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Abstract. Let § = K[Xy,...,X,;Y1,..., Y] be the polynomial
ring in two sets of variables over a field K. Using the notion of linear
quotients, we investigate significative classes of graph ideals of S that
have a linear resolution, namely the generalized graph ideals, in order to
compute standard algebraic invariants of S modulo such ideals. Moreover
we are able to determine the structure of the ideals of vertex covers for
such generalized graph ideals.
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— ’ Introduction

The present work fécuses.on the study of monomial ideals of mixed products
that arise from a simple graph, the §o~ called .generalized graph ideals ([16]).
They are generated by square-free monomials of fixed: finite. deoree q =2

be a graph on vertex set [n] = {v1, ..., v,} and R = K[X,, ..., X,,] be the
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polynomiai ring over a field K, with one variable X; for each vertex v;. The
generalized graph ideal of G is the ideal of R generated by all the square-free
monomials X, - -- Xi, of degree g such that the vertex Vi is adjacent to Vi1
forall 1 < j < g — 1.1t is denoted by I,(G). The monomial generators of
14(G) correspond to the (g — 1)-paths of G.

In [17] there are various resuits about monomial ideals of R associated
to the edges of G. Some problems arise when we will study good properties
for monomial ideals and for some algebras related to such ideals ([8,9,14]).
In the last years, monomial ideals of the polynomial ring § = K[X}, ..., X,;
Y1,...,Yy] in two sets of variables over a field K were considered and
some algebraic properties of them were studied ([12,14]). We are interested
to investigate bipartite graphs because these graphs determine monomial
ideals in S. More precisely, we say that a graph G is bipartite if its vertex set
[ 4+ m] can be partitioned into two disjoint subsets (1] = {x1,..., x,} and
[m] = {»1, ..., ym} such that any edge joins a vertex of [n] with a vertex of
[m]. In [16], the ideals of mixed products that describe the generalized graph
~ ideals of complete bipartite graphs are considered. In particular, when G is a
bipartite complete graph, itis: 1,(G) = IpJey1 + e Jeifg = €41, £ € N¥,
and 1,(G) = I;Joif g = 2¢, £ € N*, where I, (resp. J¢) is the monomial ideal
of .S generated by all the square-free monomials of degree £ in the variables
Xy1,..., X, (resp. Yy, ..., Yy). In [15], the authors study the Rees algebra of
I4(G) and they examine when I,(G) is of linear type.

In this note we prove that the generalized graph ideals /,(G) of a compete
bipartite graph G have linear resolution, by using the technique of studying
the linear quotients of such ideals as previously employed in [10,12].
We also give formulae for standard invariants of S//,(G) such as dimension,
projective dimension, depth, and Castelnuovo-Mumford regularity. Moreover,
we establish under what conditions 1,(G) is Cohen-Macaulay. Lastly, we
determine the generators of the ideals of vertex covers of 1,(G).

The paper is organized in the following way. Section 1 contains notations
and terminology on graphs and algebraic theory associated with them. In
section 2, according to results that characterize monomial ideals with linear
quotients ([3,5" it is proved that the ideals /,(G) have linear resolution. As
a consequence of this, together with the computation of integers connected to
14(G), we are able to determine standard algebraic invariants of such ideals.
Some of these will be useful for showing in what cases the ideals /,(G)
are Cohen-Macaulay. In section 3 we consider algebraic aspects linked to a
generalization of the notion of minimal vertex covers that holds for complete
bipartite graphs. Let / C § be a monomial ideal. The ideal of (minimal) covers
of a monomial ideal I of S, denoted by I, is generated by all monomials
Xi - Xy Yj, - --Yj, such that (X;,,..., X;,,Y;,,...,Y}) is an associated
(minimal) prime of /. The ideal of vertex covers of I,(G) is denoted by
(Ig)c(G). When G is a complete bipartite graph, the structure of (/;)c(G) is
fully described.
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1. Preliminary notions

Let G be a graph with vertices vy, ...,v,. Let R = K[Xj,..., X,;] be the
polynomial ring over a field K with one variable X; for each vertex v;.

Definition 1.1.  The generalized graph ideal of G, denoted by 1,(G), is the
ideal of K{X1, .. ., X generated by all the square-free monomials X;, - - - X;

tq
of degree q such that the vertex v;; is adjacent tov;,, forall1 < j < g — 1.

Example 1.1. Let G be the graph on vertex set {vy, ..., 05}
0
v2
v
vy Y3

I3(G) = (X1X3Xs5, X2X5X3, X4X2X5),14(G) = (X1X3X5X2, X3X5X2X4).

Definition 1.2. A path oflength g — 1 in G, or (¢ — 1)-path, is an alternating
sequence of vertices and edges {v1,zy,02,...,0g-1,2g—1,0q}, Wwhere
zi = {vi, vi11} is the edge joining v; and v; 1, and all the vertices are distinct.

Remark 1.1. Two paths are equal if they consist of the same elements,
independently of the order.

Remark 1.2. In general /,(G) is associated to the paths of lengthg — 1 in G.
More precisely, the generators of 1,(G) correspond to the (g — 1)-paths in G.

Remark 1.3. For g = 2, I,(G) is the generalized graph ideal generated by
square-free monomials of degree 2 corresponding to the edges of G. I,(G) is
the so-called edge ideal of G, and simply denoted by 7(G).
d
We are interested to consider generalized graph ideals associated to bipartite
graphs.

" Definition. 1.3, A graph G is said to be bipartite if its vertex set [n +.m]
can be partmoned nte=two-. disjoint subsets [n] = {x1,...,x,} and
[m) = {¥1, ..., Ym} such that every edge of G joins-{n] -W—il-h.,[ﬁ?_]-

Definition 1.4. A graph G is complete bipartite if it is bipartite and contains
every edge that joins [n] with [m). Such a graph is denoted by KC,, ;.
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If G is a complete bipartite graph, the generalized graph ideal 1,(G) is a
well determined ideal of mixed products.

Let S = K[X1,...,Xn; Y1,..., Y] be the polynomial ring over a field K
in two sets of variables with deg(X;) = deg(¥Y;) = 1,foralli = 1,...,n,
J =1,...,m.Given the non negative integers k, r, s, t such thatk +r = s +1,

in [16] the authors define the square-free monomial ideals of S:
L=1IJ + Ier,

where I; (resp. J,) is the monomial ideal of S generated by all the square-free
monomials of degree k (resp. r) in the variables X1, ..., X, (resp. Y1, ..., Yin).

These ideals are called ideals of mixed products. Settmg Ip = Jo = S the
following cases occur: “

1) L =1+ Ji, withl <k < inf{n, m}
D L=nLJ,withl<k<n 1<r<m
3 L=LJ, 4+ L J—,withl <k<n,2<r<m
H L=J +1J;,withr =s+1,1<s<n, 1 r<m t>1
S L=5L], +LJ,withk+r=s+¢t,1<k<n1<r <m.
Example 1.2.
1) § = K[X;, X2, X3; Y1, Y2l
L = hJ; = (X1X2Y1, X1 X3Y1, X2 X311, X1 X2Y2, X1 X3Y2, X2X3Y2).
2) § = K[X1, X2; Y1, Y2, V3]
L= 1J+hJi = (X1Y1Y2, X1 1Y3, X1Y2Y3, Xo¥1 12, Xo Y113, XoYo Y3,
X1 X2Y1, X1X2Y2, X1 X2Y3).
Let G be a complete bipartite graph with vertices x1, ..., Xn; Y1, ..., Ym-
The generalized graph ideal ,(G) is the ideal of S generated by all the

square-free monomials of degree g corresponding to the (g — 1)-paths of G.
More precisely, /,(G) is an ideal of mixed products of the form:

Iedeg1 + leprJe if g=20+1,£ € N*

14(G) =
! [Im if g =26,¢eN*

Example 1.3. Let G = K,,, the complete bipartite graph on vertex set
{x1,x2; y1, y2}

X1 X2

1 ¥2
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In § = K[X,, X>3; Y1, Y] one has:

13(G) = (X1 Y2, Xo Yo, X1 X2 Y1, X1 XoYa) = o + b Jy
14(G) = (X1Y1X2Y2) = I Js.

The generators of I3(G) correspond to the paths of length 2.
The generator of /4(G) corresponds to the path of length 3.

2. Linear resolutions and invariants

Throughout this section, G will be a complete bipartite graph Knm.

Here we illustrate some algebraic aspects of the generalized graph ideal
L = 1,(G) generated in degree g > 2 which arises from the paths of G.

We prove that this ideal admits linear quotients and has a linear resolution.

We also compute standard algebraic invariants for /,(G) such as dimension,
projective dimension, depth, Castelnuovo-Mumford regularity; and finally, we
establish suitable conditions for which /,(G) is a Cohen-Macaulay ideal.

Let S = K[X1,...,Xu;Y1,...,Y,]. For a monomial ideal L C § we
denote by G (L) its unique set of minimal generators.

Definition 2.1. A monomial ideal L C S is said to have linear quotients
if there is an ordering ui, ..., u; of monomials belonging to G(L) such
that the colon ideal (uy;...,uj-1) : (uj) is generated by a subset of
{(X1,.... X Y1,..., Yphforall j=2,...,t

Remark 2.1. A monomial ideal L of S generated in one degree that has
linear quotients admits a linear resolution ([3], Lemma 4.1).

Foramonomialideal L of S having linear quotients with respect to the ordering
ui,...,u; of the monomials of G(L), let q;(L) denote the number of the
variables which is required to generate the ideal (ug, ..., u ;1) : (u;), and set
q (L) = maxagjgr q;(L).

Remark 2.2. The integer q (L) is independent of the choice of the ordering
of the generators that gives linear quotients ([6]).

In order to study the property of the ideal L of S of having linear quotients,
we premise the following

: Definition 2.2 (cfr. [13]).. A monomial ideal L of S generated in one degree
is called bi- polymatrmdal zf the followmg condition is. sansﬁed

forallmonomialsu = X' - XaY, bi . yb ando = X7 CX Y] S

in G(L) and for each i wzrh a; > c¢; ork with by > d, one has j € {1 , n}
withaj <cjorl € {1,...,m}withb < d; such that Xju/X; € G(L) or
Yiu/Yr € G(L).
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Proposition 2.1.  The ideals 1,(G) are bi-polymatroidal ideals.
Proof.

a) Let 1,(G) = I¢J¢, g = 2£. The set of the minimal generators of Iq G) is
given by all the paths in G, namely {X;, --- X;, ¥, --- Y, |1 <ip <--- <
e Sm1< < <je<m)
Letu = X' Xiybrooybn o = x60 . xoy® oy € G(1,(6))
with 0 < @;,b; < 1,then X' ... X" € Ipand Y!' - ¥2" € J; such that
>ia ,+Z'" bj=gq. Thusneasilyfo]lowsbytheétructureofG(I,l )
that for eacht w1th a; > ¢; or k with by > di one has j with a; <cj orl
with by < dj such that X ju/X; € G(14(G)) or Yiu/Yi € G(1,(G)). ‘
b) Let 1,(G) = 1{J€+] +Ig+1Jg,q = 2{+1. The set of the minimal generators
of I; (g) is given by {X; ---XiyYj Y, Xi - Xig, Y,
Y | 1 Lipigs <dpyp 1,1 < Ji <+ < je € m}, corresponding
to all the paths in'g. -
Letu = X{' X,‘j"y”' SYEn = Xf' XYy e G(I1,(9))

with 0 < a,,b, < 1, then either X X € Ip and Y[ Y,f’,'" €

Jopr or X{' o X € ey and Y'Y € Jp such that Z, Lai +

2 i=1bj =g Thus it easﬂy follows by the structure of G(1,(G)) that for
eachz with a; > ¢; or k with by > di one has j with a; < c; or [ with
by < djsuchthat X ju/X; € G(14,(G)) or Yju/Yy € G(1,(G)). 0

Theorem 2.1.  The ideals 1,(G) have linear quoﬁents.

Proof. Let u € G(14(G)). Set N = (v € G(I,(G)) | v < u) with <
the lexicographical order on Xi,...,X,; Yy,..., Y, induced by X; >
X > -+ = X, = Y1 > 'Y, > .- > Y, Then we prove that
N :u = (v/GCD(u,v) | v € N) is generated by monomials of degree one,
that is a subset of {X), ..., Xu; Y1, ..., Yin}. Therefore we have to prove that
for all » < u there exists a variable of SinN :u that d1v1des v/GCD(u ).

Letu = X{' - X2 y) . yhmando = X9 - X5 Y™ v in G(1,(G)).
Since v < wu there exists an integer i w1th a > ¢ and ay = cy for
g

k =1,...,i — 1. Hence by definition of bi-polymatroidal ideal there exists
an integer j withc; > a; suchthat w = X ;(u/X;) € G(1,(G)). Sincei < j,
it follows that w € N and w = X j(u/X;) € G(1,(G)) implies wX; = X ju,
thatis X; € N : u. Since the j-th component of the vector exponent of
v/GCD(u, v) is given by ¢; — min{c;,a;} = ¢; —a; > 0, then X; divides
v/GCD(u, v) as required. If we suppose that ay = ¢ forall k = 1,...,n
bi >diand by =dyforalll =1,...,i —1,i € {1,...,m} then we obtain
Y; € N : uand Y; divides v /GCD(u, v). So the assertion follows. O

Corollary 2.1, The ideals 1,(G) have a linear resolution.
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Proof. The statement descends from Theorem 2.1 and Remark 2.1. O

We will now investigate standard algebraic invariants of S//,(G). Recall
the following

Definition 2.3. A vertex cover of 1,(G) is a subset W of {X1,..., Xy;
Y1,..., Y} such that each u € G(1,(9)) is divided by some variables of W.

Let h(1,(G)) denote the minimal cardinality of the vertex covers of I4(G).
Lemma 2.1. LerS =K[Xy,.... X 11,..., Yl and 1,(G) C S. Then:
h(14(G)) = min{n,m} — £+ 1,
where £ = % ifgisevenand { = % if q is odd.
Proof. '

a) Let 1,(G) = IpJ¢, g = 2¢. The set of minimal generators of /,(G) derives
from all the paths in G, {X; ---X; Y, -~ Y;, 11 <iy <--- <ig<n,
1 < j1i < - < je £ m}. Being Ig (resp. Jr) generated by all the
monomials of degree £ in the variables X1y, ..., X, (resp. Y1, ..., Yim), by
the structure of 1,(G) = I¢J;, one has:

for g = 2, h(14(G)) = min{n, m}
forg = 4, h(I,(G)) = min{n, m} — 1
forg = 6, h(1,(G)) = min{n, m} —2

forg =2¢, h(I;(G)) = min{n,m} — £ + L.

- b) Let 1,(G) = IpJev1 + e Je, g = 20 + 1. The set of the minimal
generators of I, (G) derives from all the paths in G, {X;, --- X;, Y, --- Y.,
Xil"'Xi£+1Yj Y TS < s <dppr 1,1 € < <
je < m}. Being I, (resp. Ip41) generated by all the monomials of degree ¢
(resp. £ + 1) in the variables Xy, ..., X, and J¢ (resp. Jg41) generated by -
all the monomials of degree ¢ (resp. £ + 1) in the variables Y1, ..., ¥,,, by

the structure of 1,(G) = I Jp41+ Izy1J¢, one has:

for g = 3, h(14(G)) = min{n, m}
for g =5, h(14(G)) = min{n, m} — 1
for g =7, h(1,(G)) = min{n, m} — 2

forg =20 +1, h(14(G)) = min{n,m} —{ + 1.
In conclusion, for ¢ < min{n + m, 2n +I71~, 2m + 1},
h(14(G)) = min{n,m} — €+ 1,

with € = % if g is even and € = 9;—1 if g is odd.



128 :  Maurizio Imbesi, et al.

Lemma2.2. LetS=K[Xy,...,Xu0; Y1,...,Yuland 1,(G) C S. Then:

Q@) =n+m—q.

Proof.
a) Let 1,(G) = IgJe, g = 2L,

b)

For g = 2, L@ =hJ1=UX,Ys|1<r<n,1<s <m}). The
maximum number of the variables which is required to generate the
linear quotients of the ideal 75(G) is given by the subset (X, ..., Xi,_,;
Yisoor, Yo} C S.Hence q (12(G)) =n+m — 2.

Forg =4, 1,(G) = IJ, and the maximum number of the variables which
is required to generate the linear quotients is given by the subset of variables
{X,’l ey X,'"_z; Yj], cees ij-z}' Hence q (14(9)) =n+m-—4.

For g = 6, 1,(G) = 13J3 and the maximum number of the variables which
is required to generate the linear quotients is given by the subset of variables
{Xiys - s Xin: Yy, oo, Y, 5} Hence  (I6(G)) = n+m — 6.

Thus, when 1,(G) = IJ;, the maximum number of the variables
which is required to generate the linear quotients is given by the subset
{(Xiis s Xinps Vs ooy Yju_o} © S.Hence q (I¢(G)) = n +m — 2¢.
Let] (g) =TIedeyi + IpsrJde, g =20 + 1.

Forq =3,1, (g) =hh+ L) =X Y Y, X, XY, |1 <r <p<

1 € s < 07 £ m}). The maximum number of the variables whlch
is required to generate the linear quotients of /3(G) is given by -
the subset of variables {X;,...,X; _,;Y;,.+.,Yj,_,} C S or by
{(Xi,. s Xi_: YooY} C S, In any case it follows that
qg(I3(@) =n+m-—3.

For g = 5, 1,(G) = I,J3+ I3J; and the maximum number of the variables
which is required to generate the linear quotients is given by the subset
{X,'], ey X,'"_z; le, ey ij_3} or by {X,'], Sres X,'”_3; Yj], ey ij—z}',
In any case it follows that q (/5(G)) = it +m — 5.

For g = 7, ]q(g) = I3J4 + I4J3 and the maximum number of the
variables which is required to generate the linear quotients is given by the
subset of variables {X;,, ..., X;, _5; Yj,, ..., Yj,_dorby{X;, ..., Xi 4
Yiis o --» Yj._3). In any case it follows that q (17(G)) =n +m — 7.

Thus, when 1,(G) = I¢Jey1 + Ipy1Je, the maximum number of the
variables which is required to generate the linear quotients is given by
the subset of variables {X,,, cos Xin_es Yooy Yo} € S or by
{Xips s Xiyers Yo -5 Yjed €S- In any case it follows that

q (Iap41 (g)) =n+m-20-1.

Inconclusion, q (I, (G)) = n+m—g, forq min{n+m, 2n+1, 2m+1}.

a
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Theorem 2.2. Let S = K[Xy,..., X Y1,..., Yol and 1,(G) C R. Then:

1) dimg(S/1,(G)) =n+m —min{n,m} + € — 1,
where { = 1 if q is even and € = g;—l if q is odd.

2) pdg(S/1,(G) = n+m—q -+ 1.

3) depthg(S/14(G)) =g — L

4) regs(§/15(9)) = 1.

Proof.

1) One has dimg(S/1;(G)) = dimsS — h(1,(G)) (see [4]). Hence, by
Lemma 2.1, dimg(S/1,(G)) = n +m — min{n, m} + £ — 1, where £ = %
if gisevenand ¢ = % if g is odd.

2) The length of the minimal free resolution of S/I,(G) over S is equal to
q(14(G)) + 1 (6], Corollary 1.6). Then pds(S/I,(G)) =n+m — g+ 1.

3) As a consequence of 2), by Auslander-Buchsbaum formula, one has
depthg(S/1,(G)) = n+m =pdg(S/1,(G) =n+m—(n+m—qg+1) =
g —1.

4) 1,(G) has a linear resolution, then regg(S/1,(G)) = 1. o

Remark 2.3. The computation of the algebraic invariants for mixed product
ideals was made in [11] using different techniques with respect to the above
theorem.

The following results explain conditions for which 1,(G) is a
Cohen-Macaulay ideal. :

Proposition 2.2. Let 1,(G) = I;J;p € S = K[X1,..., Xu; V1, ..., Yn],
q = 2£. 1,(G) is Cohen Macaulay if and only if { = n +m — min{n, m}.

Proof. By Theorem 2.2 one has dims(S//,(G)) = n + m — min{n, m}+
¢ —~ 1 and depthg(S/1,(G)) = g — 1. I,(G) is Cohen Macaulay if and only if
dimg(S/1,(G)) = depthg(S/1,(G)). Hence the equality holds if and only if
n+m-—min{fn,m}+{—-1=q—-1,9g =20 & 2{ =n+m —min{n, m}+

{ & € =n+ m—min{n, m}. . o
Proposition 2.3. Let Iq(g) = IpJey1 + I+1Je C § =K[X1,...,Xn;
Yi,..o, Yul, g = 2 + 1. 1,(G) is Cohen Macaulay if and only if

f=¢=n+m—min{n,m} — L.

Proof By Theorem 2.2, one has dimg(S/1,(G)) = n + m — min{n, m}+
¢ — 1 and depthg(S/1,(9)) = g=1. 14(G) is Cohen Macaulay if and only if
dims(S/14(G)) = depthg(S/1,(G)). Hence the equality holds if and only-if -
n+m-min{n, m}+€—1=qg—1,q9 = 2{+1 & 2{ = n+m—min{n, m}+<{—1
&S £ =n+m—min{n,m} — 1. O
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3. Ideals of vertex covers for the generalized graph ideals of a
' complete bipartite graph

Definition 3.1. Let G be a graph on vertex set [n] = {v1, ..., 0,}. A subset
C of [n] is said a generalized vertex cover of G if every path of G is incident
with one vertex in C. C is said minimal if no proper subset of. C Jis a
generalized vertex cover of G.

Remark 3.1. There exists a one to one correspondence between generalized
vertex covers of G and prime ideals of 1,(G) that preserves the minimality.
In fact, g is a minimal prime ideal of /,(G) if and only if o = (C), for
some minimal generalized vertex cover C of G. Thus I,(G) has primary
decomposition (C;) N --- N (C,), where Cy,...,C, are the minimal
generalized vertex covers of G. ' .

An algebraic aspect linked to the generalized vertex covers of G is the notion
of ideal of vertex covers for the generalized graph ideals of G.

Definition 3.2, The ideal of vertex covers for the generalized graph ideal
1,(G), denoted by (15)c(G), is the ideal of R generated by all monomials
. X,~]' -+ Xi, such that (X;,, ..., Xi,) is an associated prime ideal of 1,(G).

Hence (/4)c(G) = ({Xi, --- Xi, | {vi,..., i} is a generalized vertex cover
of G}) and the minimal generators of (I4)c(G) correspond to the minimal
generalized vertex covers. . .

The following generalizes to (/;).(G) the characterization of the ideal of
vertex coyérs for the edge ideal 6f any graph G given in [17].

) Pi'operty 3.1 (]q)C(g) = (m{l)ily?.il +-->Dig } path inQ(Xil LA Xitl))’ Vq 2 2.

"From now on, let § = K[Xy,...,X;Y1,...,Yn], n = m, be the
polynomial ring in two sets of variables over a field K and KC,, ,, be a complete
bipartite graph on vertex set [n +m] = {xy, ..., x4, Y1, ..., Ym}-

Let I,(K,,m) denote the generalized graph ideals of K, ,, where
2 < g < min{n + m, 2m + 1}. It is known that the generators of 1, (K, m)
correspond to the (g — 1)-paths in .

. In[7] the author illustrates a method for determining in degree g the number
of (¢ — 1)-paths in any connected graph G, by using only the incidence matrix
of G. The composition of such paths and the generators of the generalized
graph ideals /,(G) are also studied.

Let (1) (K, ) indicate the ideal of vertex covers of 1,(KCp.im), ¥V g.
The following result establishes the structure of (/4)c (Ky m)-

Theorem 3.1. Let (lq)C(IC,,,,,,) be the ideal of vertex covers for the
generalized graph ideal associated to the complete bipartite graph Ky m,
n>zm?2 < qg<min{n+m,2m+ 1}. It is structured as follows:
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~ ifg =2p, (Iq)c(’Cn,m) has (plil) + (p'f]) generators,
X "'Xn—p—i-la~'-aXp“'Xn,Yl"'Ym_p+],...,Yp~--Ym;
— ifg=2p+1, p#Em, (I;)c(Kn,m) has (p”_]) + (p"i]) + (")('") generators,

X].--Xn_p+1,...,X Xn,Y] m p+15--~,Yp"'Ym,
Xl X}l ])Yl m p5~~-aX1 "'X}1—pr+] ""Y,n, ...... 5
Xp+] "‘XnYI"'Ym—pwn:Xp-H"'Xan+1"'Ym§

— ifg=2m+1, (I5)c(Kn,m) has (,," ) + (,,) generators,
Xl"‘Xn—ma---,Xm-}-l"'Xn,Y]a--"Ym-

Proof. Let’s calculate for any g > 2 the generators and their number for the
ideals of vertex covers (1) c(Kp m).

- (IZ)C(’Cn,m)
Its generators are X - - - Xp, Y1 - - - Yppr; their number is (8) + (’3) =2
- (13)c(lcn,m)

Its generators are X - -- X, Y1 - -+ Vi,

Xy Xy Y1 Y1, Xy - Xn1 Y1 YpeaYm, .. X1 Xyt Yoo - Yo,
X1 XpaXpYr - Y1, Xy - Xp—2Xp Y1 YooYy, ...,

X1 Xna2XpYoo Yy ,

Xo- - Xy Y1 Yuo1, X2 XuY1- Y2V, ... Xo - Xn Yoo Yo

their number is (g) + ('3) + (']’) (’;’) =24 nm.

- (14)c(lcn,m)

Its generators are:
X1 Xn 1, Xl Xn—ZXm X1 Xn—3Xn—an, ceey X2" o Xn:
Y1 Yoo t, Y1 Yoy 0V, Yo T Y Y Zi Y 0, Y o Yy —

m

their number is (1) + (T) =n + m.
- (IS)C(’Cn,m)
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Its generators are:

Xj~~X,,_1,X1‘-~~X,1_2Xn,...,X1X3---X,,,X'2-~-X,,.,___‘

Y- Y1, Y1 - Yo 2Ym,--.,Y1Y3 “Ym, Y2 Y,

X] .. .Xn_zyl e Ym—27 Xl . "Xn—ZY] ‘e Ym—3Ym—la . -,Xl .X"_2Y3 .
Xy Xp3Xu_1Y;- -'Y,,, 2, X1+ Xn-3Xn-1Y) o YmeaYmet1, ...,

X1 Xus3Xno1 Y3 Yoiyoronooennnnnn. :
X3Y"'XnY1"'Yni—2,X3"‘XnY]"‘YmA—?:Ym—.l,'H,'Xv?)'"X11Y3"‘Ym;

their number is ('l’) +(N+G)G)=n+m+ ’l(-”z’—ll’"("%l
- (IG)C(ICH,m)
Its generators are:
X1 Xo2, X1 Xn3Xn—1, X1 X3 X, o, X300 Xy
Y] e Ym—2, Yl tre Ym—3Ym—], Y] te Ym—SYm, cevs Y3 o 'Ym§ '
their number is (3) + () = n(n—1) mn=1) "é_l )

2/ = 2
- (17)6 (ICI;,IT1)

Its generators are:

X1+ Xn—2, X1 Xn3Xn-1,..., X2Xa---Xp, X3+ X,
Y1---Ym-2, 1) "'Ym—3Ym—1,---’Y2Y4 Ym, Y3 m,

va L]

Xy---Xp-3Y) "‘Ym—3,Xl "‘Xn—3YI “‘Ym—4Ym-2,---;XI "'X11—3Y4"'Ym>

X1 Xp—aXp2Yi- - Yu-3, X1+ - Xp—s4Xn2¥1 -~ "Ym—4ym—2, ces
Xy XpaXn2Yqg-- Yo, oo s
Xg- XYy Y3, Xg - Xn¥1 - YigetVima, ..., Xg- - Xy Yo Y

theirnumberis (I21)+(I;1)+(l:;) (1:1;1) - n(nz—l) + m(n12—l)+ n(n—lg(n—Z) m(m-lé)(m—2);

and so on, until g = min{n 4 m, 2m 4+ 1}. It results:

e min{n +m,2m + 1} = n + m if and only if n = m, hence ¢ = 2m.
(om)e(Fnym) = (X1, ..., Xm, Y1, ..., Yin); it has 2(, " ) generators.

e minfn+m,2m+1} =2m+1ifandonlyifn —m =1 (1f n =m+1 then
2m+1—n-l—m)'henceq=2m+1. A
(12m+1)c(’Cn m) - (Xl Xa— Mmoo Xm+1 o Xp1 Xn, Y1, Ym); it
has (,",) + (n) generators. 4 O

n—1
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