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Abstract.  Let r5(n) be the number of ways of writing n as a sum of five integer squares. In his study of this

function, Bateman was led to formulate a conjecture regarding the sum

> an—j?

ljls+/n

where o (n) is the sum of positive divisors of n. We give a proof of Bateman’s conjecture in the case n is square-free

and congruent to 1 (mod 4).

2000 Mathematics Subject Classification: 11M06, 20C15.

1. Introduction

Let r;(n) denote the number of solutions to the Diophantine equation

2 2

txl=n (meZ,1<ix<s).

We have the generating function for r;(n):

5

x x 2
Donstme* = > ¢’
n=0 j=—00

Thus, we see

repi(n) = D rs(n— j2).
ljl<v/n

a.n

1.2)

(1.3)

The study of 7s(n) has a long history. If s is even, the idehtity (1..2-) leads to ﬂle appliéétion of iniegral ;'e.ight modular

forms because

is the classical #-function which is a modular form of weight % for I'p(4).

If 5 is odd, one can use the theory of half-integral weight modular forms to analyse r;(n). Alternatively, one can
also use the circle method of Ramanujan (that was developed by Hardy and Ramanujan in their study of the partition
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function and later by Hardy and Littlewood in their work on Waring’s problem) to derive asymptotic formulas.
Indeed, ué\ing the circle method, Hardy [4] showed :

s/2 oo s =2nin.
I'(s/2) k=1 h(mod k) k
(h,k)=1

. where I'(s) is tﬁe Gamma function and

o
Gl = e 5" .

j=1

See Chapter 5 of [6] for an introduction to the circle r{lethod. In particular, for s = 5,

rs(n) = gn2n3/2 >, Ac(n) + 0% ' (1.5)
k=1

where

S ik
Ak(n)= Z (G(Il’ia k)) e—_’h;(i.

h(mod k)
(h,k)=1

In his interesting paper [1], Bateman used an elementary method to smdy r5(n). His method alloWe_d him to
i‘n\)prove Hardy’s error term in (1.5) from O (n>/*) to O (n!*€). His “naive” approach begins with the formula

rs(r) = D> ra(n—j*
ljls/n

~ and then uses the classical formula of Jacobi for r4(n). Let us recall this formula.
Let o (n) denote the sum :
o(n) = Z d.

din
It is customary to put o (0) = —%. For n > 0, define ¢*(n) by
n ifd1n,
o= ]°® +
o(n) —4o (%) if 4|n.
Then, Jacobi’s formula for r4(n) is given by
rq(n) = 8a*(n). : (1.6)
Using (1.3) and (1.6), one can write r5(n) as '
, AN
rs(n) N ) 2 n— J2
. = Za*(n—;_): Za(n—])—420‘ 7] )

ljlsvn lilsv/n lilsvm
' j*=n(4)

Bateman derived asymptotic formulas for the sums on the right hand side of the equation (1.7) and improved the
error term in (1.5). More precisely, he showed

2
> otm- D ="nnm 3 A + 0w +logn)) (1:8)

lil<J/n k>0
 kodd
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where for prime p,
o0
xp) =D ALi(n).
o

It is worth noting that the main term in (1.8) is the same as Hardy’s exact formula for 31 = Z' jl<yn @ *(n — j2).
With this in mind, Bateman conjectured in the same paper in 1995 that perhaps there is a similar exact formula for
the sum

Z o(n— j2).

lil<sv/n
His conjecture can be stated as follows:
Conjecture. [Bateman’s Conjecture]
> a(n—jb, if n is not a perfect square, ‘

z® 3 (5 xe®) lil<v/n

——n/( )ZA()— 1.9)

6 3 x>0 > o(n— j¥) +2n, ifnisaperfect square.

k odd ljl/n

Denote the sum in the left hand side of (1.9) by S(r). One can see that the conjecture is trivially true in the case
when n = 2, 3 (mod 4), because in that case o (n — j2) = o*(n — j2) and y2(n) = 5/3 — x2(n)/3. Our goal in this
paper is to investigate S(n) in the case when n = 1 (mod 4) and » is square-free. ,

Bateman’s conjecture was proved by Knopp and Bateman in [2] in 1998 using the theory of half-integral weight
modular forms. In this paper, we give an “elementary” proof of Bateman’s conjecture in the case n = 1(mod 4) and
n square-free. We do not use the theory of half integral weight modular forms. The essential non-trivial ingredient is
Siegel’s formula (as refined by Zagier) for ¢k (—1) where K is a real quadratic field and ¢k (s) is the Dedekind zeta
function of XK. It is likely the method extends to deal with the case when n is not square-free, however, we have not
pursued this here for the sake of brevity.

2. Preliminaries

"In the first half of this section, we recall a few results about congruences which will be an important tool in the
proof of our main theorem. In the other half, we recall some definitions from algebraic number theory and state the
Siegel-Zagier formula for special values of certain Dedekind zeta functions. These will be used in the proof of our
main result (Theorem 3.5).

Definition 1. Suppose that (a, m) = 1. Then a is called a quadratic residue of m if the congruence x*> = a(mod m)
has a solution. If there is no solution, then a is called a quadratic non-residue of m.

Hensel’s lemma provides a criterion for “hftmg solutlons ofa polynomlal modulo successive powers ofa prlme p-

We recall this below — - - - e —— D

Lemma 2.1 (Hensel’s lemma). Let p be a prime and k an arbitrary positive integer. Let f € Z[x]. If a is a
solution of f(x) = O(mod p) and p t f'(a), then, for every k > 2, there exists precisely one solution b of f x) =
0(mod p*) such that b = a(mod p).

For a proof of Hensel’s lemma, see p. 157 of [5].
Lemma 2.2. If p is an odd prime and (a, p) = 1, then x* = a(mod p*) has exactly two solutions if a is a quadratic
residue of p, and no solutions if a is a quadratic non-residue of p.
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Proof. First, it is clear that if a is a quadratic residue of p, then the congruence x2 = a(mod p) has exactly two roots.
Now setting f(x) = x2 — a, f'(a) = 2a, so that using lemma (2.1), we deduce that the equation x> = a(mod p¥)
has exactly two roots for each k if a is a quadratic residue. Since every solution of this congruence also solves the
congruence x2 = a(mod p), there can be no solution if a is a quadratic non-residue of p. O

Lemma 2.3. Ifp is an odd prime and p|n, say, n = pPno, p t no, then the number of solutions of x*> = a(mod p*)
is given by,

1+("7°), if B < a,p is even.
0, if B < a, B is odd.

%2857, B> a.
where ¢ (n) denotes the Euler totient function.

Proof. Given the congruence x2 = pfng (mod p®), it is clear that p{x? which implies that p|x. Let x = p?t where
(z, p) = 1. So we have p¥ = pfny (mod p%).

(i) When § < a, p#|p? , implying that 2y > f. When we divide this congruence by p#, we get
p? 712 = no(mod p*~F),

where 2y > S. But p { np and since (¢, p) = 1,2y = f.If B is even, then there is exactly one solution for y
and then t2 = no(mod p®~#) and the number of choices for such ¢ is 1 + ( ) If 8 is odd, there is no solution.
(ii) When § > a, we get '

pz” 2= O0(mod p"‘) '

where a/2 < y < a. Hence, the number of soluﬁoﬁs in this case is Z‘;’ >a/2 d(p*=7).

For p = 2, the story is completely different and is given by the following lemma.
Lemma 24. Supposea is odd Then

(i) the congruence x? = a(mod 2) is always solvable and has exactly one solution;
(ii) the congruence x? = a(mod 4) is solvable if and only if a = 1(mod 4), in which case there are precisely two
solutions;
(iii) the congruence x* = a(mod 2*), with k > 3, is solvable if and only if a = 1(mod 8), in which case there are
exactly four solutions. If xo is a solution, then all solutions are given by £x¢ and £x¢ + 2k-1,

Proof The first two cases are clear. For case (iii), suppose x2 = a(mod 2") has a solution xg. Then obviously

0 = a(mod 8), and xg is odd since a is odd. But the square of an odd number is congruent to 1 modulo 8, and hence
a = 1(mod 8) This proves the necessity of the condition ¢ = 1(mod 8) for the existence of a solution. Moreover,
(—x0)? = x = a(mod 2¥) and (£xg + 2¢¥~1)% = x2 + 2%xg +2%2 = x2 = a(mod 2¥), since 2k — 2 > k. Itis
easily verlﬁed that the four numbers +xg and +xp + 2" I are incongruent modulo 2% Hence, the congruence has at
least four solutions if there are any.

It remains to verify that the condition on a is sufficient and that there are at most four solutions. We show
sufficiency by induction on k. For the base case k = 3, it is clear as x> = 1(mod 8) has the solution x = 1. Now
assume that x2 = a(mod 2¥) is solvable with a solution xo. Then we know that +xo and xo + 2k=1 solve the
congruence and we will prove that one of them also solves the congruence

x2 = a(mod 2Ft1). 2.1)
We know that xg = a + 2*n for some integer n. If n is even, then xq is a solution of (2.1). If n is odd, then
o +2671)? = x§ + 26x0 + 2%72 = a + 2% (n + x0) + 2%72 = a(mod 2**),’

because.n + xp is even (as both # and xo are odd) and (2k — 2) > (k + 1). This completes the induction step.
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Finally, in the interval [1, 2¥], there are 2= integers a that are congruent to 1 modulo 8. For each such number a
we have already found 4 different solutions of the congruence x2 = a(mod 2¥) in the same interval, all of them odd.
Taking all these solutions together we get 4.2k=3 = 2*¥—1 solutions. But there are exactly 2¥~1 odd numbers in the
interval, so there is no room for any more solutions. Hence, each equation has exactly four solutions. a

In the rest of the section we will assume the reader is familiar with algebraic number theory. If not, we refer the
reader to [3] for an introduction to the subject. However, to keep the article self-contained, we review some basic
facts.

We begin by discussing the main properties of the zeta function of a number field. Let X be an algebraic number
field of degree n and let Ok denote the ring of integers of K. For any non-zero ideal 2 of Ok, the norm N (2) is
defined as the number of elements in the quotient Ok /2 which is finite by a theorem of Dedekind. The Dedekind
zeta function ¢k (s) is defined for Re (s) > 1 as the infinite series

1
(k(s) = Zm:(N_Ql)—‘-’

where the sum is over all non-zero ideals in Og . Also, for Re (s) > 1,

1 -1
e =T1(1~ )

P

where the product is over all prime ideals in Ok . {k (s) can be analytically continued to all of C, except for a simple
pole at s = 1. Moreover, it has a functional equation relating {x (s) to {x (1 — 5). In the case of a totally real field K,
this functional equation takes the form

F(s)=F( —5), 2.2)
where

F(s) = D"z ~'”/2r( ) & (s), 2.3)

where D is the absolute discriminant of K and n = [K : Q].
In particular, we have

(k(—2m) =
and
k(1 = 2m) = (1" @m — Y227 a2y D212 (2m),
form=1,2,.
Thus, it is equ1valent to give values of (g (s) ats =2,4,6,... orats = —1, =3, —5,...... Hecke conjectured that
these numbers namely {x(—1), {x(—3), ... are rational; in fact, they generalise Bernoulli numbers (corresponding

to the special case K = Q). Siegel proved this and gave an explicit formula for these numbers in [8] which is also
stated in p. 59 of [10]. For the sake of simplicity, we will content ourselves by stating the specialization of this
formula to a real quadratic number field.

In [10], Zagier exploited the simple arithmetic of quadratic fields to evaluate in elementary form the terms
appearing in Siegel’s formula , thus glvmg a more simplified expression for ¢(x(1 — 2m) (K a quadratlc ﬁeld)
involving only rational numbers. Define s; X (2m) as

s @m) = D x (N> eam—1(A/)* D), 24)

il
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where D is the discﬁnﬁnant of K, the arithmetié function e, (n) is defined as

n— .xz |
er (n) = Z G, ( 2 , 2.5)
HENG z
x2=n(mod 4)

where r is a positive integer and not a Iﬁerfect square and o,(n) = Zdln dr.
Theorem 2.5 (Siegel-Zagier formula). Letm = 1,2, ... be a natural number and K a quadratic field. Then,
. :
¢x(1=2m) =43 bi(4m)sf 2m), (2.6)
=1 :

wherer = [%] + 1 and the coefficients bj(4m) are computable rational numbers which are tabulated on p.60 of [10]
for1 <1 <10. .

For a proof of the Siegel-Zagier formula, see section 3 of [10]. For m = 1, the formula reduces to
1
- =— . 2.
¢k (=1) 6061(0) @7

For further reading on the Siegel’s formula, we refer the interested reader to [8] and [10].

3. Bateman’s conjecture in the case n = 1(mod 4) and square-free

In this section, we first reformulate Bateman'’s conjecture and then show that in the case when n is square-free and
congruent to 1 modulo 4, the conjecture is true.
Using (1.7) and (1.9), the conjecture can be reformulated in terms of the sum

2
$*(n) = 56_,13/2 (§ - fm(n)) D A

3 3 k>0
k odd
as follows:
4 > o (#) , if n is not a perfect square
\jl<o/m ' A
j*=n(d) : '
§*(n) = | i o | 3.1)
4 3 o (7L) +2n,  if n is a perfect square.
lil<v/n
| j2=n()

Forn € N, denote by f;(n) the number of integers m such that
m?=n(mod), 0<m<d-1
Clearly,. for an odd primé p, fp(n) = 1+ (%) where (-) denotes the Jacobi symbol.
Lemﬁla 3.1. Forp odd, n = 1 (mod 4) and square-free, and a > 1
from= |1 F () ptn
0, . pln.

Proof. If p { n, then this follows directly using Lemma 2.2. If p|n, then the result follows from Lemma 2.3. a
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Lemma3.2. With fa(n) defined as before, we have

»

Proof. This follows directly from Lemma (2.4).

Lemma 3.3.

> 02 S )

d>0 c>0
d odd ¢ odd

where fq(n) and A (n) are defined as before.
Proof. See pg. 134 of [1] or Lemma 2.12 of [9].

Lemma 3.4. ForRe (s) > 0, n = 1(mod 4) and square-free,

=2, n=1(mod4)
fpm)=14, B>2, n=1(@mod?8s)
0, f>2, n=5(mods8).

d>0
dodd -

where [k (s) is the Dedekind zeta function associated to the field K = Q(/n).

Proof. Since f;(n) is multiplicative function of d, we have,

L8~ TTa+ 5p0p™ + fpp™ +--)
ds p
d>0 p odd
d odd

pln,p odd

[ [T A+ 50~ + famp™ )] [ [T +fHmp~+ fmp™ +-

tn, p odd

For d odd, using Lemma 3.1, the above is same as

[ 1+(2) 1+
L
| pin,p odd P pln,p odd

f(n) 2 2= (3) Y (¢ ®)
Z (2s+1)( 28 (5(2s)

LI (e(@)5 >} [ )}
(

139
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L(S,Xn)H 1-{2 p~*
_ { zsplz_nl( (,,) )zs } I:((S)H (1— %)} [ I (1+is)
[, 1= p7%)  [pp. (1 — p7%) 2 P pln,p#2 P
LG, ) (2= (5) 1 ( L) ( 1)

where (2, (s) = () [ ] p|2n(1 —p~)and y,(p) = (%) is the primitive quadratic character modulo n and L(s, xn) is
the L—function attached to y,. Since ¢(s)L(s, xn) = ¢k (s), where {x (s) is the Dedekind zeta function associated
to the field K = Q(/n), we get

fd(n) . CK(S) 2s_(%) 95 L
()50 (M

d odd
_( z ) 2 -(%) (ms))
T\ +1 28 c@2s))’

which is what we wanted to show. O

Theorem 3.5.  For n square-free and congruent to 1 modulo 4,

o,
* _ n—j
S*my=4| > a( 7 )
lil<vn
jt=n(4)

Proof. By definition,

§*(n) = Zon? (— - tem) 3 4w,

3 k>0
k odd

Using Lemma (3.3), we get

S*(n) = 4 3/2( 4){2('1)) > fd(n)‘

d>0
d odd

Now, applying Lemma (3.4) for s = 2, we get

S*(n) = 4 2372 (5 4L2("_)) g( _ (_%_)_) (k(2)

373 4 )@

Using (2.2), we get (x (2) = n=3/24x4rx (—1). We also know that ¢ (4) = g—g Using these, we get,

s/ $*(n) = 44( @) (§ 3 4X2(n))47t4CK(_1)

4 3 3 I40))

=43 x 6)(1 - @) (g - A””T(")) Cx(=1).
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Now, applying (2.7), we get

Also,

(See p. 135 of [1]). Using these results, we get

_ 2
Smy=E*mw)| > a(” 4] )
lils/n
j2=n(4)

where

44 (3)
o =Yt (- 9) (S 2

Now, using Lemma (3.2), for n = 1(mod 8),

and for n = 5(mod 8),

s 2 0 1
= 228 24 =] 226 8
Using the fact that
n 1, n = 1(mod 8)
(5) - [—1, n = 5(mod 8),
we get that for n = 1(mod 4), E*(n) = 4. This completes the proof. a

4. Concluding remarks

It should be possible to extend our results for all moduli. Part of the dlfﬁculty in domg this is ﬁrst to extend Zagler s
results to allow for this case and we hope to return to this at a later date.
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