On generalized graph ideals of complete bipartite graphs

Maurizio Imbesi¹, Monica La Barbiera² and Paola Lea Staglianò³

¹University of Messina, Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, Viale F. Stagno d'Alcontres 31, 1-98166 Messina, Italy e-mail: imbesim@unime.it

²University of Catania, Department of Industrial Engineering, Viale A. Doria 6, Building 3, I-95125 Catania, Italy e-mail: monicalb@libero.it

³University of Palermo, Department of Civil, Environmental, Aerospace, Material Engineering, Viale delle Scienze, Building 8, I-90128 Palermo, Italy e-mail: paolalea.stagliano@unipa.it

Communicated by: R. Sujatha

Received: September 3, 2015

Abstract. Let $S = K[X_1, ..., X_n; Y_1, ..., Y_m]$ be the polynomial ring in two sets of variables over a field K. Using the notion of linear quotients, we investigate significative classes of graph ideals of S that have a linear resolution, namely the generalized graph ideals, in order to compute standard algebraic invariants of S modulo such ideals. Moreover we are able to determine the structure of the ideals of vertex covers for such generalized graph ideals.

AMS 2010 Subject Classification. Primary 05C25; Secondary 05E40, 13C15.

Introduction

The present work focuses on the study of monomial ideals of mixed products that arise from a simple graph, the so-called generalized graph ideals ([16]). They are generated by square-free monomials of fixed finite degree $q \ge 2$ associated to the paths of length q-1 of the graph, the (q-1)-paths. Let \mathcal{G} be a graph on vertex set $[n] = \{v_1, \ldots, v_n\}$ and $R = K[X_1, \ldots, X_n]$ be the

polynomial ring over a field K, with one variable X_i for each vertex v_i . The generalized graph ideal of \mathcal{G} is the ideal of R generated by all the square-free monomials $X_{i_1} \cdots X_{i_q}$ of degree q such that the vertex v_{i_j} is adjacent to $v_{i_{j+1}}$, for all $1 \leq j \leq q-1$. It is denoted by $I_q(\mathcal{G})$. The monomial generators of $I_q(\mathcal{G})$ correspond to the (q-1)-paths of \mathcal{G} .

In [17] there are various results about monomial ideals of R associated to the edges of \mathcal{G} . Some problems arise when we will study good properties for monomial ideals and for some algebras related to such ideals ([8,9,14]). In the last years, monomial ideals of the polynomial ring $S = K[X_1, \ldots, X_n]$; Y_1, \ldots, Y_m] in two sets of variables over a field K were considered and some algebraic properties of them were studied ([12,14]). We are interested to investigate bipartite graphs because these graphs determine monomial ideals in S. More precisely, we say that a graph \mathcal{G} is bipartite if its vertex set [n+m] can be partitioned into two disjoint subsets $[n] = \{x_1, \ldots, x_n\}$ and $[m] = \{y_1, \dots, y_m\}$ such that any edge joins a vertex of [n] with a vertex of [m]. In [16], the ideals of mixed products that describe the generalized graph ideals of complete bipartite graphs are considered. In particular, when \mathcal{G} is a bipartite complete graph, it is: $I_q(\mathcal{G}) = I_\ell J_{\ell+1} + I_{\ell+1} J_\ell$ if $q = \ell + 1, \ell \in \mathbb{N}^*$, and $I_q(\mathcal{G}) = I_\ell J_\ell$ if $q = 2\ell, \ell \in \mathbb{N}^*$, where I_ℓ (resp. J_ℓ) is the monomial ideal of S generated by all the square-free monomials of degree ℓ in the variables X_1, \ldots, X_n (resp. Y_1, \ldots, Y_m). In [15], the authors study the Rees algebra of $I_q(\mathcal{G})$ and they examine when $I_q(\mathcal{G})$ is of linear type.

In this note we prove that the generalized graph ideals $I_q(\mathcal{G})$ of a compete bipartite graph \mathcal{G} have linear resolution, by using the technique of studying the linear quotients of such ideals as previously employed in [10,12]. We also give formulae for standard invariants of $S/I_q(\mathcal{G})$ such as dimension, projective dimension, depth, and Castelnuovo-Mumford regularity. Moreover, we establish under what conditions $I_q(\mathcal{G})$ is Cohen-Macaulay. Lastly, we determine the generators of the ideals of vertex covers of $I_q(\mathcal{G})$.

The paper is organized in the following way. Section 1 contains notations and terminology on graphs and algebraic theory associated with them. In section 2, according to results that characterize monomial ideals with linear quotients ([3,5] it is proved that the ideals $I_q(\mathcal{G})$ have linear resolution. As a consequence of this, together with the computation of integers connected to $I_q(\mathcal{G})$, we are able to determine standard algebraic invariants of such ideals. Some of these will be useful for showing in what cases the ideals $I_q(\mathcal{G})$ are Cohen-Macaulay. In section 3 we consider algebraic aspects linked to a generalization of the notion of minimal vertex covers that holds for complete bipartite graphs. Let $I \subset S$ be a monomial ideal. The ideal of (minimal) covers of a monomial ideal I of S, denoted by I_c , is generated by all monomials $X_{i_1} \cdots X_{i_k} Y_{j_1} \cdots Y_{j_l}$ such that $(X_{i_1}, \ldots, X_{i_k}, Y_{j_1}, \ldots, Y_{j_l})$ is an associated (minimal) prime of I. The ideal of vertex covers of $I_q(\mathcal{G})$ is denoted by $(I_q)_c(\mathcal{G})$. When \mathcal{G} is a complete bipartite graph, the structure of $(I_q)_c(\mathcal{G})$ is fully described.

1. Preliminary notions

Let \mathcal{G} be a graph with vertices v_1, \ldots, v_n . Let $R = K[X_1, \ldots, X_n]$ be the polynomial ring over a field K with one variable X_i for each vertex v_i .

Definition 1.1. The generalized graph ideal of \mathcal{G} , denoted by $I_q(\mathcal{G})$, is the ideal of $K[X_1, \ldots, X_n]$ generated by all the square-free monomials $X_{i_1} \cdots X_{i_q}$ of degree q such that the vertex v_{i_j} is adjacent to $v_{i_{j+1}}$ for all $1 \leq j \leq q-1$.

Example 1.1. Let \mathcal{G} be the graph on vertex set $\{v_1, \ldots, v_5\}$

 $I_3(\mathcal{G}) = (X_1 X_3 X_5, X_2 X_5 X_3, X_4 X_2 X_5), I_4(\mathcal{G}) = (X_1 X_3 X_5 X_2, X_3 X_5 X_2 X_4).$

Definition 1.2. A path of length q-1 in \mathcal{G} , or (q-1)-path, is an alternating sequence of vertices and edges $\{v_1, z_1, v_2, \dots, v_{q-1}, z_{q-1}, v_q\}$, where $z_i = \{v_i, v_{i+1}\}$ is the edge joining v_i and v_{i+1} , and all the vertices are distinct.

Remark 1.1. Two paths are equal if they consist of the same elements, independently of the order.

Remark 1.2. In general $I_q(\mathcal{G})$ is associated to the paths of length q-1 in \mathcal{G} . More precisely, the generators of $I_q(\mathcal{G})$ correspond to the (q-1)-paths in \mathcal{G} .

Remark 1.3. For q = 2, $I_2(\mathcal{G})$ is the generalized graph ideal generated by square-free monomials of degree 2 corresponding to the edges of \mathcal{G} . $I_2(\mathcal{G})$ is the so-called *edge ideal* of \mathcal{G} , and simply denoted by $I(\mathcal{G})$.

We are interested to consider generalized graph ideals associated to bipartite graphs.

Definition 1.3. A graph \mathcal{G} is said to be bipartite if its vertex set [n+m] can be partitioned into two disjoint subsets $[n] = \{x_1, \ldots, x_n\}$ and $[m] = \{y_1, \ldots, y_m\}$ such that every edge of \mathcal{G} joins [n] with [m].

Definition 1.4. A graph G is complete bipartite if it is bipartite and contains every edge that joins [n] with [m]. Such a graph is denoted by $K_{n,m}$.

If \mathcal{G} is a complete bipartite graph, the generalized graph ideal $I_q(\mathcal{G})$ is a well determined ideal of mixed products.

Let $S = K[X_1, ..., X_n; Y_1, ..., Y_m]$ be the polynomial ring over a field K in two sets of variables with $\deg(X_i) = \deg(Y_j) = 1$, for all i = 1, ..., n, j = 1, ..., m. Given the non negative integers k, r, s, t such that k + r = s + t, in [16] the authors define the square-free monomial ideals of S:

$$L = I_k J_r + I_s J_t,$$

where I_k (resp. J_r) is the monomial ideal of S generated by all the square-free monomials of degree k (resp. r) in the variables X_1, \ldots, X_n (resp. Y_1, \ldots, Y_m).

These ideals are called *ideals of mixed products*. Setting $I_0 = J_0 = S$, the following cases occur:

- 1) $L = I_k + J_k$, with $1 \le k \le \inf\{n, m\}$
- 2) $L = I_k J_r$, with $1 \le k \le n$, $1 \le r \le m$
- 3) $L = I_k J_r + I_{k+1} J_{r-1}$, with $1 \le k \le n, 2 \le r \le m$
- 4) $L = J_r + I_s J_t$, with r = s + t, $1 \le s \le n$, $1 \le r \le m$, $t \ge 1$
- 5) $L = I_k J_r + I_s J_t$, with k + r = s + t, $1 \le k \le n$, $1 \le r \le m$.

Example 1.2.

- 1) $S = K[X_1, X_2, X_3; Y_1, Y_2]$ $L = I_2 J_1 = (X_1 X_2 Y_1, X_1 X_3 Y_1, X_2 X_3 Y_1, X_1 X_2 Y_2, X_1 X_3 Y_2, X_2 X_3 Y_2).$
- 2) $S = K[X_1, X_2; Y_1, Y_2, Y_3]$ $L = I_1 J_2 + I_2 J_1 = (X_1 Y_1 Y_2, X_1 Y_1 Y_3, X_1 Y_2 Y_3, X_2 Y_1 Y_2, X_2 Y_1 Y_3, X_2 Y_2 Y_3, X_1 X_2 Y_1, X_1 X_2 Y_2, X_1 X_2 Y_3).$

Let \mathcal{G} be a complete bipartite graph with vertices $x_1, \ldots, x_n; y_1, \ldots, y_m$.

The generalized graph ideal $I_q(\mathcal{G})$ is the ideal of S generated by all the square-free monomials of degree q corresponding to the (q-1)-paths of \mathcal{G} .

More precisely, $I_q(\mathcal{G})$ is an ideal of mixed products of the form:

$$I_q(\mathcal{G}) = \begin{cases} I_{\ell} J_{\ell+1} + I_{\ell+1} J_{\ell} & \text{if } q = 2\ell+1, \ell \in \mathbb{N}^* \\ I_{\ell} J_{\ell} & \text{if } q = 2\ell, \ell \in \mathbb{N}^* \end{cases}$$

Example 1.3. Let $\mathcal{G} = \mathcal{K}_{2,2}$, the complete bipartite graph on vertex set $\{x_1, x_2; y_1, y_2\}$

In $S = K[X_1, X_2; Y_1, Y_2]$ one has:

$$I_3(\mathcal{G}) = (X_1Y_1Y_2, X_2Y_1Y_2, X_1X_2Y_1, X_1X_2Y_2) = I_1J_2 + I_2J_1$$

 $I_4(\mathcal{G}) = (X_1Y_1X_2Y_2) = I_2J_2.$

The generators of $I_3(\mathcal{G})$ correspond to the paths of length $\tilde{2}$. The generator of $I_4(\mathcal{G})$ corresponds to the path of length 3.

2. Linear resolutions and invariants

Throughout this section, \mathcal{G} will be a complete bipartite graph $\mathcal{K}_{n,m}$.

Here we illustrate some algebraic aspects of the generalized graph ideal $L = I_a(\mathcal{G})$ generated in degree $q \ge 2$ which arises from the paths of \mathcal{G} .

We prove that this ideal admits linear quotients and has a linear resolution.

We also compute standard algebraic invariants for $I_q(\mathcal{G})$ such as dimension, projective dimension, depth, Castelnuovo-Mumford regularity; and finally, we establish suitable conditions for which $I_q(\mathcal{G})$ is a Cohen-Macaulay ideal.

Let $S = K[X_1, ..., X_n; Y_1, ..., Y_m]$. For a monomial ideal $L \subset S$ we denote by G(L) its unique set of minimal generators.

Definition 2.1. A monomial ideal $L \subset S$ is said to have linear quotients if there is an ordering u_1, \ldots, u_t of monomials belonging to G(L) such that the colon ideal $(u_1, \ldots, u_{j-1}) : (u_j)$ is generated by a subset of $\{X_1, \ldots, X_n; Y_1, \ldots, Y_m\}$, for all $j = 2, \ldots, t$.

Remark 2.1. A monomial ideal L of S generated in one degree that has linear quotients admits a linear resolution ([3], Lemma 4.1).

For a monomial ideal L of S having linear quotients with respect to the ordering u_1, \ldots, u_t of the monomials of G(L), let $\mathfrak{q}_j(L)$ denote the number of the variables which is required to generate the ideal $(u_1, \ldots, u_{j-1}) : (u_j)$, and set $\mathfrak{q}(L) = \max_{2 \le j \le t} \mathfrak{q}_j(L)$.

Remark 2.2. The integer q(L) is independent of the choice of the ordering of the generators that gives linear quotients ([6]).

In order to study the property of the ideal L of S of having linear quotients, we premise the following

Definition 2.2 (cfr. [13]). A monomial ideal L of S generated in one degree is called bi-polymatroidal if the following condition is satisfied: for all monomials $u = X_1^{a_1} \cdots X_n^{a_n} Y_1^{b_1} \cdots Y_m^{b_m}$ and $v = X_1^{c_1} \cdots X_n^{c_n} Y_1^{d_1} \cdots Y_m^{d_m}$ in G(L) and for each i with $a_i > c_i$ or k with $b_k > d_k$ one has $j \in \{1, \ldots, n\}$ with $a_j < c_j$ or $l \in \{1, \ldots, m\}$ with $b_l < d_l$ such that $X_j u / X_i \in G(L)$ or $Y_l u / Y_k \in G(L)$.

Proposition 2.1. The ideals $I_q(G)$ are bi-polymatroidal ideals.

Proof.

- a) Let $I_q(\mathcal{G}) = I_\ell J_\ell$, $q = 2\ell$. The set of the minimal generators of $I_q(\mathcal{G})$ is given by all the paths in \mathcal{G} , namely $\{X_{i_1} \cdots X_{i_\ell} Y_{j_1} \cdots Y_{j_\ell} \mid 1 \leqslant i_1 < \cdots < i_\ell \leqslant n, 1 \leqslant j_1 < \cdots < j_\ell \leqslant m\}$. Let $u = X_1^{a_1} \cdots X_n^{a_n} Y_1^{b_1} \cdots Y_m^{b_m}$, $v = X_1^{c_1} \cdots X_n^{c_n} Y_1^{d_1} \cdots Y_m^{d_m} \in G(I_q(\mathcal{G}))$ with $0 \leqslant a_i, b_j \leqslant 1$, then $X_1^{a_1} \cdots X_n^{a_n} \in I_\ell$ and $Y_1^{b_1} \cdots Y_m^{b_m} \in J_\ell$ such that $\sum_{i=1}^n a_i + \sum_{j=1}^m b_j = q$. Thus it easily follows by the structure of $G(I_q(\mathcal{G}))$ that for each i with $a_i > c_i$ or k with $b_k > d_k$ one has j with $a_j < c_j$ or l with $b_l < d_l$ such that $X_j u / X_i \in G(I_q(\mathcal{G}))$ or $Y_l u / Y_k \in G(I_q(\mathcal{G}))$.
- b) Let $I_q(\mathcal{G}) = I_\ell J_{\ell+1} + I_{\ell+1} J_\ell$, $q = 2\ell+1$. The set of the minimal generators of $I_q(\mathcal{G})$ is given by $\{X_{i_1} \cdots X_{i_\ell} Y_{j_1} \cdots Y_{j_{\ell+1}}, X_{i_1} \cdots X_{i_{\ell+1}} Y_{j_1} \cdots Y_{j_\ell} \mid 1 \leqslant i_1 < \cdots < i_{\ell+1} \leqslant n, 1 \leqslant j_1 < \cdots < j_\ell \leqslant m\}$, corresponding to all the paths in \mathcal{G} .

 Let $u = X_1^{a_1} \cdots X_n^{a_n} Y_1^{b_1} \cdots Y_m^{b_m}$, $v = X_1^{c_1} \cdots X_n^{c_n} Y_1^{d_1} \cdots Y_m^{d_m} \in G(I_q(\mathcal{G}))$ with $0 \leqslant a_i, b_j \leqslant 1$, then either $X_1^{a_1} \cdots X_n^{a_n} \in I_\ell$ and $Y_1^{b_1} \cdots Y_m^{b_m} \in J_{\ell+1}$ or $X_1^{a_1} \cdots X_n^{a_n} \in I_{\ell+1}$ and $Y_1^{b_1} \cdots Y_m^{b_m} \in J_\ell$ such that $\sum_{i=1}^n a_i + \sum_{j=1}^m b_j = q$. Thus it easily follows by the structure of $G(I_q(\mathcal{G}))$ that for each i with $a_i > c_i$ or k with $b_k > d_k$ one has j with $a_j < c_j$ or l with $b_l < d_l$ such that $X_j u / X_i \in G(I_q(\mathcal{G}))$ or $Y_l u / Y_k \in G(I_q(\mathcal{G}))$.

Theorem 2.1. The ideals $I_q(\mathcal{G})$ have linear quotients.

Proof. Let $u \in G(I_q(\mathcal{G}))$. Set $N = (v \in G(I_q(\mathcal{G})) \mid v \prec u)$ with \prec the lexicographical order on $X_1, \ldots, X_n; Y_1, \ldots, Y_m$ induced by $X_1 \succ$ $X_2 \rightarrow \cdots \rightarrow X_n \rightarrow Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_m$. Then we prove that $N: u = (v/GCD(u, v) \mid v \in N)$ is generated by monomials of degree one, that is a subset of $\{X_1, \ldots, X_n; Y_1, \ldots, Y_m\}$. Therefore we have to prove that for all $v \prec u$ there exists a variable of S in N: u that divides v/GCD(u, v). Let $u = X_1^{a_1} \cdots X_n^{a_n} Y_1^{b_1} \cdots Y_m^{b_m}$ and $v = X_1^{c_1} \cdots X_n^{c_n} Y_1^{d_1} \cdots Y_m^{d_m}$ in $G(I_q(\mathcal{G}))$. Since $v \prec u$ there exists an integer i with $a_i > c_i$ and $a_k = c_k$ for $k = 1, \dots, i - 1$. Hence by definition of bi-polymatroidal ideal there exists an integer j with $c_i > a_i$ such that $w = X_i(u/X_i) \in G(I_q(\mathcal{G}))$. Since i < j, it follows that $w \in N$ and $w = X_j(u/X_i) \in G(I_q(\mathcal{G}))$ implies $wX_i = X_ju$, that is $X_j \in N$: u. Since the j-th component of the vector exponent of v/GCD(u, v) is given by $c_i - min\{c_i, a_i\} = c_i - a_i > 0$, then X_i divides v/GCD(u, v) as required. If we suppose that $a_k = c_k$ for all k = 1, ..., n, $b_i > d_i$ and $b_l = d_l$ for all $l = 1, ..., i - 1, i \in \{1, ..., m\}$ then we obtain $Y_i \in N : u$ and Y_i divides v/GCD(u, v). So the assertion follows.

Corollary 2.1. The ideals $I_a(\mathcal{G})$ have a linear resolution.

Proof. The statement descends from Theorem 2.1 and Remark 2.1.

We will now investigate standard algebraic invariants of $S/I_q(\mathcal{G})$. Recall the following

Definition 2.3. A vertex cover of $I_q(\mathcal{G})$ is a subset W of $\{X_1, \ldots, X_n; Y_1, \ldots, Y_m\}$ such that each $u \in G(I_q(\mathcal{G}))$ is divided by some variables of W.

Let $h(I_q(\mathcal{G}))$ denote the minimal cardinality of the vertex covers of $I_q(\mathcal{G})$.

Lemma 2.1. Let $S = K[X_1, ..., X_n; Y_1, ..., Y_m]$ and $I_q(\mathcal{G}) \subset S$. Then:

$$h(I_a(\mathcal{G})) = \min\{n, m\} - \ell + 1,$$

where $\ell = \frac{q}{2}$ if q is even and $\ell = \frac{q-1}{2}$ if q is odd.

Proof.

a) Let $I_q(\mathcal{G}) = I_\ell J_\ell$, $q = 2\ell$. The set of minimal generators of $I_q(\mathcal{G})$ derives from all the paths in \mathcal{G} , $\{X_{i_1} \cdots X_{i_\ell} Y_{j_1} \cdots Y_{j_\ell} \mid 1 \leqslant i_1 < \cdots < i_\ell \leqslant n$, $1 \leqslant j_1 < \cdots < j_\ell \leqslant m\}$. Being I_ℓ (resp. J_ℓ) generated by all the monomials of degree ℓ in the variables X_1, \ldots, X_n (resp. Y_1, \ldots, Y_m), by the structure of $I_q(\mathcal{G}) = I_\ell J_\ell$, one has:

b) Let $I_q(\mathcal{G}) = I_\ell J_{\ell+1} + I_{\ell+1} J_\ell$, $q = 2\ell + 1$. The set of the minimal generators of $I_q(\mathcal{G})$ derives from all the paths in \mathcal{G} , $\{X_{i_1} \cdots X_{i_\ell} Y_{j_1} \cdots Y_{j_{\ell+1}}, X_{i_1} \cdots X_{i_{\ell+1}} Y_{j_1} \cdots Y_{j_\ell} \mid 1 \leqslant i_1 < \cdots < i_{\ell+1} \leqslant n, 1 \leqslant j_1 < \cdots < j_\ell \leqslant m\}$. Being I_ℓ (resp. $I_{\ell+1}$) generated by all the monomials of degree ℓ (resp. $\ell+1$) in the variables X_1, \ldots, X_n and J_ℓ (resp. $J_{\ell+1}$) generated by all the monomials of degree ℓ (resp. $\ell+1$) in the variables Y_1, \ldots, Y_m , by the structure of $I_q(\mathcal{G}) = I_\ell J_{\ell+1} + I_{\ell+1} J_\ell$, one has:

for $q = 2\ell + 1$, $h(I_q(G)) = \min\{n, m\} - \ell + 1$.

In conclusion, for
$$q \leq \min\{n+m, 2n+1, 2m+1\}$$
,

$$h(I_q(\mathcal{G})) = \min\{n, m\} - \ell + 1,$$

with $\ell = \frac{q}{2}$ if q is even and $\ell = \frac{q-1}{2}$ if q is odd.

Lemma 2.2. Let $S = K[X_1, ..., X_n; Y_1, ..., Y_m]$ and $I_q(\mathcal{G}) \subset S$. Then:

$$q(I_q(\mathcal{G})) = n + m - q.$$

Proof.

a) Let $I_q(\mathcal{G}) = I_\ell J_\ell$, $q = 2\ell$.

For q=2, $I_q(\mathcal{G})=I_1J_1=(\{X_rY_s\mid 1\leqslant r\leqslant n, 1\leqslant s\leqslant m\})$. The maximum number of the variables which is required to generate the linear quotients of the ideal $I_2(\mathcal{G})$ is given by the subset $\{X_{i_1},\ldots,X_{i_{n-1}};Y_{i_1},\ldots,Y_{i_{m-1}}\}\subset S$. Hence $\mathfrak{q}(I_2(\mathcal{G}))=n+m-2$.

For q = 4, $I_q(\mathcal{G}) = I_2 J_2$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\{X_{i_1}, \ldots, X_{i_{n-2}}; Y_{j_1}, \ldots, Y_{j_{m-2}}\}$. Hence $\mathfrak{q}(I_4(\mathcal{G})) = n + m - 4$.

For q = 6, $I_q(\mathcal{G}) = I_3 J_3$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\{X_{i_1}, \ldots, X_{i_{n-3}}; Y_{j_1}, \ldots, Y_{j_{m-3}}\}$. Hence $\mathfrak{q}(I_6(\mathcal{G})) = n + m - 6$.

Thus, when $J_q(\mathcal{G}) = I_\ell J_\ell$, the maximum number of the variables which is required to generate the linear quotients is given by the subset $\{X_{i_1}, \ldots, X_{i_{n-\ell}}; Y_{j_1}, \ldots, Y_{j_{m-\ell}}\} \subset S$. Hence $\mathfrak{q}(I_{2\ell}(\mathcal{G})) = n + m - 2\ell$.

b) Let $I_q(\mathcal{G}) = I_{\ell} J_{\ell+1} + I_{\ell+1} J_{\ell}, q = 2\ell + 1$.

For q=3, $I_q(\mathcal{G})=I_1J_2+I_2J_1=(\{X_rY_sY_\sigma,X_rX_\rho Y_s\mid 1\leqslant r<\rho\leqslant n,\ 1\leqslant s<\sigma'\leqslant m\})$. The maximum number of the variables which is required to generate the linear quotients of $I_3(\mathcal{G})$ is given by the subset of variables $\{X_{i_1},\ldots,X_{i_{n-1}};Y_{j_1},\ldots,Y_{j_{m-2}}\}\subset S$ or by $\{X_{i_1},\ldots,X_{i_{n-2}};Y_{j_1},\ldots,Y_{j_{m-1}}\}\subset S$. In any case it follows that $\mathfrak{q}(I_3(\mathcal{G}))=n+m-3$.

For q = 5, $I_q(\mathcal{G}) = I_2 J_3 + I_3 J_2$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset $\{X_{i_1}, \ldots, X_{i_{n-2}}; Y_{j_1}, \ldots, Y_{j_{m-3}}\}$ or by $\{X_{i_1}, \ldots, X_{i_{n-3}}; Y_{j_1}, \ldots, Y_{j_{m-2}}\}$. In any case it follows that $\mathfrak{q}(I_5(\mathcal{G})) = n + m - 5$.

For q=7, $I_q(\mathcal{G})=I_3J_4+I_4J_3$ and the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\{X_{i_1},\ldots,X_{i_{n-3}};Y_{j_1},\ldots,Y_{j_{m-4}}\}$ or by $\{X_{i_1},\ldots,X_{i_{n-4}};Y_{j_1},\ldots,Y_{j_{m-3}}\}$. In any case it follows that $\mathfrak{q}(I_7(\mathcal{G}))=n+m-7$.

Thus, when $I_q(\mathcal{G}) = I_\ell J_{\ell+1} + I_{\ell+1} J_\ell$, the maximum number of the variables which is required to generate the linear quotients is given by the subset of variables $\{X_{i_1}, \ldots, X_{i_{n-\ell}}, Y_{j_1}, \ldots, Y_{j_{m-\ell-1}}\} \subset S$ or by $\{X_{i_1}, \ldots, X_{i_{n-\ell-1}}, Y_{j_1}, \ldots, Y_{j_{m-\ell}}\} \subset S$. In any case it follows that $\mathfrak{q}(J_{2\ell+1}(\mathcal{G})) = n + m - 2\ell - 1$.

In conclusion, $q(I_a(\mathcal{G})) = n+m-q$, for $q \leq \min\{n+m, 2n+1, 2m+1\}$.

Theorem 2.2. Let $S = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$ and $I_q(\mathcal{G}) \subset R$. Then:

- 1) $\dim_S(S/I_q(\mathcal{G})) = n + m \min\{n, m\} + \ell 1$, where $\ell = \frac{q}{2}$ if q is even and $\ell = \frac{q-1}{2}$ if q is odd.
- 2) $\operatorname{pd}_{S}(S/I_{q}(\tilde{\mathcal{G}})) = n + m q + 1.$
- 3) depth_S($S/I_q(\mathcal{G})$) = q-1.
- 4) $\operatorname{reg}_{S}(S/I_{q}(\mathcal{G})) = 1.$

Proof.

- 1) One has $\dim_S(S/I_q(\mathcal{G})) = \dim_S S h(I_q(\mathcal{G}))$ (see [4]). Hence, by Lemma 2.1, $\dim_S(S/I_q(\mathcal{G})) = n + m \min\{n, m\} + \ell 1$, where $\ell = \frac{q}{2}$ if q is even and $\ell = \frac{q-1}{2}$ if q is odd.
- 2) The length of the minimal free resolution of $S/I_q(\mathcal{G})$ over S is equal to $\mathfrak{q}(I_q(\mathcal{G}))+1$ ([6], Corollary 1.6). Then $\mathrm{pd}_S(S/I_q(\mathcal{G}))=n+m-q+1$.
- 3) As a consequence of 2), by Auslander-Buchsbaum formula, one has $\operatorname{depth}_S(S/I_q(\mathcal{G})) = n + m \operatorname{pd}_S(S/I_q(\mathcal{G})) = n + m (n + m q + 1) = q 1$.
- 4) $I_q(\mathcal{G})$ has a linear resolution, then $\operatorname{reg}_S(S/I_q(\mathcal{G})) = 1$.

Remark 2.3. The computation of the algebraic invariants for mixed product ideals was made in [11] using different techniques with respect to the above theorem.

The following results explain conditions for which $I_q(\mathcal{G})$ is a Cohen-Macaulay ideal.

Proposition 2.2. Let $I_q(\mathcal{G}) = I_\ell J_\ell \subset S = K[X_1, ..., X_n; Y_1, ..., Y_m],$ $q = 2\ell$. $I_q(\mathcal{G})$ is Cohen Macaulay if and only if $\ell = n + m - \min\{n, m\}$.

Proof. By Theorem 2.2 one has $\dim_S(S/I_q(\mathcal{G})) = n + m - \min\{n, m\} + \ell - 1$ and $\operatorname{depth}_S(S/I_q(\mathcal{G})) = q - 1$. $I_q(\mathcal{G})$ is Cohen Macaulay if and only if $\dim_S(S/I_q(\mathcal{G})) = \operatorname{depth}_S(S/I_q(\mathcal{G}))$. Hence the equality holds if and only if $n + m - \min\{n, m\} + \ell - 1 = q - 1, q = 2\ell \Leftrightarrow 2\ell = n + m - \min\{n, m\} + \ell \Leftrightarrow \ell = n + m - \min\{n, m\}$.

Proposition 2.3. Let $I_q(\mathcal{G}) = I_\ell J_{\ell+1} + I_{\ell+1} J_\ell \subset S = K[X_1, \dots, X_n; Y_1, \dots, Y_m], q = 2\ell + 1$. $I_q(\mathcal{G})$ is Cohen Macaulay if and only if $\ell = \ell = n + m - \min\{n, m\} - 1$.

Proof. By Theorem 2.2 one has $\dim_S(S/I_q(\mathcal{G})) = n + m - \min\{n, m\} + \ell - 1$ and $\operatorname{depth}_S(S/I_q(\mathcal{G})) = q - 1$. $I_q(\mathcal{G})$ is Cohen Macaulay if and only if $\dim_S(S/I_q(\mathcal{G})) = \operatorname{depth}_S(S/I_q(\mathcal{G}))$. Hence the equality holds if and only if $n+m-\min\{n, m\} + \ell - 1 = q-1, q = 2\ell + 1 \Leftrightarrow 2\ell = n+m-\min\{n, m\} + \ell - 1 \Leftrightarrow \ell = n + m - \min\{n, m\} - 1$.

3. Ideals of vertex covers for the generalized graph ideals of a complete bipartite graph

Definition 3.1. Let G be a graph on vertex set $[n] = \{v_1, \ldots, v_n\}$. A subset C of [n] is said a generalized vertex cover of G if every path of G is incident with one vertex in C. C is said minimal if no proper subset of C is a generalized vertex cover of G.

Remark 3.1. There exists a one to one correspondence between generalized vertex covers of \mathcal{G} and prime ideals of $I_q(\mathcal{G})$ that preserves the minimality. In fact, \wp is a minimal prime ideal of $I_q(\mathcal{G})$ if and only if $\wp = (C)$, for some minimal generalized vertex cover C of \mathcal{G} . Thus $I_q(\mathcal{G})$ has primary decomposition $(C_1) \cap \cdots \cap (C_r)$, where C_1, \ldots, C_r are the minimal generalized vertex covers of \mathcal{G} .

An algebraic aspect linked to the generalized vertex covers of \mathcal{G} is the notion of ideal of vertex covers for the generalized graph ideals of \mathcal{G} .

Definition 3.2. The ideal of vertex covers for the generalized graph ideal $I_q(\mathcal{G})$, denoted by $(I_q)_c(\mathcal{G})$, is the ideal of R generated by all monomials $X_{i_1} \cdots X_{i_r}$ such that $(X_{i_1}, \ldots, X_{i_r})$ is an associated prime ideal of $I_q(\mathcal{G})$.

Hence $(I_q)_c(\mathcal{G}) = (\{X_{i_1} \cdots X_{i_r} \mid \{v_{i_1}, \dots, v_{i_r}\} \text{ is a generalized vertex cover of } \mathcal{G}\})$ and the minimal generators of $(I_q)_c(\mathcal{G})$ correspond to the minimal generalized vertex covers.

The following generalizes to $(I_q)_c(\mathcal{G})$ the characterization of the ideal of vertex covers for the edge ideal of any graph \mathcal{G} given in [17].

Property 3.1.
$$(I_q)_c(\mathcal{G}) = (\bigcap_{\{v_{i_1}, z_{i_1}, ..., v_{i_q}\} \text{ path in } \mathcal{G}} (X_{i_1}, ..., X_{i_q})), \forall q \ge 2.$$

From now on, let $S = K[X_1, ..., X_n; Y_1, ..., Y_m], n \ge m$, be the polynomial ring in two sets of variables over a field K and $K_{n,m}$ be a complete bipartite graph on vertex set $[n + m] = \{x_1, ..., x_n, y_1, ..., y_m\}$.

Let $I_q(\mathcal{K}_{n,m})$ denote the generalized graph ideals of $\mathcal{K}_{n,m}$, where $2 \leq q \leq \min\{n+m, 2m+1\}$. It is known that the generators of $I_q(\mathcal{K}_{n,m})$ correspond to the (q-1)-paths in $\mathcal{K}_{n,m}$.

In [7] the author illustrates a method for determining in degree q the number of (q-1)-paths in any connected graph \mathcal{G} , by using only the incidence matrix of \mathcal{G} . The composition of such paths and the generators of the generalized graph ideals $I_q(\mathcal{G})$ are also studied.

Let $(I_q)_c(\hat{\mathcal{K}}_{n,m})$ indicate the ideal of vertex covers of $I_q(\mathcal{K}_{n,m})$, $\forall q$. The following result establishes the structure of $(I_q)_c(\mathcal{K}_{n,m})$.

Theorem 3.1. Let $(I_q)_c(\mathcal{K}_{n,m})$ be the ideal of vertex covers for the generalized graph ideal associated to the complete bipartite graph $\mathcal{K}_{n,m}$, $n \ge m, 2 \le q \le \min\{n+m, 2m+1\}$. It is structured as follows:

$$- if q = 2p, (I_q)_c(\mathcal{K}_{n,m}) has \binom{n}{p-1} + \binom{m}{p-1} generators,$$

$$X_1 \cdots X_{n-p+1}, \dots, X_p \cdots X_n, Y_1 \cdots Y_{m-p+1}, \dots, Y_p \cdots Y_m;$$

$$- if q = 2p + 1, p \neq m, (I_q)_c(\mathcal{K}_{n,m}) has \binom{n}{p-1} + \binom{m}{p-1} + \binom{n}{p} \binom{m}{p} generators,$$

$$X_1 \cdots X_{n-p+1}, \dots, X_p \cdots X_n, Y_1 \cdots Y_{m-p+1}, \dots, Y_p \cdots Y_m,$$

$$X_1 \cdots X_{n-p} Y_1 \cdots Y_{m-p}, \dots, X_1 \cdots X_{n-p} Y_{p+1} \cdots Y_m, \dots,$$

$$X_{p+1} \cdots X_n Y_1 \cdots Y_{m-p}, \dots, X_{p+1} \cdots X_n Y_{p+1} \cdots Y_m;$$

$$- if q = 2m + 1, (I_q)_c(\mathcal{K}_{n,m}) has \binom{m}{m-1} + \binom{n}{m} generators,$$

$$X_1 \cdots X_{n-m}, \dots, X_{m+1} \cdots X_n, Y_1, \dots, Y_m.$$

Proof. Let's calculate for any $q \ge 2$ the generators and their number for the ideals of vertex covers $(I_q)_c(\mathcal{K}_{n,m})$.

$$-(I_2)_c(\mathcal{K}_{n,m})$$

Its generators are $X_1 \cdots X_n$, $Y_1 \cdots Y_m$; their number is $\binom{n}{0} + \binom{m}{0} = 2$.

$$-(I_3)_c(\mathcal{K}_{n,m})$$

Its generators are $X_1 \cdots X_n, Y_1 \cdots Y_m$,

$$X_{1} \cdots X_{n-1} Y_{1} \cdots Y_{m-1}, X_{1} \cdots X_{n-1} Y_{1} \cdots Y_{m-2} Y_{m}, \dots, X_{1} \cdots X_{n-1} Y_{2} \cdots Y_{m}, X_{1} \cdots X_{n-2} X_{n} Y_{1} \cdots Y_{m-1}, X_{1} \cdots X_{n-2} X_{n} Y_{1} \cdots Y_{m-2} Y_{m}, \dots, X_{1} \cdots X_{n-2} X_{n} Y_{2} \cdots Y_{m}, \dots, X_{2} \cdots X_{n} Y_{1} \cdots Y_{m-1}, X_{2} \cdots X_{n} Y_{1} \cdots Y_{m-2} Y_{m}, \dots, X_{2} \cdots X_{n} Y_{2} \cdots Y_{m};$$

their number is $\binom{n}{0} + \binom{m}{0} + \binom{n}{1} \binom{m}{1} = 2 + nm$.

$$-(I_4)_c(\mathcal{K}_{n,m})$$

Its generators are:

$$X_1 \cdots X_{n-1}, X_1 \cdots X_{n-2} X_n, X_1 \cdots X_{n-3} X_{n-1} X_n, \dots, X_2 \cdots X_n,$$

 $Y_1 \cdots Y_{m-1}, Y_1 \cdots \overline{Y_{m-2} Y_m}, \overline{Y_1} \cdots \overline{Y_{m-3} Y_{m-1} Y_m}, \dots, \overline{Y_2} \cdots \overline{Y_m}; - \dots$

their number is $\binom{n}{1} + \binom{m}{1} = n + m$.

$$-(I_5)_c(\mathcal{K}_{n,m})$$

Its generators are:

$$X_{1} \cdots X_{n-1}, X_{1} \cdots X_{n-2} X_{n}, \dots, X_{1} X_{3} \cdots X_{n}, X_{2} \cdots X_{n}, \dots$$

$$Y_{1} \cdots Y_{m-1}, Y_{1} \cdots Y_{m-2} Y_{m}, \dots, Y_{1} Y_{3} \cdots Y_{m}, Y_{2} \cdots Y_{m}, \dots$$

$$X_{1} \cdots X_{n-2} Y_{1} \cdots Y_{m-2}, X_{1} \cdots X_{n-2} Y_{1} \cdots Y_{m-3} Y_{m-1}, \dots, X_{1} \cdots X_{n-2} Y_{3} \cdots Y_{m}, \dots$$

$$X_{1} \cdots X_{n-3} X_{n-1} Y_{1} \cdots Y_{m-2}, X_{1} \cdots X_{n-3} X_{n-1} Y_{1} \cdots Y_{m-3} Y_{m-1}, \dots, \dots$$

$$X_{1} \cdots X_{n-3} X_{n-1} Y_{3} \cdots Y_{m}, \dots \dots \dots, \dots$$

$$X_{3} \cdots X_{n} Y_{1} \cdots Y_{m-2}, X_{3} \cdots X_{n} Y_{1} \cdots Y_{m-3} Y_{m-1}, \dots, X_{3} \cdots X_{n} Y_{3} \cdots Y_{m}; \dots$$
their number is $\binom{n}{1} + \binom{m}{1} + \binom{n}{2} \binom{m}{2} = n + m + \frac{n(n-1)}{2} \frac{m(m-1)}{2}.$

Its generators are:

 $-(I_6)_c(\mathcal{K}_{n,m})$

$$X_1 \cdots X_{n-2}, X_1 \cdots X_{n-3} X_{n-1}, X_1 \cdots X_{n-3} X_n, \dots, X_3 \cdots X_n,$$

 $Y_1 \cdots Y_{m-2}, Y_1 \cdots Y_{m-3} Y_{m-1}, Y_1 \cdots Y_{m-3} Y_m, \dots, Y_3 \cdots Y_m;$

their number is
$$\binom{n}{2} + \binom{m}{2} = \frac{n(n-1)}{2} \frac{m(m-1)}{2}$$
.
- $(I_7)_c(\mathcal{K}_{n,m})$

Its generators are:

$$X_{1} \cdots X_{n-2}, X_{1} \cdots X_{n-3} X_{n-1}, \dots, X_{2} X_{4} \cdots X_{n}, X_{3} \cdots X_{n},$$

$$Y_{1} \cdots Y_{m-2}, Y_{1} \cdots Y_{m-3} Y_{m-1}, \dots, Y_{2} Y_{4} \cdots Y_{m}, Y_{3} \cdots Y_{m},$$

$$X_{1} \cdots X_{n-3} Y_{1} \cdots Y_{m-3}, X_{1} \cdots X_{n-3} Y_{1} \cdots Y_{m-4} Y_{m-2}, \dots, X_{1} \cdots X_{n-3} Y_{4} \cdots Y_{m},$$

$$X_{1} \cdots X_{n-4} X_{n-2} Y_{1} \cdots Y_{m-3}, X_{1} \cdots X_{n-4} X_{n-2} Y_{1} \cdots Y_{m-4} Y_{m-2}, \dots,$$

$$X_{1} \cdots X_{n-4} X_{n-2} Y_{4} \cdots Y_{m}, \dots,$$

$$X_{4} \cdots X_{n} Y_{1} \cdots Y_{m-3}, X_{4} \cdots X_{n} Y_{1} \cdots Y_{m-4} Y_{m-2}, \dots, X_{4} \cdots X_{n} Y_{4} \cdots Y_{m};$$
their number is $\binom{n}{2} + \binom{m}{2} + \binom{n}{3} \binom{m}{3} = \frac{n(n-1)}{2} + \frac{m(m-1)}{2} + \frac{n(n-1)(n-2)}{6} \frac{m(m-1)(m-2)}{6};$
and so on, until $q = \min\{n + m, 2m + 1\}$. It results:

- $\min\{n+m, 2m+1\} = n+m$ if and only if n=m, hence q=2m. $(I_{2m})_c(\mathcal{K}_{n,m}) = (X_1, \ldots, X_m, Y_1, \ldots, Y_m)$; it has $2\binom{m}{m-1}$ generators.
- $\min\{n+m, 2m+1\} = 2m+1$ if and only if $n-m \ge 1$ (if n=m+1 then 2m+1=n+m); hence q=2m+1. $(I_{2m+1})_c(\mathcal{K}_{n,m}) = (X_1 \cdots X_{n-m}, \dots, X_{m+1} \cdots X_{n-1}X_n, Y_1, \dots, Y_m)$; it has $\binom{m}{m-1} + \binom{n}{m}$ generators.

Acknowledgements

The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM, Italy.

References

- [1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39 (1993).
- [2] A. Conca and E. De Negri, *M*-sequences, graph ideal and ladder ideals of linear type, *J. of Algebra*, **211** (1999) 599–624.
- [3] A. Conca and J. Herzog, Castelnuovo-Mumford regularity of product of ideals, *Collect. Math.*, **54** (2003) 137–152.
- [4] J. Herzog and T. Hibi, Cohen-Macaulay polymatroidal ideals, *Eur. J. Comb.*, **27** (2006) no. 4, 513–517.
- [5] J. Herzog and T. Hibi, Monomial ideals, Springer, Graduate Texts in Mathematics, 260 (2011).
- [6] J. Herzog and Y. Takayama, Resolutions by mapping cones, *Homology, Homotopy Appl.*, 4 (2002) no. 2, 277–294.
- [7] M. Imbesi, Generators of generalized graph ideals, *Commun. to SIMAI Congress*, **2** (2007) 10 pages, doi: 10.1685/CSC06095.
- [8] M. Imbesi and M. La Barbiera, Invariants of symmetric algebras associated to graphs, *Turk. J. Math.*, **36** (2012) no. 3, 345–358.
- [9] M. Imbesi and M. La Barbiera, Theoretic properties of the symmetric algebra of edge ideals, *Bull. Belg. Math. Soc. Sim.*, 22 (2015) 331–342.
- [10] M. Imbesi and M. La Barbiera, On a class of vertex cover ideals, Anal. Stiint. Univ. Al. I. Cuza lasi (S.N) Mat., 61 (2015) no. 2, 319–326.
- [11] C. Ionescu and G. Rinaldo, Some algebraic invariants related to mixed product ideals, *Arch. Math.*, **91** (2008) 20–30.
- [12] La Barbiera, M., On a class of monomial ideals generated by s-sequences, *Math. Reports*, **12(62)** (2010) 201–216.
- [13] M. La Barbiera, On standard invariants of bi-polymatroidal ideals, Alg. Colloq., 21 (2014) no. 2, 267–274.
- [14] M. La Barbiera and G. Restuccia, Mixed product ideals generated by s-sequences, *Alg. Collog.* **18** (2011) no. 4, 553–570.
- [15] M. La Barbiera and P. L. Staglianò, Generalized graph ideals of linear type, Alg. Collog., 24 (2017) no. 1, 83-91.
- [16] G. Restuccia and R. H. Villarreal, On the normality of monomial ideals of mixed products, *Commun. in Algebra* **29** (2001) no. 8, 3571–3580.
- [17] R. H. Villarreal, Monomial algebras, M. Dekker Inc., New York, Pure and Appl. Math., 238 (2001).