J. Ramanujan Math. Soc. 32, No.2 (2017) 185–200

Vanishing of Witten *L*-functions

Jeongwon Min*

Department of Mathematics, Tokyo Institute of Techonology, Oo-okayama, Meguro-ku, Tokyo 152-8551, Japan e-mail: min.j.aa@m.titech.ac.jp

Communicated by: Prof. Dinakar

Received: April 9, 2016

Abstract. We study the vanishing of Witten L-functions for symmetric groups S_n and SU(2). In this paper we discuss the order of the Witten L-function for S_n at s = -2. In addition, we investigate the relation between the products of conjugacy classes in SU(s) and the special values of the Witten L-function for SU(2).

2010 Mathematics Subject Classification. 11M06.

1. Introduction

Witten [12] discovered the Witten zeta function, and Kurokawa-Ochiai [9] introduced the Witten *L*-function as a generalization of the Witten zeta function. The constructions of the Witten zeta function and the Witten *L*-function are as follows. For a compact topological group G, the Witten zeta function is

$$\zeta_G^W(s) = \sum_{\rho \in \widehat{G}} (\deg \rho)^{-s}, \tag{1}$$

1

where \widehat{G} is the unitary dual of G. For example,

tiant card as

$$\widehat{SU(2)} = \{\operatorname{Sym}^m \mid m = 0, 1, 2, \dots\}$$

*This work is supported by JSPS KAKENHI Grant Number 13J05667.

-31

where Sym^m : $SU(2) \longrightarrow SU(m+1)$ is the symmetric tensor product representation. Hence,

$$\begin{aligned} f_{SU(2)}^{W}(s) &= \sum_{m=0}^{\infty} \left(\deg(\mathrm{Sym}^{m}) \right)^{-s} \\ &= \sum_{m=0}^{\infty} (m+1)^{-s} \\ &= \sum_{n=1}^{\infty} n^{-s} \end{aligned}$$

is nothing but the Riemann zeta function $\zeta(s)$. Especially,

$$\zeta_{SU(2)}^{W}(s) = 0$$

for $s = -2, -4, -6, \ldots$ as shown by Euler.

Ż

Now the Witten *L*-function is constructed for $g \in G$ by

$$\zeta_G^W(s; g) = \sum_{\rho \in \widehat{G}} \frac{\chi(g)}{\deg \rho} (\deg \rho)^{-s}.$$
 (2)

We notice that $\zeta_G^W(s; g)$ depends only on the conjugacy class C = [g] of g. So, we use the notation $\zeta_G^W(s; C)$ for $C \in \text{Conj}(G)$ also, where Conj(G) denotes the set of conjugacy classes of G.

Kurokawa-Ochiai [9] conjectured $\zeta_G^W(-2; g) = 0$ for each infinite group G. The typical example is Euler's result

$$\zeta_{SU(2)}^{W}(-2; I_2) = \zeta_{SU(2)}^{W}(-2) = \zeta(-2) = 0$$

as noticed above.

For a finite group G the orthogonality of characters implies

$$\zeta_G^W(-2; g) = \begin{cases} |G| & \text{if } g = e, \\ 0 & \text{otherwise.} \end{cases}$$
(3)

We proved $\zeta_{SU(3)}^{W}(-2; g) = 0$ in our previous paper [10]. González-Sánchez, Jaikin-Zapirain and Klopsch [5] proved $\zeta_{G}^{W}(-2) = 0$ when G is a FAb compact *p*-adic Lie group. Moreover, the actual order of zeros of Witten *L*-functions at s = -2 is known for certain cases. For example, $\zeta_{SU(2)}^{W}(s; g)$ has a simple zero at s = -2 for all $g \in SU(2)$ (Kurokawa-Ochiai [9]). In addition, $\zeta_{SU(3)}^{W}(s) =$ $\zeta_{SU(3)}^{W}(s; I_3)$ has a zero of order 2 at s = -2 (Onodera [11]).

However, the order of zeros at s = -2 is not known for finite groups in general. In this paper, we discuss the order of the Witten *L*-function for finite group at s = -2. First of all, the order is not bounded:

Theorem 1. Let G_1, \ldots, G_n be finite groups. Then the Witten L-function for $G_1 \times \cdots \times G_n$ satisfies the following formula:

$$\zeta_{G_1 \times \dots \times G_n}^W(s; \ (g_1, \dots, g_n)) = \zeta_{G_1}^W(s; \ g_1) \cdots \zeta_{G_n}^W(s; \ g_n).$$
(4)

In particular, for a finite group G and $g \in G \setminus \{e\}$ the order of zeros of $\zeta_{G^n}^W(s; g)$ at s = -2 is not smaller than n, where G^n denotes the direct product $G \times \cdots \times G$.

Example 1. If $G = S_3$, the Witten *L*-functions are calculated as follows: First, we give the character table of S_3 .

Table 1. The character table of S_3

	(1)	(12)	(123)
Trivial	1	1	1
Sign	1	-1	1
Standard	2	0	-1

Then, we obtain the Witten *L*-functions of S_3 ;

'n

$$\zeta_{S_3}^W(s; (123)) = 2 - 2^{-s-1},$$

$$\frac{d}{ds}\zeta_{S_3}^W(s; (123)) = 2^{-s-1}\log 2,$$

$$\zeta_{S_4}^W(s; (12)) = 0.$$

So, we see that the Witten L-function for S_3 has a simple zero at s = -2 if $g \neq (1)$ is even. In addition, we obtain the following Witten L-function and its differentiations for $S_3 \times S_3$:

$$\zeta_{S_3 \times S_3}^W(s; ((123), (123))) = 4 - 2^{-s+1} + 2^{-2s-2} = (2 - 2^{-s-1})^2,$$

$$\frac{d}{ds} \zeta_{S_3 \times S_3}^W(s; ((123), (123))) = 2^{-s+1} \log 2 - 2^{-2s-1} \log 2,$$

$$\frac{d^2}{ds^2} \zeta_{S_3 \times S_3}^W(s; ((123), (123))) = -2^{-s+1} (\log 2)^2 + 2^{-2s} (\log 2)^2.$$

Hence, we see that the Witten *L*-function $\zeta_{S_3 \times S_3}^W(s; ((123), (123)))$ has a zero of order 2 at s = -2.

Theorem 2. If $g \in S_n$ is odd, the Witten L=function $\zeta_{S_n}^W(s; g)$ is constantly zero.

Theorem 3. If $g \in S_n$ is the *n*-cycle and n = 2m + 1, $m \ge 1$, then $\zeta_{S_n}^W(s; g)$ has a simple zero at s = -2.

By Theorems 2 and 3, we make the following conjecture.

Conjecture. The Witten L-function $\zeta_{S_n}^W(s; g)$ has a simple zero at s = -2 if and only if g is even.

Next we discuss the case G = SU(2). In general, we introduce generalized Witten *L*-function

(**~** .

$$\zeta_G^W(s; C_1, \ldots, C_n) = \sum_{\rho \in \widehat{G}} \frac{\chi(C_1)}{\deg \rho} \cdots \frac{\chi(C_n)}{\deg \rho} (\deg \rho)^{-s},$$

where $C_1, \ldots, C_n \in \operatorname{Conj}(G)$, \widehat{G} is the unitary dual of G and $\chi(C) =$ trace($\rho(g)$) for $g \in C$. In our previous paper [10], we proved the following result.

Theorem A (Min [10]). Let $C(\lambda)$ be the conjugacy class of the matrix

$$\begin{pmatrix} e^{i\lambda} & 0\\ 0 & e^{-i\lambda} \end{pmatrix} \in SU(2)$$

for $0 \leq \lambda \leq \pi$. Then we have

$$\zeta_{SU(2)}^{W}(-2; C(\lambda_{1}), C(\lambda_{2}), C(\lambda_{3})) = \begin{cases} \frac{\pi}{4 \sin \lambda_{1} \sin \lambda_{2} \sin \lambda_{3}}, & \text{if } S_{3}^{0}(\{\lambda_{i}\}) < 2\pi \text{ and } S_{3}^{2}(\{\lambda_{i}\}) < 0, \\ \frac{\pi}{8 \sin \lambda_{1} \sin \lambda_{2} \sin \lambda_{3}}, & \text{if } S_{3}^{0}(\{\lambda_{i}\}) = 2\pi, S_{3}^{2}(\{\lambda_{i}\}) = 0 \\ & \text{with } 0 < \lambda_{1}, \lambda_{2}, \lambda_{3} < \pi, \\ 0, & \text{otherwise}, \end{cases}$$
(5)

where $S_n^m(\{\lambda_i\})$ is any sum of the type $\sum_{i=1}^n \pm \lambda_i$ which contains m minus signs.

We notice that

$$\zeta_{SU(2)}^{W}(-2; C(\lambda_1)) = 0$$

and

$$\zeta_{SU(2)}^{W}(-2; C(\lambda_1), C(\lambda_2)) = 0$$

by Kurokawa-Ochiai [9]. On the other hand, Jeffrey and Mare [8] proved the following result:

Theorem B (Jeffrey-Mare [8]). Let $C(\lambda)$ be the conjugacy class of the matrix

$$\begin{pmatrix} e^{i\lambda} & 0\\ 0 & e^{-i\lambda} \end{pmatrix} \in SU(2)$$

for $0 \leq \lambda \leq \pi$.

Then, for each integer $n \ge 2$ and $0 \le \lambda_1, \ldots, \lambda_n \le \pi$, it holds that

$$C(\lambda_1) \cdots C(\lambda_n) \ni I$$
 (6)

if and only if the following system of inequalities are satisfied:

i) For odd n:

$$S_n^0(\{\lambda_i\}) \le (n-1)\pi, \ S_n^2(\{\lambda_i\}) \le (n-3)\pi, \dots, S_n^{n-1}(\{\lambda_i\}) \le 0.$$
(7)

ii) For even n:

$$S_n^1(\{\lambda_i\}) \le (n-2)\pi, \ S_n^3(\{\lambda_i\}) \le (n-4)\pi, \dots, S_n^{n-1}(\{\lambda_i\}) \le 0.$$
 (8)

We notice that the parity of *m* in $S_n^m(\{\lambda_i\})$ of (7) and (8) is determined to satisfy the following condition: Gromov-Witten invariant is not zero. For details, we refer to [1].

From Theorems A and B we get

$$\{(\lambda_1, \lambda_2, \lambda_3) | C(\lambda_1)C(\lambda_2)C(\lambda_3) \neq I\} \\ \subset \{(\lambda_1, \lambda_2, \lambda_3) | \zeta_{SU(2)}^W(-2; C(\lambda_1), C(\lambda_2), C(\lambda_3)) = 0\}.$$
(9)

We prove the following partial generalizations.

Theorem 4. Let $n \ge 3$ be an odd integer. If

$$C(\lambda_1) \cdots C(\lambda_n) \not\ni I$$
,

it holds that

$$\zeta_{SU(2)}^{W}(-(n-1); C(\lambda_1), \ldots, C(\lambda_n)) = 0.$$

Theorem 5. Let $n \ge 4$ be an even integer. If

$$C(\lambda_1)\cdots C(\lambda_n) \not\supseteq I,$$

it holds that

. بر بنده الانه الانه المنتخر المنتخر الانتراف

$$\zeta_{SU(2)}^W(-(n-2); C(\lambda_1), \ldots, C(\lambda_n)) = 0.$$

From Theorems 4 and 5 we observe the following points:

- (1) When *n* is an odd integer: if $\zeta_{SU(2)}^{W}(-(n-1); C(\lambda_1), \dots, C(\lambda_n)) \neq 0$, then it holds
 - $C(\lambda_1)\cdots C(\lambda_n) \ni I.$
- (2) When *n* is an even integer: if $\zeta_{SU(2)}^{W}(-(n-2); C(\lambda_1), \dots, C(\lambda_n)) \neq 0$, it holds

$$C(\lambda_1)\cdots C(\lambda_n) \ni I.$$

We remark that the converse is not valid. For example, when n = 5 and $\lambda_1 = \lambda_2 = \lambda_3 = \frac{\pi}{4}$, $\lambda_4 = \lambda_5 = \frac{\pi}{12}$, the λ 's satisfy the condition (7), but

$$\zeta_{SU(2)}^{W}(-4; C(\lambda_1), C(\lambda_2), C(\lambda_3), C(\lambda_4), C(\lambda_5)) = 0$$

In addition, when n = 4 and $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \frac{\pi}{4}$, the λ 's satisfy the condition (8), but

$$\zeta_{SU(2)}^{W}(-2; C(\lambda_{1}), C(\lambda_{2}), C(\lambda_{3}), C(\lambda_{4})) = 0.$$

The needed calculations are supplied in the proof in Sections 5 and 6.

2. Proof of Theorem 1

First, if $g \neq 1$, we see that Witten *L*-function for a finite group *G* has a zero at s = -2 because of the orthogonality of the characters. That is to say,

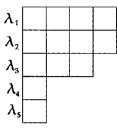
$$\begin{aligned} \zeta_G^W(-2; g) &= \sum_{\rho \in \widehat{G}} \frac{\chi(g)}{\deg \rho} (\deg \rho)^2 \\ &= \sum_{\rho \in \widehat{G}} \chi(g) \deg \rho \\ &= \sum_{\gamma \in \widehat{G}} \chi(g) \chi(1) \\ &= \sum_{\gamma \in \widehat{G}} \chi(g) \overline{\chi(1)} = 0. \end{aligned}$$
(10)

In addition, all the irreducible representations of $G_1 \times \cdots \times G_n$ arise as tensor products of irreducible representations of G_1, \ldots, G_n . Thus, the equation (4) holds. Hence, the order of $\zeta_{G_1 \times \cdots \times G_n}^W(s; (g_1, \ldots, g_n))$ at s = -2is equal to the sum of the order of $\zeta_{G_1}^W(s; g_1), \ldots, \zeta_{G_n}^W(s; g_n)$ at s = -2 for $g_1 \in G_1, \ldots, g_n \in G_n$.

3. Irreducible representations of symmetric group S_n

Each conjugacy class of S_n is determined by its cycle type, a list of the lengths of the cycles. The identity has a cycle type (1^n) and a transposition has a cycle type $(2, 1^{n-2})$. Every irreducible representation of S_n is determined by its cycle type.

Set a cycle type $\lambda = (\lambda_1, ..., \lambda_k)$, where $\lambda_1 \ge \cdots \ge \lambda_k$, $\lambda_1 + \cdots + \lambda_k = n$. This kind of tuple is called a partition. For a partition $\lambda = (\lambda_1, ..., \lambda_k)$, there is an associated Young diagram



with λ_i boxes in the *i*-th row, the rows of boxed lined up on the left.

The conjugate partition $\lambda' = (\lambda'_1, \dots, \lambda'_l)$ of the partition λ is defined by reflecting the diagram in the 45° line. (See Figure 1)

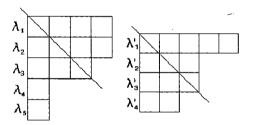


Figure 1. The conjugate partition

We denote by V_{λ} the representation corresponding to a cycle type λ . Then, the dimension $D_{\lambda} := \dim V_{\lambda}$ and the character χ_{λ} are determined as follows.

First, we recall the hook length of the boxes in Young diagram. We call the box in the *i*-th row and *j*-th column of λij -box. It is called the corner of the ij hook that consists of this box and all nodes to the right of it or below it (See Figure 2). The hook length h_{ij} is

$$h_{ij} = 1 + (\lambda_i - j) + (\lambda'_j - i).$$

Also, we denote by H_{λ} the product of all hook lengths of the partition λ .

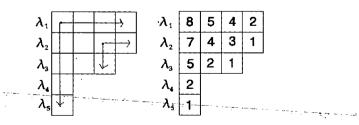


Figure 2. The hook lengths

Fact 1 (Hook length formula [4]). The dimension of V_{λ} is given by

$$D_{\lambda} = \frac{n!}{H_{\lambda}}.$$

Before we discuss the character associated to λ , we introduce some notations. We denote by C_i the conjugacy class in S_n determined by a sequence

$$\mathbf{i} = (i_1, \ldots, i_n)$$
 with $\sum \alpha i_\alpha = n$,

where C_i consists of those permutations that have i_1 1-cycles, ..., and i_n *n*-cycles.

Also, we denote by $[f(x)]_{(l_1,\ldots,l_k)}$ the coefficient of $x_1^{l_1} \cdots x_k^{l_k}$ for a polynomial $f(x) = f(x_1, \ldots, x_k)$ and a k-tuple of non-negative integers (l_1, \ldots, l_k) . Given a partition $\lambda = (\lambda_1, \ldots, \lambda_k)$, set

$$l_1 = \lambda_1 + k - 1, \ l_2 = \lambda_2 + k - 2, \dots, l_k = \lambda_k$$

These *l*'s are hook lengths of the first column of the Young diagram. Then, the character of V_{λ} on $g \in C_i$ is as follows:

Fact 2 (Frobenius formula [3]).

$$\chi_{\lambda}(g) = \left[\prod_{1 \leq i < j \leq k} (x_i - x_j) \cdot \prod_{1 \leq j \leq n} \left(x_1^j + \dots + x_k^j\right)^{i_j}\right]_{(l_1, \dots, l_k)}.$$

Here, we give some examples of the dimension and the character.

Example 2. If $\lambda = (n - k, \underbrace{1, \dots, 1}_{k})$, the dimension of V_{λ} is $\binom{n-1}{k}$.

Example 3. If g is a cycle of length n in S_n , $\chi_{\lambda}(g)$ is as follows;

$$\chi_{\lambda}(g) = \begin{cases} (-1)^{k} & \text{if } \lambda = (n-k, \underbrace{1, \dots, 1}_{k}), \ 0 \le k \le n-1, \\ 0 & \text{otherwise.} \end{cases}$$
(11)

4. Proof of Theorem 2 and 3

Theorem 2. If $g \in S_n$ is an odd cycle, the Witten L-function $\zeta_{S_n}^W(s; g)$ is constantly zero.

Proof. First, we obtain $D_{\lambda'} = D_{\lambda}$ by the hook length formula. In addition, by $V_{\lambda'} \simeq \operatorname{sgn} \otimes V_{\lambda}$, we obtain

$$\chi_{\lambda'}(g) = \operatorname{sgn}(g)\chi_{\lambda}(g).$$

Thus, we see

. -

$$\frac{\chi_{\lambda'}(g)}{\deg\rho}(\deg\rho)^{-s}_{/} = -\frac{\chi_{\lambda}(g)}{\deg\rho}(\deg\rho)^{-s}.$$

Thus, we obtain $\zeta_{S_n}^W(s; g) = 0.$

Theorem 3. If $g \in S_n$ is the *n*-cycle and n = 2m + 1, $m \ge 1$, then $\zeta_{S_n}^W(s; g)$ has a simple zero at s = -2.

Proof. First, the differentiation of the Witten *L*-function is written as follows;

$$\frac{d}{ds}\zeta_{S_n}^W(s; g) = -\sum_{\lambda} \chi_{\lambda}(g) D_{\lambda}^{-s-1} \log D_{\lambda}.$$
 (12)

Thus, we obtain

$$\frac{d}{ds}\zeta_{S_n}^{W}(-2; g) = -\sum_{\lambda} \chi_{\lambda}(g) D_{\lambda} \log D_{\lambda}.$$
(13)

Here, recall Example 2 and Example 3. If g = (1 2 ... n), the dimension D_{λ} and the character $\chi_{\lambda}(g)$ are given as follows;

$$\chi_{\lambda}(g) = \begin{cases} (-1)^k & \text{if } \lambda = (n-k, \underbrace{1, \dots, 1}_k), \ 0 \le k \le n-1, \\ 0 & \text{otherwise} \end{cases}$$
(14)

and

$$D_{\lambda} = \binom{n-1}{k}.$$
 (15)

Thus, we obtain

$$\frac{d}{ds}\zeta_{S_n}^W(-2; g) = \sum_{k=0}^{2m} (-1)^k \binom{2m}{k} \log \binom{2m}{k}.$$
 (16)

We denote by l(k) the maximal prime number not bigger than k. Generally, it holds that $\frac{k}{2} < l(k) = \leq k \cdot by$. Bertrand-Chebyshev Theorem ([2]). Then, we obtain

$$l \mid \binom{2m}{i}, l^2 \nmid \binom{2m}{i}$$
 for $2m - l + 1 \le i \le l - 1$.

.

٩.

Hence $\frac{d}{ds}\zeta_{S_n}^W(-2; g)$ is written as follows;

$$\frac{d}{ds}\zeta_{S_n}^W(-2; g) = -\sum_{k=2m-l+1}^{l-1} (-1)^k \binom{2m}{k} \log l + \sum \log \frac{q_2}{q_1}$$
(17)

with $q_1, q_2 \in \mathbb{N}$ satisfying $l \nmid q_1, q_2$ because all of the characters are integers. Here, we only need to show that

$$-\sum_{k=2m-l+1}^{l-1} (-1)^k \binom{2m}{k} \neq 0.$$

Actually, we see that

$$-\sum_{k=2m-l+1}^{l-1} (-1)^{k} \binom{2m}{k} < 0$$

from

$$-\sum_{k=2m-l+1}^{l-1} (-1)^k \binom{2m}{k} = 2\sum_{k=0}^{2m-l} (-1)^k \binom{2m}{k}$$

and

۲

$$\binom{2m}{i} < \binom{2m}{i+1} \text{ for } 0 \le i \le m-1.$$

Therefore, the order of $\zeta_{S_n}^W(s; g)$ at s = -2 is 1.

Theorem 3a. Let n be an odd prime. Suppose that $\sum_{\lambda: \text{hook}} \chi_{\lambda}(g) D_{\lambda} \neq 0$. Then the Witten L-function $\zeta_{S_n}^W(s; g)$ has a simple zero at s = -2.

Proof. We obtain

$$\begin{cases} n \mid D_{\lambda}, \ n^{2} \nmid D_{\lambda} & \text{if } \lambda \text{ is not a hook} \\ n \nmid D_{\lambda} & \text{if } \lambda \text{ is a hook} \end{cases}$$
(18)

by the hook length formula. Here, we may rewrite $\frac{d}{ds}\zeta_{S_n}^W(-2; g)$ as follows:

$$\frac{d}{ds}\zeta_{S_n}^{W}(-2; g) = -\sum_{\lambda:\text{hook}} \chi_{\lambda}(g)D_{\lambda}\log D_{\lambda} - \sum_{\lambda:\text{not hook}} \chi_{\lambda}(g)D_{\lambda}\log n$$
$$-\sum_{\lambda:\text{not hook}} \chi_{\lambda}(g)D_{\lambda}\log \frac{D_{\lambda}}{n}$$
$$= \sum_{\lambda:\text{hook}} \chi_{\lambda}(g)D_{\lambda}\log n + \sum \log \frac{r_1}{r_2}, \tag{19}$$

where r_1 , r_2 are integers which are not divisible by n. By a similar argument to Theorem 3, we see that

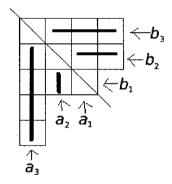
$$\frac{d}{ds}\zeta_{S_n}^W(-2;\ g)\neq 0\tag{20}$$

if

$$\sum_{\substack{\lambda : \text{hook}}} \chi_{\lambda}(g) D_{\lambda} \neq 0.$$

We give some examples for Theorem 3a. For this purpose, we introduce a notation.

Notation 1 (Frobenius characteristics). Let *r* be the length of the diagonal of a partition λ and a_i , b_i be the number of boxes below and to the right of the *i*-th box of the diagonal, reading from lower right to upper left. We write $(b_r, \ldots, b_1 \mid a_r, \ldots, a_1)$ for such a partition λ . Frobenius called $(b_r, \ldots, b_1 \mid a_r, \ldots, a_1)$ the characteristics of the partition. For example, for the partition $\lambda = (4, 4, 3, 1, 1)$, Frobenius characteristics are $(3, 2, 0 \mid 4, 1, 0)$.



Example 4. *If* $g = (1 \ 2 \ 3)$,

$$\chi_{\lambda}(g) = \frac{D_{\lambda}(n-3)!}{n!} \left(\frac{M_3}{2} - \frac{3}{2}n(n-1) \right),$$
(21)

where $M_3 = \sum_{j=1}^{r} [b_j(b_j + 1)(2b_j + 1) + a_j(a_j + 1)(2a_j + 1)].$ Then,

$$\sum_{\substack{\lambda:\text{hook}}} \chi_{\lambda}(g) D_{\lambda} = \frac{1}{n(n-1)(2n-1)} \binom{2n-2}{n-1} \left(-\frac{n^3}{4} - n^2 + \frac{9}{4}n\right). (22)^{-1}$$

Hence it is non-zero for every odd prime $n \ge 5$ *.*

195

- "

Example 5. If g = (12)(34),

$$\chi_{\lambda}(g) = \frac{D_{\lambda}(n-4)!}{n!} (M_2^2 - 2M_3 + 4n(n-1)), \qquad (23)$$

where $M_2 = \sum_{j=1}^{r} [b_j(b_j+1) - a_j(a_j+1)]$ and M_3 is same as in Example 4. Then,

$$\sum_{\lambda:hook} \chi_{\lambda}(g) D_{\lambda} = \frac{1}{n(n-2)} \binom{2n-2}{n-1} (n^2 - 2n - 1).$$
(24)

Hence it is non-zero for every odd prime $n \ge 5$ *.*

Now we give a generalization of Theorem 3a for all $n \in \mathbb{N}$.

Theorem 3b. The Witten L-function $\zeta_{S_n}^W(s; g)$ has a simple zero at s = -2if $\sum_{\lambda} \chi_{\lambda}(g) D_{\lambda} \neq 0$, where \sum_{λ} is the sum over λ 's satisfying $l(n) \nmid D_{\lambda}$.

Proof. By the hook length formula, if $l(n) | D_{\lambda}$, then $l(n)^2 \nmid D_{\lambda}$. Thus, we may prove our claim by a similar way to the proof of Theorem 3a.

Lastly, we discuss the reason why we notice the characters whose degree is non-divisible by l(n). In fact, if the number of the characters whose degree is non-divisible by l(n) is small we calculate the order more easily.

Proposition. Let p(n) be the number of the partition of n. We denote by q(n) the number of the irreducible characters with the degree non-divisible by l(n). Then,

$$\lim_{n \to \infty} \frac{q(n)}{p(n)} = 0.$$

Proof. If *n* is a prime number, *n* itself is l(n) and q(n) = n. On the other hand, Hardy-Ramanujan ([6]) proved that

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi \sqrt{\frac{2n}{3}}\right) \text{ as } n \to \infty.$$
 (25)

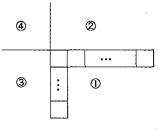
Thus, we obtain

$$\lim_{\substack{n \to \infty \\ n: \text{prime}}} \frac{q(n)}{p(n)} = \lim_{\substack{n \to \infty \\ n: \text{prime}}} 4n^2 \sqrt{3} \exp\left(-\pi \sqrt{\frac{2n}{3}}\right) = 0.$$

If n is not a prime number, we count the number of the characters of which degree is non-divisible by l(n), i.e. the partition which includes a hook of length l(n).

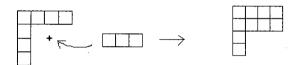
We show that there exist exactly l(n)p(n-l(n)) partitions including a hook of length l(n) in the following manner. Firstly, we add n - l(n) boxes around the hook of length l(n).

Vanishing of Witten L-functions

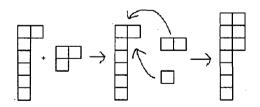


We add boxes in (1), (2), (3) and (4). However, if we add a box in (4), we need add at least l(n) boxes in (2) and (3). So we may add boxes only in (1), (2) and (3).

We denote by k the length of the column in the l(n)-hook. If $n - l(n) + 1 \le k \le 2l(n) - n$ (here we may take such k because there exists a prime number p satisfying $\frac{2m}{3} for all integers <math>m \ge 6$), we may add n - l(n) boxes only in (1). For each hook, we construct a partition of n which includes a hook of length l(n) by making a partition of n - l(n) and sticking that. Thus, we construct p(n - l(n)) partitions for each hook. Therefore, we obtain (3l(n) - 2n)p(n - l(n)) partitions if $n - l(n) + 1 \le k \le 2l(n) - n$.



Next, if $2l(n) - n < k \le n$, we also construct a partition of *n* which includes a hook of length l(n) by making a partition of n - l(n). In this case, we construct the partition as follows. we denote by $\alpha = (\alpha_1, \ldots, \alpha_r)$ the partition of n - l(n). We stick the rows of $\alpha_j \ge n - k + 1$ in (2) and stick the other rows in (1).



Finally, if $1 \le k \le n - l(n)$, the partition of *n* satisfying our assumption is a conjugate partition of $2n - l(n) < k \le n$.

Consequently, we get l(n)p(n - l(n)) partitions which includes a hook of length l(n). Hence, we see that

$$\lim_{n \to \infty} \frac{q(n)}{p(n)} = \lim_{n \to \infty} \frac{l(n)p(n-l(n))}{p(n)}$$

ĸ

$$= \lim_{n \to \infty} l(n) \exp\left[-\pi \left(\sqrt{\frac{2}{3}} - \sqrt{\frac{2(n-l(n))}{3n}}\right)n^{\frac{1}{2}}\right]$$
$$= 0.$$
(26)

By Proposition, we see that counting the number of characters whose degree is non-divisible by l(n) is more effective than counting all partitions.

5. Proof of Theorem 4

Proof. We see that $C(\lambda_1) \cdots C(\lambda_n) \ni I$ holds if and only if $(\lambda_1, \ldots, \lambda_n)$ is the point of outside of the "polygon" (7) by Theorem B.

Assume that one of a sum $\sum_{i=1}^{n} \pm \lambda_i$ satisfies the following inequality:

$$(n-1-2j)\pi < S_n^{2j}(\{\lambda_i\}) \ (\leq (n-2j)\pi)$$

Here, we may assume

$$-\lambda_1 - \cdots - \lambda_{2j} + \lambda_{2j+1} + \cdots + \lambda_n > (n-1-2j)\pi$$

without loss of generality. Then the inequalities are determined only by the number t of minus signs from λ_{2j+1} to λ_n . Then the inequalities are determined as follows:

$$(n - 1 - 2j - 2t)\pi < \underbrace{\sum_{j \neq \lambda_i} \pm \lambda_i}_{2j} + \underbrace{\sum_{n-2j} \pm \lambda_i}_{n-2j} < (n + 1 - 2j - 2t)\pi, \quad (27)$$

where $\underbrace{\sum \pm \lambda_i}_{n=2}$ contains t minus signs.

n-2j Moreover, we obtain

$$\begin{aligned} \zeta_{SU(2)}^{W}(-(n-1); \ C(\lambda_{1}), \dots, C(\lambda_{n})) \\ &= -\frac{\pi}{(2\sqrt{-1})^{n-1} \sin \lambda_{1} \cdots \sin \lambda_{r}} \left(\sum B_{1} \left(\left\langle \frac{S_{n}^{2k}\left(\{\lambda_{i}\}\right)}{2\pi} \right\rangle \right) \right) \\ &= -\frac{\pi}{(2\sqrt{-1})^{n-1} \sin \lambda_{1} \cdots \sin \lambda_{r}} \left(-2^{n-2} - \sum \left[\frac{S_{n}^{2k}\left(\{\lambda_{i}\}\right)}{2\pi} \right] \right), \quad (28) \end{aligned}$$

where $\langle x \rangle = x - [x]$, $B_1(x)$ denotes the Bernoulli polynomial of degree 1 and the sum \sum consists of all of the sum $S_n^{2k}(\{\lambda_i\})$. Therefore, we see that

$$\zeta_{SU(2)}^{W}(-(n-1); C(\lambda_1), \ldots, C(\lambda_n)) = 0$$

by applying (27) to (28).

6. Proof of Theorem 5

Proof. First, we obtain

$$\zeta_{SU(2)}^{W}(-(n-2); C(\lambda_{1}), \dots, C(\lambda_{n})) = \frac{\pi^{2}}{(2\sqrt{-1})^{n-2} \sin \lambda_{1} \cdots \sin \lambda_{n}} \times \left(\sum \left(\frac{S^{2k}(\{\lambda_{i}\})}{2\pi} \right) - \sum B_{2}\left(\left(\frac{S^{2k+1}(\{\lambda_{i}\})}{2\pi} \right) \right) + (-1)^{\frac{n}{2}} \sum B_{2}\left(\left(\frac{S^{n/2}(\{\lambda_{i}\})}{2\pi} \right) \right), \qquad (29)$$

where \sum' consists of the sum S_n^{2k} for $2k < \frac{n}{2}$, \sum'' consists of the sum S_n^{2k+1} for $2k + 1 < \frac{n}{2}$ and \sum^* consists of the sum $S_n^{n/2}$ starting from the positive sign. Here, $B_2(x)$ denotes the Bernoulli polynomial of degree 2. Moreover, we may assume

$$-\lambda_1 - \dots - \lambda_{2j-1} + \lambda_{2j} + \dots + \lambda_n > (n-2j)\pi$$
(30)

as in the proof of Theorem 4. Then the inequalities of λ 's are determined as follows:

$$(n-2j-2t)\pi < \underbrace{\sum_{2j-1} \pm \lambda_i}_{2j-1} + \underbrace{\sum_{n-2j+1} \pm \lambda_i}_{n-2j+1} < (n+2-2j-2t)\pi, \quad (31)$$

where $\sum_{n-2 \neq 1} \pm \lambda_i$ contains *t* minus signs. Therefore, in a similar way to the proof

of Theorem 4, we obtain

$$\zeta_{SU(2)}^{W}(-(n-2); C(\lambda_1), \ldots, C(\lambda_n)) = 0$$

when *n* is an even integer.

References

- [1] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, *Math. Res. Lett.*, **5** (1998) no. 6, 817-836.
 - [2] P. Chebyshev, Mémoire sur les nombres premiers; Mém. Acad. Sci. St. Pétersbourg, 7 (1850) 17-33.
 - [3] F. G. Frobenius, Über die Charaktere der symmetrischen Gruppe, Sitz. König. Preuss. Akad. Wissen., (1900) 516–534. [Gesammelte Abhandlungen III, Springer-Verlag, Heidelberg (1968) 148–166].

199

[4] W. Fulton and J. Harris, Representation theory – a first course, Springer (1991).

11

- [5] J. González-Sánchez, A. Jaikin-Zapirain and B. Klopsch, The representation zeta function of a FAb compact *p*-adic group vanishes at -2, *Bull. London Math. Soc.*, 46 (2013) no. 2, 239-244.
- [6] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 17 (1918) 75–115. [Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ. Providence, RI (2000) 276–309].
- [7] L. Jeffrey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, *Commun. Math. Phys.*, 150 (1992) 593-630.
- [8] L. Jeffrey and A. Mare, Products of conjugacy classes in SU(2), Canad. Math. Bull., 48 (2005) no. 1, 90–96.
- [9] N. Kurokawa and H. Ochiai, Zeros of Witten zeta functions and applications, Kodai Math. J., 36 (2013) 440-454.
- [10] J. Min, Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory, 134 (2014) 240-257.
- [11] K. Onodera,/A functional relation for Tornheim's double zeta functions, *Acta Arith.*, **162** (2014)/337–354.
- [12] E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys., 141 (1991) 153-209.

Sec. 9

