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Abstract. We study the vanishing of Witten L-functions for symmetric 
groups S,, and SU(2). In this paper we discuss the order of the Witten 
L-function for S11 at s = -2. In addition, we investigate the relation 
between the products of conjugacy classes in SU (s) and the special values 
of the Witten L-function for SU(2). 

2010 Mathematics Subject Classification. l JM06. 

1. Introduction 

Witten [12] discovered the Witten zeta function, and Kurokawa-Ochiai [9] 
introduced the Witten L-function as a generalization of the Witten zeta 
function. The constructions of the Witten zeta function and the Witten 
L-function are as follows. For a compact topological group G, the Witten zeta 
function is 

(ii' (s) = L(degp)-S, (1) 

pEG 

where G is the unitary dual of G. For example, 
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where Sym111 
: SV(2) --* SV(m + 1) is the symmetric tensor product 

representation. Hence, 

00 

(iif(2)(s) = L (deg(Sym111 )rs 

00 

= L(m + 1)-s 

00 

~ -s = L:...n 
n=I 

is nothing but the Riemann zeta function ((s). Especially, 

(iif(2) (s) = 0 

for s = - 2, -4, -6, ... as shown by Euler. 
Now the Witten L-function is constructed for g E G by 

w ~ x(g) _ 
(c (s; g) = L.i --(degp) 5

• 

- degp 
pEG 

(2) 

We notice that ([ (s; g) depends only on the conjugacy class C = [g] 
of g. So, we use the notation ([ (s; C) for C E Conj ( G) also, where Conj ( G) 
denotes the set of conjugacy classes of G. 

Kurokawa-Ochiai [9] conjectured (;J (-2; g) = 0 for each infinite group G. 
The typical example is Euler's result · • 

(iiJ(2)(-2; h) = (iif<2/-2) = ((-2) = o 
as noticed above. 

For a finite group G the orthogonality of characters implies 

cw(-2: ) = {IGI if g = e, 
.G . g O h . · ot erw1se. 

(3) 

We proved (]t(3) (-2; g) = 0 in our previous paper [10]. Gonzalez-Sanchez, 

Jaikin-Zapirain and Klopsch [5] proved ([ (-2) = 0 when G is a FAb compact 
p-adic Lie group. Moreover, the actual order of zeros of Witten L-functions at 
s = -2 is known for certain cases. For example, (iif (2) (s; g) has a simple zero 

at s = - 2 for all g E S V (2) (Kurokawa-Ochiai [9]). In addition,. ( fu (3) (s) = 
(iif(3) (s; h) has a zero of order 2 at s = -2 (Onodera [11]). 

However, the order of zeros at s = - 2 is not known for finite groups in 
general. In this paper, we discuss the order of the Witten L-function fo~ finite 
group at s = - 2. First of all, the order is not bounded: 
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Theorem 1. Let G1, ... , Gn be finite groups. Then the Witten L-functionfor 
G1 x · · · x Gn satisfies thefollowingformula: 

In particular, for a finite group G and g E G\{e} the order of zeros of 
(°ijn (s; g) at s = -2 is not smaller than n, where en denotes the direct product 
G X ... X G. 
~ 

n 

Example 1. If G = S3, the Witten L-functions are calculated as follows: 
First, we give the character table of S3. 

Table 1. The character table of S3 

(1) (12) (123) 
Trivial 1 1 1 
Sign 1 -] 1 

Standard 2 0 -1 

Then, we obtain the Witten L-functions of S3; 

(i (s; (123)) = 2 - rs-I, 

d w I -d (s
3 

(s; (123)) = rs- log 2, 
s 

So, we see that the Witten L-function for S3 has a simple zero at s = -2 if 
g -:j=. (1) is even. In addition, we obtain the following Witten L-function and 
its differentiations for S 3 x S 3: 

(ixs
3 

(s; ((123), (123))) = 4 - rs+l + rZs-Z = (2 - rs-I )2, 

:s(ixs/s; ((123), (123))) = 2-s+l log2 - r 2
s-l log2, 

d2 
ds 2 (s:xs/s; ((123), (123))) = -rs+I (log 2)2 + r 2s (log 2)2

. 

Hence, we see that the Witten L-function i:i xs/s; ((123), (!23))) has a zero 
of order 2 at s = - 2. / 

---.- - :·-- -- ~-

Theorem 2. If g -E~ s,;~zs -odd;- the. Wilte11 L •function ff-(s,; _g) is_ {:~Q1J,.J!C!!!~l1, _ .. 
zero. 

Theorem 3. If g E S11 is then-cycle and n = 2m + l, m ::".: 1, then ([(s; g) 
has a simple zero at s = - 2. 
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By Theorems 2 and 3, we make the following conjecture. 

Conjecture. The Witten L-function r;5W (s; g) has a simple zero at s = -2 if 
II 

and only if g is even. 
Next we discuss the case G = SU(2). In general, we introduce generalized 

Witten L-function 

w ( . ~ X (CI) X ( Cn) ( -s 
(G s, C1, ... , Cn) = L..J -- · · · -- degp) , 

- degp degp 
pEG 

where C1, ... , C11 E Conj(G), G is the unitary dual of G and x (C) = 
trace(p(g)) for g E C. In our previous paper [10], we proved the following 
result. · 

The~rem A (Min [10]). Let C (},) be the conjugacy class of the matrix 

for O ::: A ::: JC. Then we have 

r:}¥1(2/-2; C(}.1), C(Jc2), C(},3)) 

4sinJ., sinJ.2sin./,3.? 
TC 

= 8 sin J., sin J.2 sin J.3' 

0 . 
' 

if S~({l;}) < 2n ana Sj({A;}) < 0, 

if S~({},;}) = 2n, Sj({}c;}) = 0 

with O < }q, l2, },3 <- n, 

otherwise, 

(5) 

where s;;1 
( {),;}) is any sum of the.type I:;1= 1 ±},; which contains m minus signs. 

We notice that 

and 

r:si(2)(-2; C(}.1), C(},2)) = 0 

by Kurokawa-Ochiai [9]. On the other hand, Jeffrey and Mare [8] proved the 
following result: 

Theorem B (Jeffrey-Mare [8]). Let C(}.) be the conjugacy class of the 
matrix 

for O ::: A. :::: JC. 

Then, for each integer n ~ 2 and O ::: }, 1, ... , }, 11 :::: JC, it holds that 

(6) 
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if and only if the following system of inequalities are satisfied: 

i) For odd n: 

ii) For even n: 

189 

We notice that the parity of m in S;:1 ({A,i}) of (7) and (8) is determined 
to satisfy the following condition: Gromov-Witten invariant is not zero. For 
details, we refer to [l]. 

/ 

From Theorems A and B we get 

{(,1,1, A2, ,1,3) I C(},1)C(,l2)C(},3) ~ /} 

c {(,1,1, A2, ,1,3) I (~(2)(-2; C(},1), C(,1,2), C(,1,3)) = 0}. (9) 

We prove the following partial generalizations. 

Theorem 4. Let n:::: 3 be an odd integer. If 

it holds that 

Theorem 5. Let n :::: 4 be an even integer. If 

it holds that 

From Theorems 4 and 5 we observe the following points: 

(1) When n is an odd integer: 
if (fu(2) (-(n - 1); C(),1), ... , C(,1,n)) =/= 0, then it holds 

C(),1) · · · C(,1,n) 3 I. 

(2) When n is an even integer: 
if (fu(2) (-(n - 2); C(,1,1), ... , C(,1,11 )) =/= 0, it holds 

C(,1,1) · · · C(),n) 3 I. 
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We remark that the converse is not valid. For example, when n = 5 and 
A 1 = Az = ,1,3 = ¼, ..14 = ..15 = f2 , the l's satisfy the condition (7), but 

In addition, when n = 4 and ),1 = ..12 = ..13 = ..14 = f, the J's satisfy the 
condition (8), but 

The needed calculations are supplied in the proof in Sections 5 and 6. 

2. Proof of Theorem 1 

First, if g f= l, we see that Witten L-function for a finite group G has a zero 
at s = -2 because of the orthogonality of the characters. That is to say, 

i;g'(-2; g) = L x(g) (degp)/ 
_ degp 

pEC 

= L x(g)degp 
pEG 

= Lx(g)x(q 

= L_x(g)x(l) = o. 

In addition, all the irreducible representations of G1 x • • · x Gn arise 
as tensor products of irreducible representations of G1, ... , Gn. Thus, the 
equation (4) holds. Hence, the order of (3'., x--•xCn (s; (g1, ... , gn)) at s = -2 

is equal to the sum of the order of (cw (s; g1), ... , (cw (s; g 11 ) at s = -2 for 
I II 

g1 E G1, ... ,g17 E Gil. □ 

3. Irreducible representations of symmetric group Sn 

Each conjugacy class of S11 is determined by its cycle type, a list of the lengths 
of the cycles. The identity has a cycle type (1 n) and a transposition has a cycle 
type (2, 111

-
2). Every irreducible representation of S11 is determined by its 

cycle type. 
Seta cycle type A= (),1, ... , Ak), where Al ~ · · · ~ },k, AJ +· · ·+Ak = n. 

This kind of tuple is called a partition. For a partition A = (A 1, ... , Ak), there 
i~ an associated Young diagram 
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A1 
..._--1----"'---_,___, 

A2 

/ 

with Ai boxes in the i-th row, the rows of boxed lined up on the left. 
The conjugate partition }c' = (?c;, ... , ?c;) of the partition ?c is defined by 

reflecting the diagram in the 45° line. (See Figure 1) 

')._' 
21---l--"I----I 

:>,.~ ...__,__--1--"' 

'A.' 
4'--------'-----_J 

Figure 1. The conjugate partition 

We denote by VJc the representation corresponding to a cycle type},. Then, 
the dimension D;, := dim V;_ and the character x;. are determined as follows. 

First, we recall the hook length of the boxes in Young diagram. We call the 
box in the i-th row and j-th column of}, i j-box. It is called the corner of the 
ij hook that consists of this box and all nodes to the right of it or below it (See 
Figure 2). The hook length hij is 

Also, we denote by HJ, the product of all hook lengths of the partition ?c. 

A1 ·A1 8 5 4 2 

A2 A2 7 4 3 1 

i\ i\ 5 2 1 

,\ ,\ 2 
~ --

As As --1--- - -- -- ---

Figure _2. The hook lengths 
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Fact 1 (Hook length formuia [41). The dimension of V;. is given by 

Before we discuss the character associated to ),, we introduce some 
notations. We denote by Ci the conjugacy class in Sn detennined by a sequence 

i = (i1, ... , in). with Z:aia. = n, 

where Ci consists 9f those permutations that have i I I-cycles, ... , and 
i11 n-cycles. 

Also, we denote by [f(x)](l1, ... ,h) the coefficient of x~1 · · -x~k for a 
polynomial f (x) = f (x1, ... , Xk) and a k-tuple of non-negative integers 
(11, ... , h). Given a partition),=(),,, ... , ),k), set 

These l's are hook lengths of the first column of the Young diagram. Then, the 
character of V;_ on g E Ci is as follows: 

Fact 2 (Frobenius formula [3]). 

Here, we give some exampl~s of the dimension and the character. 

Example 2. IL1 = (n - k, ~• the dimension of V,1. is (
11 ~ 1) . 

k , 

Example 3. If g is a cycle ofleng~ . .J7 in Sn, x;.(g) is as follows; 

{

(-It 

XJ.(g) = 0 

if),=(n-k, 1, ... ,1), ·o:::k:::n-1, 
'-v-" 

k 

otherwise. 

4. Proof of Theorem 2 and 3 

(11) 

Theorem 2. If g E S11 is an odd cycle, the Witten L-function (sw (s; g) is 
II 

constantly zero. 
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Proof First, we obtain D21 = D;. by the hook length formula. In addition, by 
V;., ::::: sgn ® V;., we obtain 

x;_,(g) = sgn(g)x;.(g). 

Thus, we see 
x;. 1 (g) (d )-s x;.(g) (d )-s -- egp = --- egp . 
degp I degp 

Thus, we obtain(]~ (s; g) = 0. □ 

Theorem 3. If g E S11 is then-cycle and n = 2m + 1 , m :::: 1, then (i~ (s; g) 
has a simple zero at s = - 2. 

Proof First, the differentiation of the Witten L-function is Written as follows; 

(12) 

Thus, we obtain 

d w ~ 
-d (s,, (-2; g) = - L.,XJ.(g)D;_log D; .. 

s }. 
(13) 

Here, recall Example 2 and Example 3. If g = (I 2 ... n), the dimension D ;. 
and the character x;. (g) are given as follows; 

and 

{

(-1/ 

x;.(g) = o 
ifi=(n-k, 1, ... ,1), 0::::::k::::::n-1, 

'--,-' 

k 

otherwise 

D _ (n - 1) ;. - k . 

Thus, we obtain 

!!__.· w(_2. ) _ ~(-l).k (211_1) I (2m). 
ds(s,, ,g -L., k og k · 

k=O 

(14) 

(15) 

(16) 

We denote by l(k) the maximal prime number not bigger thank. Generally, 
~- it h6lds tluir~~/{k)~::::~~by,Bertran<i~<=h~~Y..§~~ Theorem ([2]). Then, we 

obtain ~ "'· ~-

/ I ( 211·n) ' z2 j- (2,in) 
1 for 2m - l + I :::: i :::::: l - I. 
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Hence fs[[ (-2; g) is written as follows; 

1-1 ) 
!!_c;f (-2; g) = - L (-ll (

2
km logl + Llog qz 

ds n q1 
k=2m-l+I 

(17) 

with q1, q2 E N satisfying l f q1, q2 because all of the characters are integers. 
Here, we only need to show that 

Actually, we see that 

1-1 ( ) L (-If 
2
; < 0 

k=2m-l+l 

from 

and 

(2~) < (/;:\) for O::: i::: m - 1. 

Therefore, the order of ( 't,, (s; g ). at s = - 2 is 1. □ 

Theorem 3a. Let n be an odd prime. Suppose that LJ.: hook x;Jg)DJ. =I= 0. 
Then the Witten L-function c;'f,, (s; g) has a simple zero at s = -2. 

Proof We obtain 

{

n I DJ., n 2 f D;. if A is not a hook 

n f D ;. if ), is a hook 

by the hook length formula. 
Here, we may rewrite fs ( 't,, ( - 2; g) as follows: 

!!_t;f (-2; g) = - "'"' XJ.(g)D;)ogDJ. - "'"' XJ.(g)DJ.logn ds II L..., L..., 
J.:hook knot hook 

J.:not hook 

DJ. 
n(g)D;. log -

n 

(18) 

(19) 
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where r1, r2 are integers which are not divisible by n. By a si_milar argument 
to Theorem 3, we see th_at 

d 
-(w (-2; g) i 0 (20) ds s,, 

if 

L n(g)D;. i o. 
J. :hook 

D 

We give some examples for Theorem 3a. For this purpose, we introduce a 
notation. 

Notation 1 (Frobenius characteristics). Let r be the length of the diagonal 
of a partition A and ai, bi be the number of boxes below and to the right of 
the i-th box of the diagonal, reading from lower right to upper left. We write 
(br, ... , b1 I ar, ... , a1) for such a partition Jc. Frobenius called (br, ... , 
b1 I ar, ... , a 1) the characteristics of the partition. For example, for the 
partition A= (4, 4, 3, 1, 1), Frobenius characteristics are (3, 2, 0 I 4, I, 0). 

1----'l.---+--~~--I 
::_ b3 

i--..--l-------'k-+-__, f-- bi 

~--I-~-'-----"-
~bl 

Example 4. If g = (I 2 3), 

D;.(n - 3)! (M3 3 ) 
n(g) = n! 2 - 2n(n - 1) , (21) 

where M3 = Lj=1[bj(bj + 1)(2bj +I)+ aj(aj + 1)(2aj + 1)]. 
Then, 

L n (g)D;. = n;~-~- -:~:n-~ ~-)-(~: ~:)· -(-~ ,~--~-~2-+-!n·)··: {22r--- · 
J.: hook 

Hence it is non-zero for every odd prime n ::: 5. 
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Example 5. If g = (12)(34), 

. XJ.(g) ~ Di(n -
4)! (M} - 2M3 + 4n(n - 1)), (23) 

n! 

where M2 = LJ=I [b1(b1 + 1)-a1(a1 + 1)] and M3 is same as in Example 4. 

Then, \ 

"'""' 1 (2n - 2) 2 
L., XJJg)Di = ( (n - 2n - 1). 

. n n - 2) n - l 
J..:hook 

(24) 

Hence it is non-zero for every odd prime n 2':. 5. 

Now we give a generalization of Theorem 3a for all n E N. 

Theorem 3b. The Witten L-function c;f (s; g) has a simple zero at s = -2 
if Li x;.(g)Di -/=- 0, where Li is the sum ove,: A's satisfying l(n) f Di. 

Proof Bythehooklengthformula,ifl(n) I DJ,, thenl(n)2 f DJ,. Thus, we may 
prove our claim by a similar way to the proof of Theorem 3a. □ 

Lastly, we discuss the reason why we notice the characters whose degree is 
non-divisible by l (n). In fact, if the number of the characters whose degree is 
non-divisibJe by l (n) is small we calculate the order more easily. 

Proposition. Let p (n) be the number of the partition of n. We denote by q (n) 
the number of the irreducible characters with the degree non-divisible by l(n). 
Then, 

. q(n) . 
hm -() =0. 

n-+oo p n 

Proof If n is a prime number, n itself is l (n) and q (n) = n. On the other hand, 
Hardy-Ramanujan ([6]) proved that 

1 ( n,;) p(n) ~ 
4
n.J3 exp 1r V 3 as n-+ oo. (25) 

Thus, we obtain 

Jim q((n) = Jim 4n2-vf3 exp(-1r {2;;) = 0. 
n-+oo p n) .n-+oo V 3 

n:prime ~ n:prime 

If n is not a prime number, we count the number of the characters of which 
degree is non-divisible by l (n ), i.e. the partition which includes a hook of 
length l(n). 

We show that there exist exactly l (n) p (n - l (n)) partitions including a hook 
of length l (n) in the following manner. Firstly, we add n - l (n) boxes around 
the hook of length l (n ). ' 
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@ Q) 

We add boxes in Q), @,@and®· However, ifwe add a box in®, we need 
add at least l (n) boxes in @and@. So we may add boxes only in Q),@ and@. 

We denote by k the length of the column in the l(n)-hook. If n - l(n) + 
1 ::: k ::: 2/ (n) - n (here we may take such k because there exists a prime 
number p satisfying 2;

1 < p :S m for all integers m ::: 6), we may add 
n - l (n) boxes only in (!). For each hook, we construct a partition of n which 
includes a hook of length l (n) by making a partition of n - l (n) and sticking 
that. Thus, we construct p(n - l(n)) partitions for each hook. Therefore, we 
obtain (3/(n) - 2n)p(n - l(n)) partitions ifn - l(n) + 1 ::S k :S 2/(n) - n. 

Next,if2/(n)-n < k :s n, wealsoconstructapartitionofn which includes 
a hook oflength l (n) by making a partition of n -l (n). In this case, we construct 
the partition as follows. we denote by a = (a1, ... , ar) the partition of n-l(n). 
We stick the rows of a J ::: n - k + l in @ and stick the other rows in (!). 

Finally, if 1 ::s k :s n - l (n ), the partition of n satisfying our assumption is 
? conjugate partition of 2n - l (n) < k S n. 

C~~-sequeiitl_y; we· get l(n)p(n = l {~1)} P_ll!litions which includes a hook of 
length l(n). Hence, we see that -- --- · - · ✓ - - - --

lim q(n) = lim l(n)p(n - l(n)) 
n--Hxi p(n) 11--'>oo p(n) 
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[ 
·( /2 ✓2(n - l(n))) 1] = n~~l(n)exp -TC V 3 - · 

3
n n'i. 

=0. (26) 

□ 

By Proposition, we see that counting the number of characters whose degree 
is non-divisible by l (n) is more effective than counting all partitions. 

5. Proof of Theorem 4 

Proof We see that C(A1) • · · C(},n) 3 / holds if and only if (A1, ... , An) is 
the point of outside of the "polygon" (7) by Theorem B. 

Assume that one of a sum 2:7=1 ±Ai satisfies the following inequality: 

(n - 1 - 2j)n < s,;1 ({Ad) (::: (n - 2j)n ). 

Here, we may assume 

-A1 - · · · - A2j + ),21+1 +···+An > (n - I - 2j)n 

without loss of generality. Then the inequalities are determined ohly by the 
number t of minus signs from A2J+1 to An. Then the inequailties are determined 
as follows: 

(n -1- 2j- 2t)n < L±Ai + L±Ai < (n + 1 - 2j - 2t)1r, (27) 
'--,--' '--,--' 

2) n-2) 

· where L ±Ai cont~ins- t minus signs. 

------n-2) 
Moreover, we obtain 

- - (2,;=T),-1 ,;n A 
1 
... sin A, ( _ 2,-

2 
- I: [ s;\~'']) D • (281 

where (x) = x - [x], B1 (x) denotes the Bernoulli polynomial of degree 1 and 
the sum L consists of all of the sum S;,k ( {Ai}). Therefore, we see that 

(ruc2/-(n - 1); C(A1), ... , C(),n)) = 0 

by applying (27) to (28). □ 
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6. Proof of Theorem 5 

Proof First, we obtain 

(29) 

where L' consists of the sums;/ for 2k < ~' L" consists of the sum s;k+1 

for 2k + 1 < ; and L"' consists of the sum S,~12 starting from the positive 
sign. Here, B2 (x) denotes the Bernoulli polynomial of degree 2. Moreover, we 
may assume 

-1,1 - · · · - A2J-1 + A2J +···+An > (n - 2j)1r (30) 

as in the proof of Theorem 4. Then the inequalities of}, 's are determined as 
follows: 

(n - 2} - 2t)1r < L ±},i + L ±Ai < (n + 2 - 2j - 2t)1r, (31) 
'-,.--' '-,.--' 

2)-1 n-2)+1 

where L ±Ai contains t minus signs. Therefore, in a similar way to the proof 
'-,.--' 

n-2)+1 
of Theorem 4, we obtain 

when n is an even integer. □ 
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