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Abstract. Let S = K [X 1, ... , X 11 ; Y1, ... , Ym] be the polynomial 
ring in two sets of variables over a field K. Using the notion of linear 
quotients, we investigate significative classes of graph ideals of S that 
have a linear resolution, namely the generalized graph ideals, in order to 
compute standard algebraic invariants of S modulo such ideals. Moreover 
we are able to determine the structure of the ideals of vertex covers for 
such generalized graph ideals. 
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--,.._____ Introduction ---~-;-:-.._ ---~~-

The present workt6cuses onJl_ie study of monomial ideals of mixed products 
that arise from a simple graph,-the-s~called_generalized graph ideals ([16]). 
They are generated by square-free monomials-;Tfixed· finite .. d~gree q ~ 2 
associated to the paths of length q - l of the graph, the (q - 1)-p;-tifa:"L---et-Q-->-­
be a graph on vertex set [n] = {v1, ... , v11 } and R = K[X1, ... , X11 ] be the 
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polynomial ring over a field K, with one variable X; for each vertex v;. The 
generalized graph ideal of 9 is the ideal of R generated by all the square-free 
monomials X; 1 • • • X;q of degree q such that the vertex v;i is adjacent to v;i+I' 

for all 1 ~ j ~ q - 1. It is denoted by Iq(9). The monomial generators of 
Iq(Q) correspond to the (q - 1)-paths of Q. 

In [17] there are various results about monomial ideals of R associated 
to the edges of Q. Some problems arise when we will study good properties 
for monomial ideals and for some algebras related to such ideals ([8,9,14]). 
In the last years, monomial ideals of the polynomial ring S = K[X 1, ••• , X11 ; 

Y1, ... , Y111 ] in two sets of variables over a field K were considered and 
some algebraic properties of them were studied ([12,14]). We are interested 
to investigate bipa11ite graphs because these graphs determine monomial 
ideals in S. More precisely, we say that a graph Q is bipa11ite if its vertex set 
[n + m] can be partitioned into two disjoint subsets [n] = {x1, ... , x11 } and 
[m] = {y,, ... , Ym} such that any edge joins a vertex of [n] with a vertex of 
[m]. In [16], the ideals of mixed products that describe the generalized graph 
ideals of complete bipartite graphs are considered. In particular, when 9 is a 
bipartite complete graph, it is: Iq(Q) = Iele+1 + Ie+1 le if q = t + 1, t EN*, 
and Iq(Q) = Iele if q = 21:, t E N*, where le (resp. le) is the monomial ideal 
of S generated by all the square-free monomials of degree t in the variables 
X 1, ... , X 11 (resp. Y1, : .. , Y111 ). In [15], the authors study the Rees algebra of 
Iq(Q) and they examine when Iq (Q) is of linear type. 

In this note we prove that the generalized graph ideals Iq (Q) of a compete 
bipartite graph Q have linear resolution, by using tl)e technique of studying 
the linear quotients of such ideals as previously _employed in [10,12]. 
We also give formulae for standard invariants of S / I q (Q) such as dimension, 
projective dimension, depth, and Castelnuovo-Mumford regularity. Moreover, 
we establish under what conditions Iq (Q) is Cohen-Macaulay. Lastly, we 
determine the generators of the ideals of vertex covers of / q (Q). 

The paper is organized in the following way. Section 1 contains notations 
and terminology on graphs and algebraic theory associated with them. In 
section 2, according to results that characterize monomial ideals with linear 
quotients ([3,s~· it is proved that the ideals Iq(Q) have linear resolution. As 
a consequence of this, together with the computation of integers connected to 
Iq(Q), we are able to determine standard algebraic invariants of such ideals. 
Some of these will be useful for showing in what cases the ideals I q (Q) 
are Cohen-Macaulay. In section 3 we consider algebraic aspects linked to a 
generalization of the notion of minimal vertex covers that holds for complete 
bipartite graphs. Let I c S be a monomial ideal. The ideal of (minimal) covers 
of a monomial ideal J of S, denoted by le, is generated by all monomials 
X; 1 • • • X;kYh · · · Yj, such that (X; 1 , ••• , X;k, Yjp ... , Yj1) is an associated 
(minimal) prime of I. The ideal of vertex covers of I q (Q) is denoted by 
(/q )c (Q). When Q is a complete bipartite graph, the structure of (J q )c (Q) is 
fully described. 
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1. Preliminary notions 

Let g be a graph with vertices VJ, ... , v11 • Let R = K[X1, ... , X 11 ] be the 
polynomial ring over a field K with one variable X; for each vertex v;. 

Definition 1.1. The generalized graph ideal of Q, denoted by I q (9), is the 
ideal ofK[X 1, ... , X11 ] generated by all the square-free monomials X; 1 • • • X;q 

of degree q such that the vertex v; j is adjacent to v; HJ for all ] ::,; j ::,; q - ] . 

Example 1.1. Let g be the graph on vyrtex set { v 1, ... , vs} 

Definition 1.2. A path of length q - ] in Q, or (q - 1 )-path, is an alternating 
sequence of vertices and edges {v1,z1,v2, ... ,Vq-l,Zq-l,vq}, where 
z; = {v;, v;+1} is the edge joining v; and v;+1, and all the vertices are distinct. 

Remark 1.1. Two paths are equal if they consist of the same elements, 
independently of the order. 

Remark 1.2. In general I q (9) is associated to the paths of length q - 1 in g. 
More precisely, the generators of Iq(Q) correspond to the (q - 1)-paths in g_ 

Remark 1.3. For q = 2, h(Q) is the generalized graph ideal generated by 
square-free monomials of degree 2 corresponding to the edges of g_ 12(9) is 
the so-called edge ideal of g, and simply denoted by I (9) . 

.. 1 

We are interested to consider generalized graph ideals associated to bipartite 
graphs. 

Definition,1.3,~ .. _A graph g is said to be bipartite if its vertex set [n +m] 
can be partition~;r TiiftTYwo disjpf.11:t subsets [n] = {x1, ... , x 11 } and 
[m] = {y1, ... , y111 } such that every edge· ofQJcrins·-[n] .withjm]. 

Definition 1.4. A graph g is complete bipartite if it is bipartite and contains 
every edge that joins [n] with [m]. Such a graph is denoted by K 11 , 111 • 
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If g is a complete bipartite graph, the generalized graph ideal Iq(g) is a 
well determined ideal of mixed products. 

Let S = K [X 1, ... , X 11 ; Yi, ... , Y111 ] be the polynomial ring over a field K 

in two sets of variables with deg(Xi) = deg(Y1) = 1, for all i = 1, ... , n, 
j = 1, ... , m. Given the non negative integers k, r, s, t such that k + r = s + t, 
in [16] the authors define the square-free monomial ideals of S: 

L = hlr + lslt, 

where h (resp. Ir) is the monomial ideal of S generated by all the square-free 
monomials of degree k (resp. r) in the variables X 1, ... , X 11 (resp. Y1, ... , Y111 ). 

These ideals are called ideals of mixed products. Setting Io = lo = S, the 
following cases occur: 

1) L = h + Jk, with 1 :( k (; inf{n, m} 
2) L = hlr, with 1 :( k (; n, 1 ~ r (; m 
3) L = hlr + lk+1lr-I, with 1 ~ k (; n, 2 ~ r (; m 
4) L ~ lr + ls 11, with r = s + t, 1 :( s ~ n, 1 ~ r ~ m, t ~ I 
5) L = Iklr + ls 11, with k + r = s + t, 1 :( k ~ n, 1 ~ r (; m. 

Example 1.2. 

1) S = K[Xr, X2, X3; Yi, Y2] 
L = hli = (XiX2Y1, X1X3Y1, X2X3Y1, X1X2Y2, XiX3Y2, X2X3Y2). 

2) S = K[X1, X2; Yi, Y2, Y3] 

L = l1h+hl1 = (X1Y1Y2, X1Y1Y3, X1Y2Y3, X2Y1Y2, X2Y1Y3, X2Y2Y3, 

X1X2Y1, X1X2Y2, X1X2Y3). 

Let g be a complete bipartite graph with vertices x1, ... , x 11 ; YI, ... , y 111 • 

The generalized graph ideal Iq(g) is the ideal of S generated by all the 
square-free monomials of degree q corresponding to the (q - 1)-paths of g_ 

More precisely, / q (g) is an ideal of mixed products of the form: 

!
Iele+l + Ie+1le if q = 2-e + 1,-e EN* 

Iq(Q) = 
Iele if q = 2-e,-e EN* 

Example 1.3. Let g = IC2,2, the complete bipartite graph on vertex set 

{x1, x2; YI, Y2} 

T><J 
Yl Y2 
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In S = K[X1, X2; Y1, Y2] one has: 

/3(9) = (X1 Y1Y2, X2Y1 Y2, X1X2Y1, X1X2Y2) =Ith+ hli 

/4(9) = (X1Y1X2Y2) = l2h-

The generators of / 3(9) correspond to the paths of length 2. 
The generator of /4(9) corresponds to the path of length 3. 

2. Linear resolutions and invariants 

Throughout this section, g will be a complete bipartite graph K 11 ,m. 

Here we illustrate some algebraic aspects of the generalized graph ideal 
L = I q (9) generated in degree q ~ 2 which arises from the paths of g. 

We prove that this ideal admits linear quotients and has a linear resolution. 
We also compute standard algebraic invariants for lq (Q) such as dimension, 

projective dimension, depth, Castelnuovo-Mumford regularity; and finally, we 
establish suitable conditions for which Iq(Q) is a Cohen-Macaulay ideal. 

Let S = K[X1, ... , X11 ; Y1, ... , Y111 ]. For a monomial ideal L C S we 
denote by G(L) its unique set of minimal generators. 

Definition 2.1. A monomial ideal L C S is said to have linear quotients 
if there is an ordering u1, ... , u, of monomials belonging to G(L) such 
that the colon ideal (u,, ... , UJ-1) : (u1) is generated by a subset of 
{X1, ... , Xn; Y1, ... , Y111 },forall j = 2, ... , t. 

Remark 2.1. A monomial ideal L of S generated in one degree that has 
linear quotients admits a linear resolution ([3], Lemma 4.1). 

For a monomial ideal L of S having linear quotients with respect to the ordering 
u1, ... , u 1 of the monomials of G(L), let q1(L) denote the number of the 
variables which is required to generate the ideal (u 1, ... , u J- i) : (u i ), and set 
q (L) = max2,:;;J,:;;r qj(L). 

Remark 2.2. The integer q (L) is independent of the choice of the ordering 
of the generators that gives linear quotients ([6]). 

In order to study the property of the ideal L of S of having linear quotients, 
we premise the following 

Definition-2.2-(cfr. [13]). -.AJnonomial ideal L of S generated in one degree 
is called bi-polymatroidal if the f;llowiiif condition is_sati_sfied: . 
forallmonomialsu = X~ 1 • • • xi11 Yt 1 

• • • Y,~"' andv = X~ 1 .--::-xiifY(1-:'.---y;~11
-­

in G(L) and for each i with a; > c; or k with bk > dk one has j E {1, ... , n} 
with a1 < c1 or l E {1, ... , m} with b1 < d1 such that X1u/ X; E G(L) or 
Y1u/Yk E G(L). 
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Proposition 2.1. The ideals Iq (9) are bi-polymatroidal ideals. 

Proof 

a) Let Iq(9) = lele, q = 2£. The set of the minimal generators of Iq (9) is 
givenbyallthepathsin9,namely{X;1 ···X;cYJ1 ···Y1r. I l :::;;i, < ··· < 
ie :::;; n; I :::; .ii < · · · < Je:::;; m}. 
Let _ xa1 ... Xa" yb1 ... ybm _ xe1 ... Xe" yd1 ... ydm E G(/ (I".)) 

U - I 11 1 111 , V - I 11 I 111 q '::f 

with O:::; a;, hJ:::;; I, then Xf1 
• • • xi11 E le and Y[' 1 

• • • Y,t"' E le such that 
I:?=1 a;+ I:?=, h1 = q. Thusiteasilyfollowsby the structure of G(Jq (9)) 
that for each i with a; > c; or k with bk > dk one has j with a1 < CJ or l 
with bt < d1 such that X1u/X; E G(Iq(9)) or Y1u/Yk E G(/q(9)). 

b) Let lq(9) .= lele+1 +le+1 le, q = 2£+ I. Thesetoftheminimal generators 
of Iq·(r.)···· is given by {X,· · · · X- Y1· · · · Y1· X· · · · X· Y· · · · '::f 1 I[ . I l+l' I I lf+I JI 

'YJc I .1 :::; h '< · ... , < ie+1 :::;; n, 1 :::; }1 < · · · < Je :::;; m}, corresponding 
to all the paths ii1'·9. · · 
Let u = Xf1 ... xi11 Y{'1 ... Y,t111

, V = X~1 ... xi11 Yf1 ... Y,~m E G(/q(9)) 

with O :::; a;, b 1 :::;; I, then either xf 1 
• • • xi11 E / e and Y[' 1 

• • • Y,t"' E 

J X{q X0
" / d ybi ybm ] h th t " 11 + e+1 or 1 · · · 11 E.

1
, _.e+1 an 1 · · · m E e sue a L..i=I a; 

Z:.,'j'= 1 bJ = q.Thus it easily follows by the structure of G(Jq(9)) that for 
each i with a; > c; or k with bk > dk one has j with a J < c J or l with 
b1 < d1 such that X 1u/ X; E G(/q(9)) or Yiu/ Yk E G(Jq(9)). D 

Theorem 2.1. The ideals I q (9) have linear quotients. 

Proof Let u E G(Jq(9)). Set N = (v E G(Jq(9)) I v -< u) with -< 
the lexicographical order" on X 1, ... , X 11 ; Y1, ... ; Y111 induced by X 1 >­
X2 ·>- · · · >- X 11 >-- Y1 >- . Y2 >- · · · >-· Y111 • Then we prove ina·t 
N : u = (v /GCD(u, v) I v E N) is generated by monomials of degree one, 
that is a subset of { X 1, ... , X11 ; Y1, ... , Y111 }. Therefore we have.to prove that 
for all v -< u there exists a variable of S in N : u that divides ·v jGCD(u, v). 
L X a1 Xa11 ybi ybm d Xe1 Xe" yd1 ' ydm · G(J (I".)) et u = I • . . ll I • • • 177 an V = 1 . . • 11 1 • • • 111 111 q '::f • 

Since v -< u there exists an integer i with a; > c; and ak = Ck for 
k = I, ... , i - I. Hence by definition of bi-polymatroidal ideal there exists 
an integer j with CJ > a1 such that w = X 1(u/ X;) E G(Iq(9)). Since i < j, 
it follows that w EN and w = X1(u/X;) E G(Jq(9)) implies wX; = Xju, 
that is X J E N : u. Since the }-th component of the vect<;>r exponent of 
v/GCD(u, v) is given by CJ - min{cJ, a1} = CJ - aj > 0, then Xj divides 
v /GCD(u, v) as required. If we suppose that ak = Ck for all k = I, ... , n, 
b; > d; and b1 = di for all l = I, ... , i - 1, i E {I, ... , m} then we obtain 
YJ EN : u and YJ divides v/GCD(u, v). So the assertion follows. D 

Corollary 2.1. _The ideals I q (9) have a linear resolution. 
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Proof The statement descends from Theorem 2.1 and Remark 2.1. D 

We will now investigate standard algebraic invariants of S / lq (9). Recall 
the following 

Definition 2.3. A vertex cover of I q (9) is a subset W of { X 1 , ... , X 11 ; 

Y1, ... , Y111 } such that each u E G(Iq(Q)) is divided by some variables of W. 

Let h(Iq(Q)) denote the minimal cardinality of the vertex covers of Iq(Q). 

Lemma 2.1. Let S = K[X1, ... , X 11 ; Y1, ... , Y111 ] and Iq(Q) CS. Then: 

h(Iq(Q)) = min{n, m} - e + l, 

where e = 1 if q is even and e = q2
1 (f q is odd. 

Proof 

a) Let Iq(Q) = le Jc, q = 2e. The set of minimal generators of Iq(Q) derives 
from all the paths in 9, {X; 1 • • • X;tYi 1 • • • Yit I 1 :,;; i1 < · · · < ie ~ n, 
1 ~ ji < • • • < Jc ~ m}. Being le (resp. Je) generated by all the 
monomials of degree e in the variables X 1, ... , X 11 (resp. Y1 , ... , Y111 ), by 
the structure of Iq(Q) = Iele, one has: 

for q = 2, h(Iq(Q)) = min{n, 111} 
for q = 4, h(Iq(Q)) = min{n, 111} - 1 
for q = 6, h(Iq(Q)) = min{n, m} - 2 

for q = 2f, h(/q(Q)) = min{n, m} - e + 1. 

b) Let Iq(Q) = Iele+1 + le+ 1 le, q = 2e + 1. The set of the minimal 
generators of lq (9) derives from all the paths in 9, {X;1 • • • Xi[Yj 1 • • • Yit+l' 
X; 1 ···X;e+iyh ... yit I 1 ~ i1 < ··· < ie+1 ~ n, l ~}I<···< 
}e :,;; m}. Being le (resp. Ie+1) generated by all the monomials of degree e 
(resp. e + l) in the variables X1, ... , X 11 and Je (resp. Je+1) generated by 
all the monomials of degree e (resp. e + J) in the variables Y1, ... , Y111 , by 
the structure of Iq(Q) = Iele+1 + Ie+1le, one has: 

for q = 3, h(Iq(Q)) = min{n, m} 
for q = 5, h(Iq(Q)) = min{n, m} - 1 
for q = 7, h(Iq(Q)) = min{n, m} - 2 

for q == 2e + 1, h(Iq(Q)) = min{n, m} - e + l. 
, 

In conclusion, for q ~ min{n + m, 2n + 1, 2m + l}; 

h(Iq(Q)) = min{n, m} - e + l, 
with e = ! if q is even and e = 9- if q is odd. □ 
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Lemma 2.2. Let S = K[X 1, ... , X 11 ; Y1, ... , Y111 ] and Iq((J) CS. Then: 

Proof 

a) Let Iq(9) = IeJe, q = U. 
For q = 2, Iq((J) = /111 = ({XrYs J 1 ::;; r:,;; n, I ::;; s:,;; m}). The 
maximum number of the variables which is required to generate the 
linear quotients of the ideal /2(9) is given by the subset {X; 1 ; ••• , X;,,_ 1 ; 

Yi
1

, ••• , Yim-I} CS. Hence q (h(Q)) = n + m - 2. 
For q = 4, Iq(9) = hh and the maxiinum number of the variables which 
is required to generate theiinear quotients is given by the subset of variables 

{X;i' ... , X;,,_2 ; Yii, ... , Yim- 2 }. Hence q (14(())) = n + m - 4. 
For q = 6, Iq ((J) = l3h and the maximum number of the variables which 
is required to generate the linear quotients is given by the subset cif variables 
{X; 1, ••• , X;,,_3 ; YiP ... , YJm_ 3 }. Hence q (h((J)) = n + m - 6. 
Thus, when-1q((J) = Icle, the maximum number of the variables 
which is required to generate the linear quotients is given by the subset 
{X;

1
, ••• , X;

11
_c; Yh, . . ·., Y1

111
-e} CS. Hence q (/u((J)) = n + m - U. 

b) Let Iq((J) = lelc+1· + lc+ilc, q = 2e + I. 
Forq = 3, Iq((J) = l1h + hl1 = ({XrYsYa, XrXpYs JI :::; r < p:,;; n, 
1 ::;; s < a' ::;; m}). The maximum number of the variables which 
is required to generate the linear quotients of /3(()) is given by 
the subset of variables {X;1, ••• , X;,,_ 1 ; Yi1,.,., Yi

111
_ 2 ) C S or by 

{X;p---,X;
11

_ 2 ;Y11, ... ,Yim-i} C S. In any case it follows that 
q (h((J)) = 11 + m - 3. 
For q = 5, Iq((J) = 12h + l3}i and the maximum number of the variables 
which is required to generate the linear quotients is given by the subset 
{X; 1 , ••• ,X;

11
_ 2 ;Yi I , ••• ,Y1

111
_ 3 } or by {X; I ,._..,X;

11
_ 3 ;Y1 I , ••• ,Yi

111
_ 2 }._ 

In any case it foliows that q (/s((J)) = i1 + m - 5. 
For q = 7, Iq(9) = 1)]4 + /4h and the maximum number of the 
variables which is required to generate the linear quotients is given by the 
subset of variables {X; 1 , ••• , X;,,_ 3 ; Yi1 , ••• , Yi

111
_ 4 } or by {X;i, ... , X;,,_4 ; 

YJ1> ... , Yi
111

_ 3 ). In any case it follows that q (h((J)) = n + m - 7. 
Thus, when Iq((J) = Iclc+1 + Ie+ile, the maximum number of the 

variables which is required to generate the linear quotients is given by 
the subset of variables {X; 1 , ••• , X;,,_t; Yi

1
, ••• , Yim-c-i} C S or by 

{X;1 , ••• , X;
11
_c_ 1 ; Y1

1
, ••• , Yim-cl C S. In any case it follows that 

q('2e+1C9))=n+m-2C-I. · 
Inconclusion,q (Jq((J)) = n+m-q,forq:,;; min{n+m, 2n+l, 2m+l}. 

□ 
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' Theorem 2.2. Let S = K[X1, ... , X 11 ; Y1, ... , Y111 ] and Iq(Q) c R. Then: 

1) dims(S/Iq(Q)) = n + m - min{n, m} + e - 1, 

where e = 1" if q is even and e = ~ if q is odd. 
2) pd5 (S/Iq(9)) = n +m - q + 1. 
3) depth5 (S/Iq(9)) = q - 1. 
4) reg5 ( S / I q (9)) = 1. 

Proof 

1) One has dims(S/Iq(Q)) = dimsS - h(Iq(Q)) (see [4]). Hence, by 
Lemma 2.1, dims(S/ Iq(Q)) = n + m - min{n, m} + e - l, where e = 1 
if q is even and e = q;J if q is odd. 

2) The length of the minimal free resolution of S / Iq (9) over S is equal to 
q(Iq(Q)) + 1 ([6], Corollary 1.6). Then pd5 (S / Iq(Q)) = n + m - q + l. 

3) As a consequence of 2), by Auslander-Buchsbaum formula, one has 
depth5 (S/ Iq(Q)) = n +m -pd5 (S/ Iq(Q)) = n +m - (n +m -q +I)= 
q -1. 

4) Iq(Q) has a linear resolution, then reg5 (S/ Iq(Q)) = l. D 

Remark 2.3. The computation of the algebraic invariants for mixed product 
ideals was made in [11] using different techniques with respect to the above 
theorem. 

The following results explain conditions for which I q (<;}) is a 
Cohen-Macaulay ideal. 

Proposition 2.2. Let Iq((J) = Iele C S = K[X1, ... , Xn; Y1, ... , Ym], 
q = 2t. Iq(Q) is Cohen Macaulay if and only (fe = n + m - min{n, m}. 

Proof By Theorem 2.2 one has dims(S/ Iq((J)) = n + m - min{n, m}+ 
t - land depth5(S/ Iq((J)) = q - l. Iq(Q) is Cohen Macaulay if and only if 
dims(S/ Iq(9)) = depth5 (S/ Iq(Q)). Hence the equality holds if and only if 
n + 111 - min{n, 111} + e - l = q - l, q = 2t-¢? 2e = n + m - min{n, m}+ 
e-¢?t=n+m-min{n,m}. □ 

Proposition 2.3. Let Iq(Q) = Iele+1 + Ie+ile c S = K[X1, ... , Xn; 
Yi, ... , Y111 ], q = 2t + l. Iq(Q) is Cohen Macaulay if and only if 
e = e = n + m - min{n, m} - 1. 

Proof By Theorem 2.2 one has dims(S/Iq(Q)) = n + m - min{n, m}+ 
e - land depth5 (S/ Iq(Q)) = q-=- 1. Iq(Q)-is Cohen Macaulay if and only if 
dims(S/Iq(Q)) = depth5 (S/Iq(Q)). Hence the equality holds ifandonly-·if­
n+m-min{n, 111}+£-l = q-1,q = 2e+I-¢? 2e = n+m-min{n, m}+e-I 
{::} e = n +m -min{n,m}-1. D 
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3. Ideals of vertex covers for the generalized graph ideals of a 
complete bipartite graph 

Definition 3.1. Let g be a graph on vertex set [n] = {v1, ... , v 11 }. A subset 
C of [n] is said a generalized vertex cover of g if every path of g is incident 
with one vertex in C. C is said minimal if no proper subset of C )s a 
generalized vertex cover of 9. 

Remark 3.1. There exists a one to one correspondence between generalized 
vertex covers of g and prime ideals of lq(Q) that preserves the minimality. 
In fact, i-o is a minimal prime ideal of lq(Q) if and only if i-o = (C), for 
some minimal generalized ve1tex cover C of <;;. Thus Iq(Q) has primary 
decomposition (C1) n •·· n (Cr), where C1, ... ,cr· are the minimal 
generalized vertex covers of<;;. 

'-

An algebraic aspect linked to the generalized ve1tex covers of g is the notion 
of ideal of vertex covers for the generalized graph ideals of g. 

Definition 3.2. The ideal of vertex covers for the generalized graph ideal 
Iq(Q), denoted by (/q)c(Q), is the ideal of R ge,ierated by all monomials 

· X; 1 • • • X;, such that (X; 1 , ••• , X;,.) is an associated prime ideal of lq(Q). 

Hence (/q)c(Q) = ({X; 1 • • • X;, I {v; 1 , ••• , v;,} is a generalized vertex cover 
of Q}) and the minimal generators of (/q )c(Q) correspond to the minimal 
generalized vertex covers. 

The following generalizes to (I q )c (Q) the characterization of the ideal of 
vertex covers for the edge ideal of any graph g given in [17]. 

Property 3.1. (/q)c(Q) = ( n{l/;1,Zi1 , ... ,IJjq} path ing(X;1, ... 'X;q))' V q ~ 2. 

·From now on, let S = K[X1, ... , X 11 ; Yi, ... , Y111 ], n ~ m, be the 
polynomial ring in two sets of variables over a field K and K 11 , 111 be a complete 
bipartite graph on vertex set [n + 111] = {x,, ... , x11 , YI, ... , Ym }. 

Let Iq(K 11 , 111 ) denote the generalized graph ideals of K 11 , 111 , where 
2 ~ q ~ min{n + m, 2m + 1}. It is known that the generators of lq(K11 , 111 ) 

coITespond to the (q - 1 )-paths in K 11 , 111 • 

In [7] the author illustrates a method for determining in degree q the number 
of (q - 1)-paths in any connected graph Q, by using only the incidence matrix 
of<;}. The composition of such paths and the generators of the generalized 
graph ideals lq (Q) are also studied. 

Let (Iq)c(K,,, 111 ) indicate the ideal of vertex covers of Iq(K 11 , 111 ), V q. 
The following result establishes the structure of (/q )c (K11 , 111 ). 

Theorem 3.1. Let (/q)c(K,,, 111 ) be the ideal of vertex covers for the 
generalized graph ideal associated to the complete bi)Jartite graph K 11 , 111 , 

n ~ 111, 2 ~ q ~ min{n + m, 2m + I}. It is structured as follows: 
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X1 · · · X 11 -p+I, ... , Xp · · · X11 , Y1 · · · Ym-p+I, ... , Yp · · · Y111 , 

X1 · · · X 11 -pY1 · · · Ym-p, ... , X1 · · · Xn-pYp+I · · · Ym, ...... , 

Xp+I · · · XnYJ · · · Y111-p, ... , Xp+I · · · X 11 Yp+I · · · Y111; 

if q = 2m + 1, (/q)c(lCn 111) has ( 111
1) + (11 ) generators, , m- 1n .,,.,.. 

Proof Let's calculate for any q ;;:: 2 the generators and their number for the 
ideals of vertex covers (/q)c(JC11 ,111 ). 

Its generators are X1 · · · X11 , Y1 · · · Y111 ; their number is(~)+ G) = 2. 

Its generators are X 1 • · · X 11 , Y1 · · · Ym, 

X1 ···Xn-1Y1 ···Ym-1,X1 ···Xn-1Y1 ···Y111-2Ym,··•,X1 ···X11 -1Y2···Ym, 

X1 · · · Xn-2X11Y1 · · · Ym-1, X1 · · · X11-2XnY1 · · · Ym-2Y111, ... , 

X1 ... Xn-2X11Y2 ... Ym, .................. , 

their number is(~) + ('3) + G) ('~) = 2 + nm. 

- (/4)c(/C11,111) 

Its generators are: 

X1 · · · Xn-1, X1 · · · X11-2X11, X1 · · · X11-3Xn-1Xn, ... , X2 · · · X11, 

Y1 ... Y111-1: Y1 ... Y111-2Y~~ Y1-- .- :-y,~:::_3-y~.=.-1r~,;~ . . --:-, Y2 ,rs Y,,i; 

their number is m + (7) = n + m. 

- Us)c(/C11,111) 
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Its generators are: 

X1 · · · Xn-1, Xj · · ·X11-2X11, ... , X1X3 · · · X11 , X2 · · · X,1, 

Y1 · · · Y,ii-1, Y1 · · · Ym-2Ym, ... , Y1 Y3 · · · Ym, Y2 · · · Ym, 

X1 · · · X11-2Y1 · · · Ym-2, X1 · · · Xn-2Y1 · · · Ym-3Ym-1, ... , X1 · · · X11-2Y3 · · · Y111, 

X1 · · · Xn-3Xn-1 Y1 · · · Ym-2, X1 · · · X11-3Xn-i Y1 · · · Ym-3Ym-l, ... , 

. . . 
X3 · · · X11Y1: · · Y11i-2, X3 · · · XnY1 · · · Ym-3Ym-I, ... , X3 · · · XnY3 · · · Ym; 

their number is(';)+('~)+ m (';) = 11 +m+ 11 c11212 111 c11;-12. 

Its generators are: 

X1 · · · Xn-2_, X1 · · · Xn-3Xn-l, X1 · · · X11-3X11, ... , X3 · · · Xn, 

Y1 · · · Y111 -2, Y1 · · · Ym-3 Y111 -1, Y1 · · · Y111 _3 Y111 , ••• , Y3 · · · Y111 ; 

their number is (;) + (';) = 11 (11
21) 111

(
1
;-

12. 

Its generators are: 

X1 · · · Xn-2, X1 · · · Xn-3Xn-l, ... , X2X4 · · · Xn, X-3 · · · X11, 

Y1 · · · Ym-2, Y1 · · · Ym-3Ym-l, ... , Y2Y4 · · · Ym, Y3 · · · Ym, 

X1 ···X11-JY1 ···Ym-3,X1 ···Xn-3Y1 ···Ym-4Ym-2,···,X1 ···X11-JY4···Y111, 

X1 · · · Xn-4Xn-2Y1 · · · Ym-3, X1 · · · Xn-4X11-2Y1 · · · Ym-4Ym-2, ... , 

X 1 · · · Xn-4Xn-2Y4 · · · Ym, .................. , 

X4 · · · X11Y1 · · · Ym-3, X4 · · · X11Y1 · · · Ym-4Ym-2, ... , X4 · · · XnY4 · · · Ym; 

theirnumberis G)+(';)+(~) ('~) = 11 (11
2

1) + 111
(

11;-n+ 11 (11-lg(n-2) m(m-JJ(m-2); 

and so on, until q = min{n + m, 2m +I}. It results: 

• min{n. + m, 2m + l} = 11 + m if and only if 11 = m, hence q = 2m. 
(

V' . . ( 111 ) (hm)c t\.,11,111) = (X1, ... , X 111 , Yi, ... , Ym); 1t has 2 
111

_ 1 generators. 
• min{n + m, 2m +I} = 2m + I if and only if n - m ~ I (if n = m + I then 

2m + I = n + m); hence q = 2m + I. 
(/im+J)c(K11 ,111 ) = (X1 · · · X11 - 111 , ••• , Xm+I · · · X11 -1X11, Yi, ... , Y111); it 
has Gn': 1) + (;~) generators. 0 
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