-m}, \ldots, X_{m+1} \cdots X_{n-1} X_{n}, Y_{1}, \ldots, Y_{m}\right)$; it has $\binom{m}{m-1}+\binom{n}{m}$ generators.

Acknowledgements

The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM, Italy.

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39 (1993).
[2] A. Conca and E. De Negri, M-sequences, graph ideal and ladder ideals of linear type, J. of Algebra, 211 (1999) 599-624.
[3] A. Conca and J. Herzog, Castelnuovo-Mumford regularity of product of ideals, Collect. Math., 54 (2003) 137-152.
[4] J. Herzog and T. Hibi, Cohen-Macaulay polymatroidal ideals, Eur. J. Comb., 27 (2006) no. 4, 513-517.
[5] J. Herzog and T. Hibi, Monomial ideals, Springer, Graduate Texts in Mathematics, 260 (2011).
[6] J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology, Homotopy Appl., 4 (2002) no. 2, 277-294.
[7] M. Imbesi, Generators of generalized graph ideals, Commun. to SIMAI Congress, 2 (2007) 10 pages, doi: 10.1685/CSC06095.
[8] M. Imbesi and M. La Barbiera, Invariants of symmetric algebras associated to graphs, Turk. J. Math., 36 (2012) no. 3, 345-358.
[9] M. Imbesi and M. La Barbiera, Theoretic properties of the symmetric algebra of edge ideals, Bull. Belg. Math. Soc. Sim., 22 (2015) 331-342.
[10] M. Imbesi and M. La Barbiera, On a class of vertex cover ideals, Anal. Stiint. Univ. Al. I. Cuza Iasi (S.N) Mat., 61 (2015) no. 2, 319-326.
[11] C. Ionescu and G. Rinaldo, Some algebraic invariants related to mixed product ideals, Arch. Math., 91 (2008) 20-30.
[12] La Barbiera, M., On a class of monomial ideals generated by s-sequences, Math. Reports, 12(62) (2010) 201-216.
[13] M. La Barbiera, On standard invariants of bi-polymatroidal ideals, Alg. Colloq., 21 (2014) no. 2, 267-274.
[14] M. La Barbiera and G. Restuccia, Mixed product ideals generated by s-sequences, Alg. Colloq. 18 (2011) no. 4, 553-570.
[15] M. La Barbiera and P. L. Staglianò, Generalized graph ideals of linear type, Alg. Colloq., 24 (2017) no. 1, 83-91.
[16] G. Restuccia and R. H. Villarreal, On the normality of monomial ideals of mixed products, Commun. in Algebra 29 (2001) no. 8, 3571-3580.
[17] R. H. Villarreal, Monomial algebras, M. Dekker Inc., New York, Pure and Appl. Math., 238 (2001).

