Vanishing of Witten \boldsymbol{L}-functions

Jeongwon Min*
Department of Mathematics, Tokyo Institute of Techonology, Oo-okayama, Meguro-ku, Tokyo 152-8551, Japan
e-mail: min.j.aa@m.titech.ac.jp
Communicated by: Prof. Dinakar

Received: April 9, 2016

Abstract

We study the vanishing of Witten L-functions for symmetric groups S_{n} and $S U(2)$. In this paper we discuss the order of the Witten L-function for S_{n} at $s=-2$. In addition, we investigate the relation between the products of conjugacy classes in $S U(s)$ and the special values of the Witten L-function for $S U(2)$.

2010 Mathematics Subject Classification. 11M06.

1. Introduction

Witten [12] discovered the Witten zeta function, and Kurokawa-Ochiai [9] introduced the Witten L-function as a generalization of the Witten zeta function. The constructions of the Witten zeta function and the Witten L-function are as follows. For a compact topological group G, the Witten zeta function is

$$
\begin{equation*}
\zeta_{G}^{W}(s)=\sum_{\rho \in \widehat{G}}(\operatorname{deg} \rho)^{-s}, \tag{1}
\end{equation*}
$$

where \widehat{G} is the unitary dual of G. For example,
$\widehat{S U(2)}=\left\{\right.$ Sym $\left.^{m} \mid m=0,1,2, \ldots\right\}$,

[^0]where $\mathrm{Sym}^{m}: S U(2) \longrightarrow S U(m+1)$ is the symmetric tensor product representation. Hence,
\[

$$
\begin{aligned}
\zeta_{S U(2)}^{W}(s) & =\sum_{m=0}^{\infty}\left(\operatorname{deg}\left(\operatorname{Sym}^{m}\right)\right)^{-s} \\
& =\sum_{m=0}^{\infty}(m+1)^{-s} \\
& =\sum_{n=1}^{\infty} n^{-s}
\end{aligned}
$$
\]

is nothing but the Riemann zeta function $\zeta(s)$. Especially,

$$
\zeta_{S U(2)}^{W}(s)=0
$$

for $s=-2,-4,-6, \ldots$ as shown by Euler.
Now the Witten L-function is constructed for $g \in G$ by

$$
\begin{equation*}
\zeta_{G}^{W}(s ; g)=\sum_{\rho \in \widehat{G}} \frac{\chi(g)}{\operatorname{deg} \rho}(\operatorname{deg} \rho)^{-s} . \tag{2}
\end{equation*}
$$

We notice that $\zeta_{G}^{W}(s ; g)$ depends only on the conjugacy class $C=[g]$ of g. So, we use the notation $\zeta_{G}^{W}(s ; C)$ for $C \in \operatorname{Conj}(G)$ also, where $\operatorname{Conj}(G)$ denotes the set of conjugacy classes of G.
Kurokawa-Ochiai [9] conjectured $\zeta_{G}^{W}(-2 ; g)=0$ for each infinite group G. The typical example is Euler's result

$$
\zeta_{S U(2)}^{W}\left(-2 ; I_{2}\right)=\zeta_{S U(2)}^{W}(-2)=\zeta(-2)=0
$$

as noticed above.
For a finite group G the orthogonality of characters implies

$$
\zeta_{G}^{W}(-2 ; g)= \begin{cases}|G| & \text { if } g=e \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

We proved $\zeta_{S U(3)}^{W}(-2 ; g)=0$ in our previous paper [10]. González-Sánchez, Jaikin-Zapirain and Klopsch [5] proved $\zeta_{G}^{W}(-2)=0$ when G is a FAb compact p-adic Lie group. Moreover, the actual order of zeros of Witten L-functions at $s=-2$ is known for certain cases. For example, $\zeta_{S U(2)}^{W}(s ; g)$ has a simple zero at $s=-2$ for all $g \in S U(2)$ (Kurokawa-Ochiai [9]). In addition, $\zeta_{S U(3)}^{W}(s)=$ $\zeta_{S U(3)}^{W}\left(s ; I_{3}\right)$ has a zero of order 2 at $s=-2$ (Onodera [11]).

However, the order of zeros at $s=-2$ is not known for finite groups in general. In this paper, we discuss the order of the Witten L-function for finite group at $s=-2$. First of all, the order is not bounded:

Theorem 1. Let G_{1}, \ldots, G_{n} be finite groups. Then the Witten L-function for $G_{1} \times \cdots \times G_{n}$ satisfies the following formula:

$$
\begin{equation*}
\zeta_{G_{1} \times \cdots \times G_{n}}^{W}\left(s ;\left(g_{1}, \ldots, g_{n}\right)\right)=\zeta_{G_{1}}^{W}\left(s ; g_{1}\right) \cdots \zeta_{G_{n}}^{W}\left(s ; g_{n}\right) . \tag{4}
\end{equation*}
$$

In particular, for a finite group G and $g \in G \backslash\{e\}$ the order of zeros of $\zeta_{G^{n}}^{W}(s ; g)$ at $s=-2$ is not smaller than n, where G^{n} denotes the direct product $\underbrace{G \times \cdots \times G}_{n}$.

Example 1. If $G=S_{3}$, the Witten L-functions are calculated as follows: First, we give the character table of S_{3}.

Table 1. The character table of S_{3}

	(1)	(12)	(123)
Trivial	1	1	1
Sign	1	-1	1
Standard	2	0	-1

Then, we obtain the Witten L-functions of S_{3};

$$
\begin{aligned}
\zeta_{S_{3}}^{W}(s ;(123)) & =2-2^{-s-1} \\
\frac{d}{d s} \zeta_{S_{3}}^{W}(s ;(123)) & =2^{-s-1} \log 2 \\
\zeta_{S_{3}}^{W}(s ;(12)) & =0
\end{aligned}
$$

So, we see that the Witten L-function for S_{3} has a simple zero at $s=-2$ if $g \neq(1)$ is even. In addition, we obtain the following Witten L-function and its differentiations for $S_{3} \times S_{3}$:

$$
\begin{aligned}
\zeta_{S_{3} \times S_{3}}^{W}(s ;((123),(123))) & =4-2^{-s+1}+2^{-2 s-2}=\left(2-2^{-s-1}\right)^{2} \\
\frac{d}{d s} \zeta_{S_{3} \times S_{3}}^{W}(s ;((123),(123))) & =2^{-s+1} \log 2-2^{-2 s-1} \log 2 \\
\frac{d^{2}}{d s^{2}} \zeta_{S_{3} \times S_{3}}^{W}(s ;((123),(123))) & =-2^{-s+1}(\log 2)^{2}+2^{-2 s}(\log 2)^{2}
\end{aligned}
$$

Hence, we see that the Witten L-function $\zeta_{S_{3} \times S_{3}}^{W}(s ;((123)$, (123))) has a zero of order 2 at $s=-2$.

Theorem 2. If $g \in S_{n}$ is odd, the Witten L function $\zeta_{S_{n}}^{W}(s ; g)$ is constantly, zero.

Theorem 3. If $g \in S_{n}$ is the n-cycle and $n=2 m+1, m \geq 1$, then $\zeta_{S_{n}}^{W}(s ; g)$ has a simple zero at $s=-2$.

By Theorems 2 and 3, we make the following conjecture.
Conjecture. The Witten L-function $\zeta_{\zeta_{n}}^{W}(s ; g)$ has a simple zero at $s=-2$ if and only if g is even.

Next we discuss the case $G=S U$ (2). In general, we introduce generalized Witten L-function

$$
\zeta_{G}^{W}\left(s ; C_{1}, \ldots, C_{n}\right)=\sum_{\rho \in \widehat{G}} \frac{\chi\left(C_{1}\right)}{\operatorname{deg} \rho} \cdots \frac{\chi\left(C_{n}\right)}{\operatorname{deg} \rho}(\operatorname{deg} \rho)^{-s},
$$

where $C_{1}, \ldots, C_{n} \in \operatorname{Conj}(G), \widehat{G}$ is the unitary dual of G and $\chi(C)=$ $\operatorname{trace}(\rho(g))$ for $g \in C$. In our previous paper [10], we proved the following result.

Theorem A (Min [10]). Let $C(\lambda)$ be the conjugacy class of the matrix

$$
\left(\begin{array}{cc}
e^{i \lambda} & 0 \\
0 & e^{-i \lambda}
\end{array}\right) \in S U(2)
$$

for $0 \leq \lambda \leq \pi$. Then we have

$$
\begin{align*}
& \zeta_{S U(2)}^{W}\left(-2 ; C\left(\lambda_{1}\right), C\left(\lambda_{2}\right), C\left(\lambda_{3}\right)\right) \\
& \quad= \begin{cases}\frac{\pi}{4 \sin \lambda_{1} \sin \lambda_{2} \sin \lambda_{3}}, & \text { if } S_{3}^{0}\left(\left\{\lambda_{i}\right\}\right)<2 \pi \text { and } S_{3}^{2}\left(\left\{\lambda_{i}\right\}\right)<0, \\
8 \sin \lambda_{1} \sin \lambda_{2} \sin \lambda_{3} & , \\
\text { if } S_{3}^{0}\left(\left\{\lambda_{i}\right\}\right)=2 \pi, S_{3}^{2}\left(\left\{\lambda_{i}\right\}\right)=0 \\
\text { with } 0<\lambda_{1}, \lambda_{2}, \lambda_{3}<\pi,\end{cases} \tag{5}\\
& 0, \quad \text { otherwise, }
\end{align*}
$$

where $S_{n}^{m}\left(\left\{\lambda_{i}\right\}\right)$ is any sum of the type $\sum_{i=1}^{n} \pm \lambda_{i}$ which contains m minus signs.
We notice that

$$
\zeta_{S U(2)}^{W}\left(-2 ; C\left(\lambda_{1}\right)\right)=0
$$

and

$$
\zeta_{S U(2)}^{W}\left(-2 ; C\left(\lambda_{1}\right), C\left(\lambda_{2}\right)\right)=0
$$

by Kurokawa-Ochiai [9]. On the other hand, Jeffrey and Mare [8] proved the following result:

Theorem B (Jeffrey-Mare [8]). Let $C(\lambda)$ be the conjugacy class of the matrix

$$
\left(\begin{array}{cc}
e^{i \lambda} & 0 \\
0 & e^{-i \lambda}
\end{array}\right) \in S U(2)
$$

for $0 \leq \lambda \leq \pi$.
Then, for each integer $n \geq 2$ and $0 \leq \lambda_{1}, \ldots, \lambda_{n} \leq \pi$, it holds that

$$
\begin{equation*}
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right) \ni I \tag{6}
\end{equation*}
$$

if and only if the following system of inequalities are satisfied:
i) For odd n :

$$
\begin{equation*}
S_{n}^{0}\left(\left\{\lambda_{i}\right\}\right) \leq(n-1) \pi, \quad S_{n}^{2}\left(\left\{\lambda_{i}\right\}\right) \leq(n-3) \pi, \ldots, S_{n}^{n-1}\left(\left\{\lambda_{i}\right\}\right) \leq 0 \tag{7}
\end{equation*}
$$

ii) For even n :

$$
\begin{equation*}
S_{n}^{1}\left(\left\{\lambda_{i}\right\}\right) \leq(n-2) \pi, \quad S_{n}^{3}\left(\left\{\lambda_{i}\right\}\right) \leq(n-4) \pi, \ldots, S_{n}^{n-1}\left(\left\{\lambda_{i}\right\}\right) \leq 0 \tag{8}
\end{equation*}
$$

We notice that the parity of m in $S_{n}^{m}\left(\left\{\lambda_{i}\right\}\right)$ of (7) and (8) is determined to satisfy the following condition: Gromov-Witten invariant is not zero. For details, we refer to [1].

From Theorems A and B we get

$$
\begin{align*}
& \left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mid C\left(\lambda_{1}\right) C\left(\lambda_{2}\right) C\left(\lambda_{3}\right) \not \not I I\right\} \\
& \quad \subset\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mid \zeta_{S U(2)}^{W}\left(-2 ; C\left(\lambda_{1}\right), C\left(\lambda_{2}\right), C\left(\lambda_{3}\right)\right)=0\right\} . \tag{9}
\end{align*}
$$

We prove the following partial generalizations.
Theorem 4. Let $n \geq 3$ be an odd integer. If

$$
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right) \not \supset I,
$$

it holds that

$$
\zeta_{S U(2)}^{W}\left(-(n-1) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right)=0 .
$$

Theorem 5. Let $n \geq 4$ be an even integer. If

$$
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right) \not \nexists I,
$$

it holds that

$$
\zeta_{S U(2)}^{W}\left(-(n-2) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right)=0 .
$$

From Theorems 4 and 5 we observe the following points:
(1) When n is an odd integer:
if $\zeta_{S U(2)}^{W}\left(-(n-1) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right) \neq 0$, then it holds

$$
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right) \ni I .
$$

(2) When n is an even integer:
if $\zeta_{S U(2)}^{W}\left(-(n-2) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right) \neq 0$, it holds

$$
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right) \ni I
$$

We remark that the converse is not valid. For example, when $n=5$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=\frac{\pi}{4}, \lambda_{4}=\lambda_{5}=\frac{\pi}{12}$, the λ^{\prime} s satisfy the condition (7), but

$$
\zeta_{S U(2)}^{W}\left(-4 ; C\left(\lambda_{1}\right), C\left(\lambda_{2}\right), C\left(\lambda_{3}\right), C\left(\lambda_{4}\right), C\left(\lambda_{5}\right)\right)=0
$$

In addition, when $n=4$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{\pi}{4}$, the λ 's satisfy the condition (8), but

$$
\zeta_{S U(2)}^{W}\left(-2 ; C\left(\lambda_{1}\right), C\left(\lambda_{2}\right), C\left(\lambda_{3}\right), C\left(\lambda_{4}\right)\right)=0
$$

The needed calculations are supplied in the proof in Sections 5 and 6.

2. Proof of Theorem 1

First, if $g \neq 1$, we see that Witten L-function for a finite group G has a zero at $s=-2$ because of the orthogonality of the characters. That is to say,

$$
\begin{align*}
\zeta_{G}^{W}(-2 ; g) & =\sum_{\rho \in \widehat{G}} \frac{\chi(g)}{\operatorname{deg} \rho}(\operatorname{deg} \rho)^{2} \\
& =\sum_{\rho \in \widehat{G}} \chi(g) \operatorname{deg} \rho \\
& =\sum \chi(g) \chi(1) \\
& =\sum \chi(g) \overline{\chi(1)}=0 . \tag{10}
\end{align*}
$$

In addition, all the irreducible representations of $G_{1} \times \cdots \times G_{n}$ arise as tensor products of irreducible representations of G_{1}, \ldots, G_{n}. Thus, the equation (4) holds. Hence, the order of $\zeta_{G_{1} \times \cdots \times G_{n}}^{W}\left(s ;\left(g_{1}, \ldots, g_{n}\right)\right)$ at $s=-2$ is equal to the sum of the order of $\zeta_{G_{1}}^{W}\left(s ; g_{1}\right), \ldots, \zeta_{G_{n}}^{W}\left(s ; g_{n}\right)$ at $s=-2$ for $g_{1} \in G_{1}, \ldots, g_{n} \in G_{n}$.

3. Irreducible representations of symmetric group $S_{\boldsymbol{n}}$

Each conjugacy class of S_{n} is determined by its cycle type, a list of the lengths of the cycles. The identity has a cycle type $\left(1^{n}\right)$ and a transposition has a cycle type $\left(2,1^{n-2}\right.$). Every irreducible representation of S_{n} is determined by its cycle type.

Set a cycle type $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n$. This kind of tuple is called a partition. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, there is an associated Young diagram

with λ_{i} boxes in the i-th row, the rows of boxed lined up on the left.
The conjugate partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{l}^{\prime}\right)$ of the partition λ is defined by reflecting the diagram in the 45° line. (See Figure 1)

Figure 1. The conjugate partition
We denote by V_{λ} the representation corresponding to a cycle type λ. Then, the dimension $D_{\lambda}:=\operatorname{dim} V_{\lambda}$ and the character χ_{λ} are determined as follows.

First, we recall the hook length of the boxes in Young diagram. We call the box in the i-th row and j-th column of $\lambda i j$-box. It is called the corner of the $i j$ hook that consists of this box and all nodes to the right of it or below it (See Figure 2). The hook length $h_{i j}$ is

$$
h_{i j}=1+\left(\lambda_{i}-j\right)+\left(\lambda_{j}^{\prime}-i\right)
$$

Also, we denote by H_{λ} the product of all hook lengths of the partition λ.

Figure 2. The hook lengths

Fact 1 (Hook length formula [4]). The dimension of V_{2} is given by

$$
D_{\lambda}=\frac{n!}{H_{\lambda}} .
$$

Before we discuss the character associated to λ, we introduce some notations. We denote by C_{i} the conjugacy class in S_{n} determined by a sequence

$$
\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) . \text { with } \sum \alpha i_{\alpha}=n
$$

where C_{i} consists of those permutations that have $i_{1} 1$-cycles, \ldots, and $i_{n} n$-cycles.
Also, we denote by $[f(x)]_{\left(l_{1}, \ldots, l_{k}\right)}$ the coefficient of $x_{1}^{l_{1}} \cdots x_{k}^{l_{k}}$ for a polynomial $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ and a k-tuple of non-negative integers $\left(l_{1}, \ldots, l_{k}\right)$. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, set

$$
l_{1}=\lambda_{1}+k-1, l_{2}=\lambda_{2}+k-2, \ldots, l_{k}=\lambda_{k} .
$$

These l 's are hook lengths of the first column of the Young diagram. Then, the character of V_{2} on $g \in C_{i}$ is as follows:

Fact 2 (Frobenius formula [3]).

$$
\chi_{\lambda}(g)=\left[\prod_{1 \leq i<j \leq k}\left(x_{i}-x_{j}\right) \cdot \prod_{1 \leq j \leq n}\left(x_{1}^{j}+\cdots+x_{k}^{j}\right)^{i_{j}}\right]_{\left(l_{1}, \ldots, l_{k}\right)} .
$$

Here, we give some examples of the dimension and the character.
Example 2. If $\lambda=(n-k, \underbrace{1, \ldots, 1}_{k})$, the dimension of V_{λ} is $\binom{n-1}{k}$.
Example 3. If g is a cycle of length n in $S_{n}, \chi_{\lambda}(g)$ is as follows;

$$
\chi_{\lambda}(g)= \begin{cases}(-1)^{k} & \text { if } \lambda=(n-k, \underbrace{1, \ldots, 1}_{k}), 0 \leq k \leq n-1, \tag{11}\\ 0 & \text { otherwise. }\end{cases}
$$

4. Proof of Theorem 2 and 3

Theorem 2. If $g \in S_{n}$ is an odd cycle, the Witten L-function $\zeta_{S_{n}}^{W}(s ; g)$ is constantly zero.

Proof. First, we obtain $D_{\lambda^{\prime}}=D_{\lambda}$ by the hook length formula. In addition, by $V_{\lambda^{\prime}} \simeq \operatorname{sgn} \otimes V_{\lambda}$, we obtain

$$
\chi_{\lambda^{\prime}}(g)=\operatorname{sgn}(g) \chi_{\lambda}(g)
$$

Thus, we see

$$
\frac{\chi_{\lambda^{\prime}}(g)}{\operatorname{deg} \rho}(\operatorname{deg} \rho)^{-s}=-\frac{\chi_{\lambda}(g)}{\operatorname{deg} \rho}(\operatorname{deg} \rho)^{-s}
$$

Thus, we obtain $\zeta_{S_{n}}^{W}(s ; g)=0$.
Theorem 3. If $g \in S_{n}$ is the n-cycle and $n=2 m+1, m \geq 1$, then $\zeta_{S_{n}}^{W}(s ; g)$ has a simple zero at $s=-2$.

Proof. First, the differentiation of the Witten L-function is written as follows;

$$
\begin{equation*}
\frac{d}{d s} \zeta_{S_{n}}^{W}(s ; g)=-\sum_{\lambda} \chi_{\lambda}(g) D_{\lambda}^{-s-1} \log D_{\lambda} \tag{12}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g)=-\sum_{\lambda} \chi_{\lambda}(g) D_{\lambda} \log D_{\lambda} \tag{13}
\end{equation*}
$$

Here, recall Example 2 and Example 3. If $g=(12 \ldots n)$, the dimension D_{λ}. and the character $\chi_{2}(g)$ are given as follows;

$$
\chi \lambda(g)= \begin{cases}(-1)^{k} & \text { if } \lambda=(n-k, \underbrace{1, \ldots, 1}_{k}), 0 \leq k \leq n-1 \tag{14}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
D_{\lambda}=\binom{n-1}{k} \tag{15}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g)=\sum_{k=0}^{2 m}(-1)^{k}\binom{2 m}{k} \log \binom{2 m}{k} \tag{16}
\end{equation*}
$$

We denote by $l(k)$ the maximal prime number not bigger than k. Generally, it hoolds that $\frac{k}{2}<l(k)=\leq k=b y$ Bertrand-Chebyshev Theorem ([2]). Then, we obtain

$$
l \left\lvert\,\binom{ 2 m}{i}\right., l^{2}+\binom{2 m}{i} \text { for } 2 m-l+1 \leq i \leq l-1
$$

Hence $\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g)$ is written as follows;

$$
\begin{equation*}
\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g)=-\sum_{k=2 m-l+1}^{l-1}(-1)^{k}\binom{2 m}{k} \log l+\sum \log \frac{q_{2}}{q_{1}} \tag{17}
\end{equation*}
$$

with $q_{1}, q_{2} \in \mathbb{N}$ satisfying $l \nmid q_{1}, q_{2}$ because all of the characters are integers.
Here, we only need to show that

$$
-\sum_{k=2 m-l+1}^{l-1}(-1)^{k}\binom{2 m}{k} \neq 0
$$

Actually, we see that

$$
-\sum_{k=2 m-l+1}^{l-1}(-1)^{k}\binom{2 m}{k}<0
$$

from

$$
-\sum_{k=2 m-l+1}^{l-1}(-1)^{k}\binom{2 m}{k}=2 \sum_{k=0}^{2 m-l}(-1)^{k}\binom{2 m}{k}
$$

and

$$
\binom{2 m}{i}<\binom{2 m}{i+1} \text { for } 0 \leq i \leq m-1
$$

Therefore, the order of $\zeta_{S_{n}}^{W}(s ; g)$ at $s=-2$ is 1 .
Theorem 3a. Let n be an odd prime. Suppose that $\sum_{\lambda: \text { hook }} \chi_{\lambda}(g) D_{\lambda} \neq 0$. Then the Witten L-function $\zeta_{S_{n}}^{W}(s ; g)$ has a simple zero at $s=-2$.
Proof. We obtain

$$
\begin{cases}n \mid D_{\lambda}, n^{2} \nmid D_{\lambda} & \text { if } \lambda \text { is not a hook } \tag{18}\\ n \nmid D_{\lambda} & \text { if } \lambda \text { is a hook }\end{cases}
$$

by the hook length formula.
Here, we may rewrite $\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g)$ as follows:

$$
\begin{align*}
\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g)= & -\sum_{\lambda: \text { hook }} \chi_{\lambda}(g) D_{\lambda} \log D_{\lambda}-\sum_{\lambda \text { not hook }} \chi_{\lambda}(g) D_{\lambda} \log n \\
& -\sum_{\lambda: \text { not hook }} \chi_{\lambda}(g) D_{\lambda} \log \frac{D_{\lambda}}{n} \\
= & \sum_{\lambda: \text { hook }} \chi_{\lambda}(g) D_{\lambda} \log n+\sum \log \frac{r_{1}}{r_{2}} \tag{19}
\end{align*}
$$

where r_{1}, r_{2} are integers which are not divisible by n. By a similar argument to Theorem 3, we see that

$$
\begin{equation*}
\frac{d}{d s} \zeta_{S_{n}}^{W}(-2 ; g) \neq 0 \tag{20}
\end{equation*}
$$

if

$$
\sum_{\lambda: \text { hook }} \chi_{\lambda}(g) D_{\lambda} \neq 0
$$

We give some examples for Theorem 3a. For this purpose, we introduce a notation.

Notation 1 (Frobenius characteristics). Let r be the length of the diagonal of a partition λ and a_{i}, b_{i} be the number of boxes below and to the right of the i-th box of the diagonal, reading from lower right to upper left. We write $\left(b_{r}, \ldots, b_{1} \mid a_{r}, \ldots, a_{1}\right)$ for such a partition λ. Frobenius called (b_{r}, \ldots, $\left.b_{1} \mid a_{r}, \ldots, a_{1}\right)$ the characteristics of the partition. For example, for the partition $\lambda=(4,4,3,1,1)$, Frobenius characteristics are $(3,2,0 \mid 4,1,0)$.

Example 4. If $g=(123)$,

$$
\begin{equation*}
\chi_{\lambda}(g)=\frac{D_{\lambda}(n-3)!}{n!}\left(\frac{M_{3}}{2}-\frac{3}{2} n(n-1)\right) \tag{21}
\end{equation*}
$$

where $M_{3}=\sum_{j=1}^{r}\left[b_{j}\left(b_{j}+1\right)\left(2 b_{j}+1\right)+a_{j}\left(a_{j}+1\right)\left(2 a_{j}+1\right)\right]$.
Then,

$$
\begin{equation*}
\sum_{\lambda: \text { hook }} \chi_{\lambda}(g) D_{\lambda}=\frac{1}{n(n-1)(2 n-1)}\binom{2 n-2}{n-1}\left(-\frac{n^{3}}{4}-n^{2}+\frac{9}{4} n\right) \tag{22}
\end{equation*}
$$

Hence it is non-zero for every odd prime $n \geq 5$.

Example 5. If $g=(12)(34)$,

$$
\begin{equation*}
\chi_{\lambda}(g)=\frac{D_{\lambda}(n-4)!}{n!}\left(M_{2}^{2}-2 M_{3}+4 n(n-1)\right), \tag{23}
\end{equation*}
$$

where $M_{2}=\sum_{j=1}^{r}\left[b_{j}\left(b_{j}+1\right)-a_{j}\left(a_{j}+1\right)\right]$ and M_{3} is same as in Example 4. Then,

$$
\begin{equation*}
\sum_{\lambda: h o o k} \chi_{\lambda}(g) D_{\lambda}=\frac{1}{n(n-2)}\binom{2 n-2}{n-1}\left(n^{2}-2 n-1\right) \tag{24}
\end{equation*}
$$

Hence it is non-zero for every odd prime $n \geq 5$.
Now we give a generalization of Theorem 3a for all $n \in \mathbb{N}$.
Theorem 3b. The Witten L-function $\zeta_{S_{n}}^{W}(s ; g)$ has a simple zero at $s=-2$ if $\sum_{\lambda} \chi_{\lambda}(g) D_{\lambda} \neq 0$, where \sum_{λ} is the sum over λ 's satisfying $l(n) \nmid D_{\lambda}$.

Proof. By the hook length formula, if $l(n) \mid D_{\lambda}$, then $l(n)^{2} \nmid D_{\lambda}$. Thus, we may prove our claim by a similar way to the proof of Theorem 3a.

Lastly, we discuss the reason why we notice the characters whose degree is non-divisible by $l(n)$. In fact, if the number of the characters whose degree is non-divisible by $l(n)$ is small we calculate the order more easily.

Proposition. Let $p(n)$ be the number of the partition of n. We denote by $q(n)$ the number of the irreducible characters with the degree non-divisible by $l(n)$. Then,

$$
\lim _{n \rightarrow \infty} \frac{q(n)}{p(n)}=\dot{0}
$$

Proof. If n is a prime number, n itself is $l(n)$ and $q(n)=n$. On the other hand, Hardy-Ramanujan ([6]) proved that

$$
\begin{equation*}
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right) \text { as } n \rightarrow \infty \tag{25}
\end{equation*}
$$

Thus, we obtain

$$
\lim _{\substack{n \rightarrow \infty \\ n: \text { prime }}} \frac{q(n)}{p(n)}=\lim _{\substack{n \rightarrow \infty \\ n: \text { prime }}} 4 n^{2} \sqrt{3} \exp \left(-\pi \sqrt{\frac{2 n}{3}}\right)=0
$$

If n is not a prime number, we count the number of the characters of which degree is non-divisible by $l(n)$, i.e. the partition which includes a hook of length $l(n)$.

We show that there exist exactly $l(n) p(n-l(n))$ partitions including a hook of length $l(n)$ in the following manner. Firstly, we add $n-l(n)$ boxes around the hook of length $l(n)$.

We add boxes in (1), (2), (3) and (4). However, if we add a box in (4), we need add at least $l(n)$ boxes in (2) and (3). So we may add boxes only in (1), (2) and (3).

We denote by k the length of the column in the $l(n)$-hook. If $n-l(n)+$ $1 \leq k \leq 2 l(n)-n$ (here we may take such k because there exists a prime number p satisfying $\frac{2 m}{3}<p \leq m$ for all integers $m \geq 6$), we may add $n-l(n)$ boxes only in (1). For each hook, we construct a partition of n which includes a hook of length $l(n)$ by making a partition of $n-l(n)$ and sticking that. Thus, we construct $p(n-l(n))$ partitions for each hook. Therefore, we obtain $(3 l(n)-2 n) p(n-l(n))$ partitions if $n-l(n)+1 \leq k \leq 2 l(n)-n$.

Next, if $2 l(n)-n<k \leq n$, we also construct a partition of n which includes a hook of length $l(n)$ by making a partition of $n-l(n)$. In this case, we construct the partition as follows. we denote by $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ the partition of $n-l(n)$. We stick the rows of $\alpha_{j} \geq n-k+1$ in (2) and stick the other rows in (1).

Finally, if $1 \leq k \leq n-l(n)$, the partition of n satisfying our assumption is a conjugate partition of $2 n-l(n)<k \leq n$.

Consequently, we get $l(n) p(n-l(n))$ partitions which includes a hook of length $l(n)$. Hence, we see that

$$
\lim _{n \rightarrow \infty} \frac{q(n)}{p(n)}=\lim _{n \rightarrow \infty} \frac{l(n) p(n-l(n))}{p(n)}
$$

$$
\begin{align*}
& =\lim _{n \rightarrow \infty} l(n) \exp \left[-\pi\left(\sqrt{\frac{2}{3}}-\sqrt{\frac{2(n-l(n))}{3 n}}\right) n^{\frac{1}{2}}\right] \\
& =0 \tag{26}
\end{align*}
$$

By Proposition, we see that counting the number of characters whose degree is non-divisible by $l(n)$ is more effective than counting all partitions.

5. Proof of Theorem 4

Proof. We see that $C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right) \ni I$ holds if and only if $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the point of outside of the "polygon" (7) by Theorem B.

Assume that one of a sum $\sum_{i=1}^{n} \pm \lambda_{i}$ satisfies the following inequality:

$$
(n-1-2 j) \pi<S_{n}^{2 j}\left(\left\{\lambda_{i}\right\}\right)(\leq(n-2 j) \pi)
$$

Here, we may assume

$$
-\lambda_{1}-\cdots-\lambda_{2 j}+\lambda_{2 j+1}+\cdots+\lambda_{n}>(n-1-2 j) \pi
$$

without loss of generality. Then the inequalities are determined only by the number t of minus signs from $\lambda_{2 j+1}$ to λ_{n}. Then the inequailties are determined as follows:

$$
\begin{equation*}
(n-1-2 j-2 t) \pi<\underbrace{\sum \pm \lambda_{i}}_{2 j}+\underbrace{\sum \pm \lambda_{i}}_{n-2 j}<(n+1-2 j-2 t) \pi \tag{27}
\end{equation*}
$$

where $\underbrace{\sum \pm \lambda_{i}}_{n-2 j}$ contains t minus signs.
Moreover, we obtain

$$
\begin{align*}
& \zeta_{S U(2)}^{W}\left(-(n-1) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right) \\
& \quad=-\frac{\pi}{(2 \sqrt{-1})^{n-1} \sin \lambda_{1} \cdots \sin \lambda_{r}}\left(\sum B_{1}\left(\left\langle\frac{S_{n}^{2 k}\left(\left\{\lambda_{i}\right\}\right)}{2 \pi}\right\rangle\right)\right) \\
& \quad=-\frac{\pi}{(2 \sqrt{-1})^{n-1} \sin \lambda_{1} \cdots \sin \lambda_{r}}\left(-2^{n-2}-\sum\left[\frac{S_{n}^{2 k}\left(\left\{\lambda_{i}\right\}\right)}{2 \pi}\right]\right) \tag{28}
\end{align*}
$$

where $\langle x\rangle=x-[x], B_{1}(x)$ denotes the Bernoulli polynomial of degree 1 and the sum \sum consists of all of the sum $S_{n}^{2 k}\left(\left\{\lambda_{i}\right\}\right)$. Therefore, we see that

$$
\zeta_{S U(2)}^{W}\left(-(n-1) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right)=0
$$

by applying (27) to (28).

6. Proof of Theorem 5

Proof. First, we obtain

$$
\begin{align*}
\zeta_{S U(2)}^{W} & \left(-(n-2) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right) \\
= & \frac{\pi^{2}}{(2 \sqrt{-1})^{n-2} \sin \lambda_{1} \cdots \sin \lambda_{n}} \\
& \times\left(\sum^{\prime} B_{2}\left(\left\langle\frac{S^{2 k}\left(\left\{\lambda_{i}\right\}\right)}{2 \pi}\right\rangle\right)-\sum{ }^{\prime} B_{2}\left(\left\langle\frac{S^{2 k+1}\left(\left\{\lambda_{i}\right\}\right)}{2 \pi}\right\rangle\right)\right. \\
& \left.+(-1)^{\frac{n}{2}} \sum^{*} B_{2}\left(\left\langle\frac{S^{n / 2}\left(\left\{\lambda_{i}\right\}\right)}{2 \pi}\right\rangle\right)\right) \tag{29}
\end{align*}
$$

where \sum^{\prime} consists of the sum $S_{n}^{2 k}$ for $2 k<\frac{n}{2}, \sum$ " consists of the sum $S_{n}^{2 k+1}$ for $2 k+1<\frac{n}{2}$ and \sum^{*} consists of the sum $S_{n}^{n / 2}$ starting from the positive sign. Here, $B_{2}(x)$ denotes the Bernoulli polynomial of degree 2. Moreover, we may assume

$$
\begin{equation*}
-\lambda_{1}-\cdots-\lambda_{2 j-1}+\lambda_{2 j}+\cdots+\lambda_{n}>(n-2 j) \pi \tag{30}
\end{equation*}
$$

as in the proof of Theorem 4. Then the inequalities of λ 's are determined as follows:

$$
\begin{equation*}
(n-2 j-2 t) \pi<\underbrace{\sum \pm \lambda_{i}}_{2 j-1}+\underbrace{\sum \pm \lambda_{i}}_{n-2 j+1}<(n+2-2 j-2 t) \pi \tag{31}
\end{equation*}
$$

where $\underbrace{\sum \pm \lambda_{i}}$ contains t minus signs. Therefore, in a similar way to the proof of Theorem 4, we obtain

$$
\zeta_{S U(2)}^{W}\left(-(n-2) ; C\left(\lambda_{1}\right), \ldots, C\left(\lambda_{n}\right)\right)=0
$$

when n is an even integer.

References

[1] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quänitum Schubert calculus, Math. Res. Lett., 5 (1998) no. 6, 817-836.
[2] P. Chebyshev, Mémoire sur les nombres pirē̃íers, Mćm: Acad. Sci. St. Pétersbourg, 7 (1850) 17-33.
[3] F. G. Frobenius, Über die Charaktere der symmetrischen Gruppe, Sitz. König. Preuss. Akad. Wissen., (1900) 516-534. [Gesammelte Abhandlungen III, Springer-Verlag, Heidelberg (1968) 148-166].
[4] W. Fulton and J. Harris, Representation theory - a first course, Springer (1991).
[5] J. González-Sánchez, A. Jaikin-Zapirain and B. Klopsch, The representation zeta function of a FAb compact p-adic group vanishes at -2 , Bull. London Math. Soc., 46 (2013) no. 2, 239-244.
[6] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 17 (1918) 75-115. [Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ. Providence, RI (2000) 276-309].
[7] L. Jeffrey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Cominun. Math. Phys., 150 (1992) 593-630.
[8] L. Jeffrey and A. Mare, Products of conjugacy classes in SU(2), Canad. Math. Bull., 48 (2005) no. 1, 90-96.
[9] N. Kurokawa and H. Ochiai, Zeros of Witten zeta functions and applications, Kodai Math. J., 36 (2013) 440-454.
[10] J. Min, Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory, 134 (2014) 240-257.
[11] K. Onodera, A functional relation for Tornheim's double zeta functions, Acta Arith, 162 (2014) $337-354$.
[12] E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys., 141 (1991) 153-209.

[^0]: *This work is supported by JSPS KAKENHI Grant Number 13J05667.

