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Abstract. We study the vanishing of Witten L-functions for symmetric
groups S, and SU(2). In this paper we discuss the order of the Witten
L-function for S, at s = —2. In addition, we investigate the relation
between the products of conjugacy classes in SU (s) and the special values
of the Witten L-function for SU (2).
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1. Introduction

Witten [12] discovered the Witten zeta function, and Kurockawa-Ochiai [9]
introduced the Witten L-function as a generalization of the Witten zeta
function. The constructions of the Witten zeta function and the Witten

L-function are as follows. For a compact topological group G, the Witten zeta
function is -

(& ()= D (degp)~, )

peG

where G is the unitary dual of G. For example,

|

. :;.S.U/,(_?_);',_{,Sym’lI_llfl‘f_gzrig_g’_: Sb
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where Sym™ : SU(2) —> SU(@n + 1) is the symmetric tensor product
representation. Hence, .

o

o6 = S (degSym™) ™

m=0

= Z(m +1)7°

m=0
[ee]
. n=1
is nothing but the Riemann zeta function ¢ (s). Especially,

ng(z)(s) =0

for s = —2, —4, —6, ... as shown by Euler.
Now the Witten L-function is constructed for g € G by

26 =Y L (geg ) @
pcC gp

We notice that ((‘;V (s; g) depends only on the conjugacy class C = [g]
of g. So, we use the notation (C‘;” (s; C) for C € Conj(G) also, where Conj(G)
denotes the set of conjugacy classes of G.

Kurokawa-Ochiai [9] conjectured (g’ (—2; g) = Oforeach infinite group G.
The typical example is Euler’s result ’ : '

e (=2 R) = e (-2 =¢(=2) =0

as noticed above.
For a finite group G the orthogonality of characters implies

|G| ifg=e,
0-  otherwise.

(5 (-2 8) = { 3)
We proved ¢ ;}{, 3) (—2; g) = 0in our previous paper [10]. Gonzélez-Sanchez,
Jaikin-Zapirain and Klopsch [5] proved ¢ Cv;v (—=2) = O when G isaFAb compact
p-adic Lie group. Moreover, the actual order of zeros of Witten L-functions at
s = —2is known for certain cases. For example, ¢ ;‘l// @ (s; g) has a simple zero
ats = —2for all g € SU(2) (Kurokawa-Ochiai [9]). In addition,.{ gy (3 (s) =
Cs“l,/(3) (s; I3) has a zero of order 2 at s = —2 (Onodera [11]).

However, the order of zeros at s = —2 is not known for finite groups in
general. In this paper, we discuss the order of the Witten L-function for finite
group at s = —2. First of all, the order is not bounded:
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Theorem 1. Let G, ..., G, befinite groups. Then the Witten L-function for
G1 x -+ x Gy, satisfies the following formula:

C8 v, (83 (8152 8n)) =853 81) -+ L0 (55 gn)- @)

In particular, for a finite group G and g € G\{e} the order of zeros of
I (v;‘f, (s; g)ats = —2is not smaller than n, where G" denotes the direct product
G x---xG.
—_—

n

Example 1. If G = S3, the Witten L-functions are calculated as follows:
First, we give the character table of S3.

Table 1. The character table of S3

1) | (12) | (123)
Trivial 1 1 1
Sign 1 —1 1
Standard 2 0 -1

Then, we obtain the Witten L-functions of S3;
Cor(s; (123)) =2—27°7,
d w —s—1
35553 (s; (123)) =27°""1og 2,

Co(s; (12)) =0.

So, we see that the Witten L-function for S3 has a simple zero at s = —2 if
g # (1) is even. In addition, we obtain the following Witten L-function and
its differentiations for S3 x S3:

C8 sy (55 ((123), (123))) =4 — 27 42752 = 2 — 27571y,

d
d—csfx 5, (s ((123), (123))) =27 log2 — 272 ' log 2,
S

d? _ : _

Egsvgx& (s; ((123), (123))) = —2"T1(log 2)* + 27 % (log 2)2.
Hence, we see that the Witten L-function ¢’ Sv;/ xs, (85 ((123), (123))) has a zero
of order2 at s = —2. - '

Theorem 2. If ge S, is odd, the Witterr L+function gs‘:f.(s.,;,_g)_,is constantly

zero.

Theorem 3. Ifg € S, isthen-cycleandn =2m+1, m > 1, then (¥ (s; g)
has a simple zero at s = —2. '
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By Theorems 2 and 3, we make the following conjecture.

Conjecture. The Witten L-function (S‘:' (s; g) has a simple zero at s = —2if
and only if g is even.

Next we discuss the case G = SU (2). In general, we introduce generalized
Witten L-function

' C Cn
TR P ol AP ACD)

~ degp degp
peEG

where Ci,..., C, € Conj(G), G is the unitary dual of G and x(C) =
trace(p(g)) for g € C. In our previous paper [10], we proved the following
result. ‘

(degp)~",

Theorem A (Min [10]). Ler C(X) be the conjugacy class of the matrix

(e: 69.-;.)'6 SU(2)
for 0 < X < . Then we have
G50 (=2; C(1), C(2), C(43))
‘ e nwn: U S5U)) < 27 and S3({2:)) < O,
g O S5 =27, 85((2:) = 0 (5)
withQ < A1, A2, A3 <,

0, - ) otherwise,
where ST ({1;}) is any sum of thedype 3.7, £ ; which contains m minus signs.

We notice that
C&(z)("% C(21)=0
and
(30 (=2 CQ), C()) =0
by Kurokawa-QOchiai [9]. On the other hand, Jeffrey and Mare [8] proved the
following result:

Theorem B (Jeffrey-Mare [8]). Let C(2) be the conjugacy class of the

matrix .
e 0
(O e‘“) e SUQQ)
forO< A <m.
Then, for each integern > 2 and0 < Xy, ..., Ay < @, it holds that

C(A)---C(hn) a1 (6)
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if and only if the following system of inequalities are satisfied:

i) Foroddn:
SYAY) < (n =D, S2(LY < (=37, .., ST ) 0. (D)
ii) For evenn:

S < =2m, YD) < (n =M., 87 ({2 <0. (®)

We notice that the parity of m in ST ({A:}) of (7) and (8) is determined
to satisfy the following condition: Gromov-Witten invariant is not zero. For
details, we refer to [1]. ,

From Theorems A and B we get

{(41, A2, 13) | C(41)C(A2)C(A3) £ 1}
C (A1, A2, 13) 150y (—2 C(AD), C(A2), C3)) =0} (9)
We prove the following partial generalizations.
Theorem 4. Letn > 3 be an odd integer. If
C(i)---CUn) F 1,

it holds that
sy (—(n—1); CA), ..., C(a)) =0.

Theorem 5. Letn > 4 be an even integer. If
C(A)---Clhn) Z 1,

it holds that
L3y (—( = 2); C(1), ..., C(An)) =0.

From Theorems 4 and 5 we observe the following points:

(1) When r is an odd integer:
if £y (= = 1); C(A1), ..., C(An)) # O, then it holds

(2) When = is an even integer:
if gg{,(z)(—(n —2); C(A1), ..., C(A)) #0, it holds

C(l)---CUn) I
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We remark that the converse is not valid. For example, when n = 5 and
A =4y =A3 =7, A4 = As = {5, the A’s satisfy the condition (7), but

Sy (=4 CQ1), C(A2), C(A3), C(A4), C(As5)) =0

In addition, whenn =4and Ay = A = 13 = A4 = %, the 1’s satisfy the
condition (8), buit

32 (=2: C(A1), C(A2), C(23), C(a)) = 0

The needed calculations are supplied in the proof in Sections 5 and 6.

2. Proof of Theorem 1

First, if g # 1, we see that Witten L-function for a finite group G has a zero

at s = —2 because of the orthogonality of the characters. That is to say,
x(g)
FErne=2 2  (deg >
peG
= > x(g)degp
peG
=D 2(@x()
=> x(@xM=0. (10)
In addition, all the irreducible representations of G; x --- x G, arise
as tensor products of irreducible representations of G, ..., G,. Thus, the
equation (4) holds. Hence, the order of (g; %G, (s; (g1,...,gn))ats = =2
is equal to the sum of the order of ((gvl (s; g1)s--, ((t;l; (s; gn) ats = =2 for
81€Gi1,...,8n € Gn. g

3. Irreducible representations of symmetric group S,

Each conjugacy class of S, is determined by its cycle type, a list of the lengths
of the cycles. The identity has a cycle type (1) and a transposition has a cycle
type (2, 1"72). Every irreducible representation of S, is determined by its
cycle type. '

Setacycletype A = (A1,..., Ag),where dy > - > A, A1+ 4+ A =n.
This kind of tuple is called a partition. For a partition 4 = (41, ..., Ax), there
is an associated Young diagram
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'

2> &

2

/
with 4; boxes in the i-th row, the rows of boxed lined up on the left.

The conjugate partition 2’ = (1], ..., A}) of the partition 1 is defined by
reflecting the diagram in the 45° line. (See Figure 1)

A, . )
A, Ay | ]
A A

Al
A‘ a
A A h

Figure 1. The conjugate partition

We denote by V;, the representation corresponding to a cycle type 1. Then,
the dimension D, := dim V, and the character y; are determined as follows.
First, we recall the hook length of the boxes in Young diagram. We call the
box in the i-th row and j-th column of 4 ij-box. It is called the corner of the

ij hook that consists of this box and all nodes to the right of it or below it (See
Figure 2). The hook length #;; is

hij =1+ (A — j) + (A} —i).

Also, we denote by H; the product of all hook lengths of the partition A.

A, N A, 185142

N N A 7141311

A B Al5(2]1
Al M=

/\SL B L T

Figure 2. The hook lengths
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Fact 1 (Hook length formula [4]). The dimension of V) is given by

n!

D) =—.
A H).

Before we discuss the character associated to 1, we introduce some
notations. We denote by C; the conjugacy class in S,, determined by a sequence

i=(@,...,0). Wichaia =n,

where Cj consists of those permutations that have i; l-cycles, ..., and
in n-cycles.

Also, we denote by [f(x)]q,,. . 1) the coefficient of xi‘ ... xlk for a
polynomial f(x) = f(x1,...,xx) and a k-tuple of non-negative integers
(L1, ..., Ix). Given a partition L = (44, ..., 4¢), set

‘

h=di4+k—1,l=A+k—2,.. =5k

These I’s are hook lengths of the first column of the Young diagram. Then, the
character of V, on g € C; is as follows:

Fact 2 (Frobenius formula [3]).
j i}
p@=| T1 Gi-xp- [] (++x))
=ik Cli<j<n T . Uroli)

Here, we give some examples of the dimension and the character.
: : . . . (n—1
Example2. If A= (n—k%, 1,..., 1), the dimension of V; is ( X ) .
' ko

Example 3. If g is a cycle of lengQ\iz in S,, x1(g) is as follows;

(D¢ ifi=@m—-k 1,...,1),0<k<n-—1,
. ——

x2(g) = k ' an
0 otherwise.

4. Proof of Theorem 2 and 3

Theorem 2. If g € S, is an odd cycle, the Witten L-function (Sv: (s; g)is
constantly zero.
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Proof. First, we oBtain D, = D; by the hook length formula. In addition, by
Vi >~ sgn @ V;, we obtain

% (8) = sgn(g) x1(8)-

Thus, we see

(2! - . _
X2 (g)(degp) s__X g)(degp) s
deg p / deg p
Thus, we obtain CS‘:'(s; g)=0. O

Theorem 3. Ifg € S, isthen-cycleandn =2m+1, m > 1, then ( (s g)
has a simple zero at s = —2.

Proof. First, the differentiation of the Witten L-function is written as follows;
d W —s—1
E%@@=—;m®% log D;. (12)
Thus, we obtain

-%M— =— > x:(g)D;log D;. (13)
2

Here, recall Example 2 and Example 3. If g = (12...#), the dimension D,
and the character y,(g) are given as follows;

(D¢ ifl=@m—-k,1,...,1),0<k<n-—1,
x2(8) = k (14)
0 otherwise

n—1
D, = < K ) . (15)
Thus, we obtain

2m 2m 2m.
trcan-Ser(@w(l) 0o

We denote by I (k) the maximal prime number not bigger than k. Generally,
mﬁf"kr‘?l (k)=<-k-by-Bertrand:Chebyshev Theorem ([2]) Then, we

obtain
2 2 : | -
1|('"),12f( f") for 2m —I+1<i<I—1.
12

and
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Hence ;—s_{g: (—2; g) is written as follows;

d -1 2m q

k=2m—I+1 9 ~

with gy, g2 € N satisfying [ { g1, g2 because all of the characters are integers.
Here, we only need to show that '
-1
2
- > () o
k=2m—I+1

Actually, we see that

-1

-y (-1)"‘(2]’:’)<0

k=2m—I1+1
from
S | 2m—I
2m 2m
k _ Nk
- > (D (k)—zz( 1) (k)
k=2m—i+1 k=0
and
(Zm) < (_zm) for0<i<m-—1.
i i+1
Therefore, the order of {;:/ (s; g)ats =—2is 1. (W

Theorem 3a. Let n be an odd prime. Suppose that ;.. x1(8)Dy # 0.

Then the Witten L-function {Svf (s; g) has a simple zero at s = —2.

Proof. We obtain |

[n | Dy, n?4 D, if A is not a hook a8
ntD, if A is a hook

by the hook length formula.
Here, we may rewrite %( g,:’ (=2; g) as follows:

J |
i (29 =— > u@DilogDi— X yx:(e)Dilogn
§ A:hook A:not hook

D,
- > 2(8)Dy log —=

A:not hook

.
= > xa(e)Dilogn + > log =, (19)
rn
Azhook .
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where 71, r; are integers which are not divisible by n. By a similar argument
to Theorem 3, we see that

J ,
<05, (=2 8) #0 (20)
if
> xi(g)Dy #0.

A :hook
O

We give some examples for Theorem 3a. For this purpose, we introduce a
notation.

Notation 1 (Frobenius characteristics). Let » be the length of the diagonal
of a partition A and a;, b; be the number of boxes below and to the right of
the i-th box of the diagonal, reading from lower right to upper left. We write
(by,...,b1 | ar,...,a)) for such a partition 1. Frobenius called (b,, ...,
by | ar,...,a;) the characteristics of the partition. For example, for the
partition 1 = (4, 4, 3, 1, 1), Frobenius characteristics are (3,2,01 4, 1,0).

<b, )
[ |<b,

NG
A~
a, &

/r\

as

Exampled. Ifg = (123),
D -3 /M 3
) = 2 (22 Za ), e

where M3 = Z;zl[bj(bj +1)2b; + 1) +aj(a; + 1)(2a; + D]
Then, »

_____-_.1_-.._“._-._._ =2\ """il'3""""2""'_'9 R EEE
Z XA(g)D,{ = I’l(n — 1)(21’1, _ 1) (n -1 )(_—4— —n°+ Zn) (22)

4 :hook

Hence it is non-zero for every odd prime n > 5.
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Example 5. Ifg=(12)(34),

o . Di(n—4)!
xi(e) = X (M2 = 2y + dnn — 1), @3)
where My = ;-:] b+ l) —aj(aj+1)] and M3 is same as in Example 4.

Then, \
1 2n-2\ ,
> @Dy = ——— (n? —2n —1). (24)
. nn—=—2)\ n—1
Azhook

Hence it is non-zero for every odd prime n > 5.
Now we give a generalization of Theorem 3a for all n € N.

Theorem 3b. The Witten L-function { Sv}'/ (s; &) has a simple zero at s = —2
if>; x2(8)Dy # 0, where 3, is the sum over, A’s satisfying [(n) 1 D;.

Proof. By the hook length formula, if/(n) | D;, thenl(n)? { D;. Thus, we may
prove our claim by a similar way to the proof of Theorem 3a. g

Lastly, we discuss the reason why we notice the characters whose degree is
non-divisible by /(n). In fact, if the number of the characters whose degree is
non-divisible by /(i) is small we calculate the order more easily.

Proposition. Let p(n) be the number of the partition of n. We denote by q(n)
the number of the irreducible characters with the degree non-divisible by l(n).
Then,
im 19 _§
n—o00 p(n)
Proof. If nis a prime number, # itself is /{n) and ¢g(n) = r. On the other hand,
Hardy-Ramanujan ([6]) proved that

1 2n
n) ~ expl 74/ — } as n — o0. 25
p(n) ind3 p( 3) (25)

Thus, we obtain

2n
fim Y i a0 3exP(—n,/_")=o,
n—o0o p(n) =00 3

n:prime ~_ 7 :prime

If n is not a prime number, we count the number of the characters of which
degree is non-divisible by /(n), i.e. the partition which includes a hook of
length (7).

‘We show that there exist exactly [ (n) p(n — [(n)) partitions including a hook
of length I(n) in the following manner. Firstly, we add n — [(n) boxes around
the hook of length I(n). '



Vanishing of Witten L-functions . 197

We add boxes in @), @), @ and @. However, if we add a box in @), we need
add at least I(n) boxes in @ and 3). So we may add boxes only in (), @ and ).

We denote by k the length of the column in the I(n)-hook. If n — I(n) +
1 < k < 2l(n) — n (here we may take such k because there exists a prime
number p satisfying = In -~ p < m for all integers m > 6), we may add
n — l(n) boxes only in @ For each hook, we construct a partition of n which
includes a hook of length /(n) by making a partition of n — [(n) and sticking
that. Thus, we construct p(n — [(n)) partitions for each hook. Therefore, we
obtain (31(n) — 2n)p(n — l(n)) partitions if n —I(n) + 1 < k < 2l(n) —n.

[ 1]
H e IO — O

Next, if 2I(n)—n < k < n, we also construct a partition of n which includes
ahook of length /() by making a partition of n —I(#). In this case, we construct
the partition as follows. we denote by a = (a1, . .., @, ) the partition of n —I(n).
We stick the rows of a; > n — k + 1 in @ and stick the other rowsin D.

%\

’\e

—

. I

(TTT1

CLTTI

LT

Finally, if 1 < k < n — I(n), the partition of n satisfying our assumption is
a conjugate partition of 2n — I(n) < k < n.
Consequently; we get (n)p(n = 1(rn)) partmons Wthh mcludes a hook of

length I(n). Hence, we see that - T e e

gl L )p(e = 1)
n—00 p(n) n—> 00 , p(n)
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= nl_i)n;()l(n) exp [—n (\/g — 4/ g@#)n%}

=0. A (26)
O

By Proposition, we see that counting the number of characters whose degree
is non-divisible by /(n) is more effective than counting all partitions.

5. Proof of Theorem 4

Proof. We see that C(A1)--- C(4,) > I holds if and only if (41,...,4,) is
the point of outside of the “polygon” (7) by Theorem B.
Assume that one of a sum >_._; +4; satisfies the following inequality:

(n—1-2p)m < S7 ({4D) (= (n = 2))m).
Here, we may assume
—A = =Aj Aot Ay > (- 1=2j)x

without loss of generality. Then the inequalities are determined only by the
number ¢ of minus signs from 4211 to 4,. Then the inequailties are determined
as follows:

(m—1-2j-20m <> *hi+ D *hi <@+1-2j-20x, 27)
. [
2j n—-2j

-~ where E +4; contains # minus signs.
W‘—’ .
n—-2j
Moreover, we obtain

C3hey (—(n = 1); €O, ..., CU)).

_ T S ({2:})
 @V=D)"lsind;---sind, (ZBI(< 27 >))

=— d o2 _ S2E ({A:)
= (2\/—_‘T)n—1 sindy---sin A, ( 2 z |:——_—2n' il), 28)

where (x) = x — [x], B1(x) denotes the Bernoulli polynomial of degree 1 and
the sum > consists of all of the sum S,%k ({A:}). Therefore, we see that

C3u@y(—(r = 1); C(A), ..., C(An)) =0
by applying (27) to (28). a




Vanishing of Witten L-functions 199

6. Proof of Theorem 5
Proof. First, we obtain

o~ =2 CUD,....CO)

2

- ~/=1)""2sin Ay ---sin A,

(o) (=)
e ZB (<s"/2<u,})>)), 29

where 3"’ consists of the sum S2* for 2k < 4, 3 ” consists of the sum $2¢+!

for 2k +1 < % and Z* consists of the sum S,',q/ 2 starting from the positive
sign. Here, B> (x) denotes the Bernoulli polynomial of degree 2. Moreover, we
may assume

A1 = =Agjy+ A+ Ay > (=27 (30)

as in the proof of Theorem 4. Then the inequalities of 1’s are determined as
follows:

(n—2j—20m <D £hi+ D ki <(+2-2j-207, ()
N—— S— —
2j—1 n—2j+1

where Z +1; contains ¢ minus signs. Therefore, in a similar way to the proof
———
n—2j+1

of Theorem 4, we obtain

(e~ —2); C(y), ..., C(Ay)) =0

when n is an even integer. o

References

e

...._I1] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and
quantum Schubert calculus, Math, Res. Lett., 5 (1998) no. 6, 817-836.

[2] P. Chebyshev, Mémoire sur les nombres premiers; Mém. Acad. Sci., St. Petersbourg,
7 (1850) 17-33.

[3] F. G.Frobenius, Uber die Charaktere der symmetrischen Gruppe, Sitz. Konig. Preuss.
Akad. Wissen., (1900) 516-534. [Gesammelte Abhandlungen III, Springer-Verlag,
Heidelberg (1968) 148-166]).



200 .

(4]
(5]

©
(7]

(8]

[9]
[10)
(1]
[12]

/ /Vil !

Jeongwon Min

W. Fulton and J. Harris, Representation theory — a first course, Springer (1991).

J. Gonzidlez-Sanchez, A. Jaikin-Zapirain and B. Klopsch, The representation zeta
function of a FAb compact p-adic group vanishes at —2, Bull. London Math. Soc., 46
(2013) no. 2, 239-244.

G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc.
London Math. Soc., 17 (1918) 75-115. [Collected papers of Srinivasa Ramanujan,
AMS Chelsea Publ. Providence, RI (2000) 276-309].

L. Jeffrey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli space of flat
connections and the Verlinde dimension formula, Commun. Math. Phys., 150 (1992)
593-630.

L. Jeffrey and A. Mare, Products of conjugacy classes in SU (2) Canad Math. Bull.,

48 (2005) no. 1, 90-96.

N. Kurokawa and H. Ochiai, Zeros of Witten zeta functions and applications, Kodaz
Math. J., 36 (2013) 440-454. ‘ ~

J. Min, Zeros and special values of Witten zeta functions and Witten L-functions,
J. Number Theory, 134 (2014) 240-257.

K. Onodera,/A functional relation for Tornheim’s double zeta functions, Acra Arith.,

162 (2014)/337-354.

E. Witten,/On quantum gauge theories in two dimensions, Commun. Math. Phys., 141
(1991) 153—209




