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Abstract. Let r5 (n) be the number of ways of writing n as a sum of five integer squares. In his study of this 
function, Bateman was led to formulate a conjecture regarding the sum 

L a(n-j2) 

Ul:::✓n 

where a(n) is the sum of positive divisors of n. We give a proof of Bateman's conjecture in the case n is square-free 
and congruent to 1 (mod 4). 

2000 Mathematics Subject Classification: 11M06, 20Cl5. 

1. Introduction 

Let Ts (n) denote the number of solutions to the Diophantine equation 

We have the generating function for Ts(n): 

Thus, we see 

Ts+I (n) = L Ts(n - j 2
). 

lil:s:.Jn 

(1.1) 

(1.2) 

(1.3) 

The study of Ts (n) has a long history. Ifs is even, the identity (1.2) leads to the application ofintegral weight modular 
forms because 

J=-00 

is the classical 0-function which is a modular form of weight ½ for r 0 (4). 
Ifs is odd, one can use the theory of half-integral weight modular forms to analyse Ts(n). Alternatively, one can 

also use the circle method of Ramanujan (that was developed by Hardy and Ramanujan in their study of the partition 
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function and later by Hardy and Littlewood in their work on Waring's problem) to derive asymptotic formulas. 
Indeed, using the circle method, Hardy [4] showed 

\ 
ns/2 

12 1 ~ "'""' (G(h, k))s -2irinh 14 rs(n) = --ns - ~ ~ . --- e---r- + O(ns ) 
r(s /Z) k=l /i(mod k) k 

(1.4) 

(h,k)=I 

. where r(s) is the Gamma function and 

k 2 ·h·2 

G(h,k)=I>~· 
j=I 

See Chapter 5 of [6] for an introduction to the circle ~etllod. In particular, for s = 5, 

4 00 . 

rs(n) = -;r2n3/2 L Ak(n) + O(n5/4) 
3 

k=l 

(1.5) 

where 

A ( ) "'""' (G(h, k)) 5 
-2irinh 

k n = ~ k e---r-. 
h(mod k) 
(h,k)=I 

In his interesting paper [1], Bateman used an elementary method to study rs(n). His method allowed him to 
i'l~prove Hardy's error term in (1.5) from O(n514) to O(n 1+€); His "naive" .approach qegins with the form~la 

"'""' . 2 rs(n) = ~ r4(n - j ) 

lil::::Jn 

and then uses the classical formula of Jacobi for r 4 (n). Let us recall this formula. 
Let a (n) denote the sum 

It is customary to put a (0) = - 2~. For n :::: 0, define a* (n) by 

a*(n) = {a(n) if 4 f n, 
a(n) - 4a (l) if 4jn. 

Then, Jacobi's formula for r4(n) is given by 

Using (1.3) and (1.6), one can write rs(n) as 

rs (n) "'""' * 2 "'""' 2 "'""' ( n - j 
2

) -
8

- = ~ a (n - j) = ~ a(n - j )-4 ~ a -
4
-

lil::::Jn lil::::✓,i lil::::✓,i 
j 2=n(4) 

(1.6) 

'"'-. 
(1.7) 

Bateman derived asymptotic fonnulas for the sums on the right hand side of the equation (1.7) and improved the 
error term in (1.5). More precisely, he showed 

1r2 L u•(n - j2) ~ 6"n312x2(n) L Ak(n) + O(n(l + logn)3
) (1~ 

lil::::Jn k>O 
k odd 
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where for prime p, 

00 

Xp(n) = LAPj(n). 
j=O 

It is worth noting that the main term in (1.8) is the same as Hardy's exact formula for rt) = Ljjl::::-Jn 17*(n - j 2). 

With this in mind, Bateman conjectured in the same paper in 1995 that perhaps there is a similar exact formula for 
the sum 

His conjecture can be stated as follows: 

Conjecture. [Bateman's Conjecture] 

L 17(n - j2). 

lil::::Jii" 

{ 

L 17(n - j2), 

1C2 n3/2 (~ - x2(n)) L Ak(n) = lil:5-Jn 
6 3 3 k>O L 17 (n - j2) + 2n, 

k odd lil::5-Jn 

if n is not a perfect square, 

(1.9) 
if n is a perfect square. 

Denote the sum in the left hand side of (1.9) by S(n). One can see that the conjecture is trivially true in the case 
when n = 2, 3 (mod 4), because in that case 17 (n - j2) = 17*(n - j2) and x2(n) = 5/3 - xz(n)/3. Our goal in this 
paper is to investigate S(n) in the case when n = 1 (mod 4) and n is square-free. 

Bateman's conjecture was proved by Knopp and Bateman in [2] in 1998 using the theory of half-integral weight 
modular forms. In this paper, we give an "elementary" proof of Bateman's conjecture in the case n = l(mod 4) and 
n square-free. We do not use the theory of half integral weight modular forms. The essential non-trivial ingredient is 
Siegel's formula (as refined by Zagier) for (K (-1) where K is a real quadratic field and (K(s) is the Dedekind zeta 
function of K. It is likely the method extends to deal with the case when n is not square-free, however, we have not 
pursued this here for the sake of brevity .. 

2. Prelbninaries 

In the first half of this section, we recall a few results about congruences which will be an important tool in the 
proof of our main theorem. In the other half, we recall some definitions from algebraic number theory and state the 
Siegel-Zagier formula for special values of certain Dedekind zeta functions. These will be used in the proof of our 
main result (Theorem 3.5). 

Definition 1. Suppose that (a, m) = 1. Then a is called a quadratic residue of m if the congruence x 2 = a(mod m) 
has a solution. If there is no solution, then a is called a quadratic non~residue of m. 

Hensel's lemma provides a criterion for "lifting" solutions of a polynomial modulo successive powers of a prime p. 
We recall this below. 

Lemma 2.1 (Hensel's lemma). Let p be a prime and k an arbitrary positive integer. Let f E Z[x]. If a is a 
solution off (x) = 0(mod p) and p f f' (a), then, for every k ~ 2, there exists precisely one solution b off (x) = 
0(mod pk) such that b = a(mod p). 

For a proof of Hensel's lemma, seep. 157 of [5]. 
! 

Lemma 2.2. If pis an odd prime and (a, p) = 1, then x 2 = a(mod pk) has exactly two'solutions if a is a quadratic 
residue of p, and no solutions if a is a quadratic non-residue of p. 
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Proof First, it is clear that if a is a quadratic residue of p, then the congruence x 2 = a (mod p) has exactly two roots. 
Now setting f(x) = x 2 - a, f'(a) = 2a, so that using lemma (2.1), we deduce that the equation x 2 = a(mod pk) 
has exactly two roots for each k if a is a quadratic residue. Since every solution of this congruence also solves the 
congruence x 2 = a(mod p), there can be no solution if a is a quadratic non-residue of p. □ 

Lemma 2.3. If p is an odd prime and p In, say, n = pP no, p f no, then the number of solutions of x2 = a (mod pa) 
is given by, 

{ 

1 + ( n;) , if fJ < a, fJ is even. 

0, if fJ < a, fJ is odd. 

L;~a/2</J(pa-y), if/J ::'.: a. 

where ¢ (n) denotes the Euler totient function. 

Proof Given the congruence x2 = pPno (mod pa), it is clear that plx2 which implies that pix. Let x = p 1 t where 
(t, p) = 1. So we have p2Y = pPno (mod pa). 

(i) When p < a, pP lp2Y, implying that 2y :::: /J. When we divide this congruence by pP, we get 

p2Y-Pt2 = no(mod pa-P), 

where 2y :::: /J. But pf no and since (t, p) = 1, 2y = /J. If fJ is even, then there is exactly one solution for y 
and then t2 = no(mod pa-P) and the number of choices for such t is 1 + ( ~). If /J is odd, there is no solution. 

(ii) When /J :::: a, we get 

p21 t2 = O(mod p~) · 
where a/2 ::: y ::: a. Hence, the number of solutions in this case is "'2:.; ~a/Z </J(pa-y ). 

□ 

For p = 2, the story is completely different and is given by the following lemma . 
. , 

Lemma 2.4. Suppose a is odd. Then 

(i) the congruence x 2 = a(mod 2) is always solvable and has exactly one solution; 
(ii) the congruence x 2 = a(mod 4) is solvable if and only if a = 1 (mod 4), in which case there are precisely two 

solutions; 
(iii) the congruence x 2 = a(mod 2k), with k :::: 3, is solvable if and only if a = l(mod 8), in which case there are 

exactly four solutions. If xo is a solution, then all solutions are given by ±xo and ±xo + 2k- I. 

Proof The first two cases are clear. For case (iii), suppose x 2 = a(mod 2k) has a solution xo. Then obviously 
xJ = a(mod 8), and xo is odd since a is odd. But the square of an odd number is congruent to 1 modulo 8, and hence 
a = l(mod 8). This proves the necessity of the condition a = l(mod 8) for the existence of a solution. Moreover, 
(-xo)2 = x5 = a(mod 2k) and (±xo + 2k-I)2 = x5 ± 2kxo + 22k-2 = x5 = a(mod 2k), since 2k - 2:::: k. It is 
easily verified that the four numbers ±xo and ±xo + 2k- I are incongruent modulo 2k. Hence, the congruence has at 
least four solutions if there are any. 

It remains to verify that the condition on a is sufficient and that there are at most four solutions. We show 
sufficiency by induction on k. For the base case k = 3, it is clear as x 2 = l(mod 8) has the solution x = 1. Now 
assume that x 2 = a(mod 2k) is solvable with a solution xo. Then we know that ±xo and ±xo + 2k-l solve the 
congruence and we will prove that one of them also solves the congruence 

x 2 = a(mod 2k+1). 

We know that x5 = a + 2k n for some integer n. If n is even, then xo is a solution of (2.1 ). If n is odd, then 

(xo + 2k-1) 2 = x5 + 2kxo + 22k-Z =a+ 2k(n +xo) + 22k-Z = a(mod 2k+1
), · 

because.n + x0 is even (as both n and xo are odd) and (2k - 2) :::: (k + 1). This completes the induction step. 

(2.1) 
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Finally, in the interval [l, 2k], there are 2k-3 integers a that are congruent to 1 modulo 8. For each such number a 
we have already found 4 different solutions of the congruence x 2 = a(mod 2k) in the same interval, all of them odd. 
Taking all these solutions together we get 4.2k-3 = 2k-l solutions. But there are exactly 2k-l odd numbers in the 
interval, so there is no room for any more solutions. Hence, each equation has exactly four solutions. D 

In the rest of the section we will assume the reader is familiar with algebraic number theory. If not, we refer the 
reader to [3] for an introduction to the subject. However, to keep the article self-contained, we review some basic 
facts. 

We begin by discussing the main properties of the zeta function of a number field. Let K be an algebraic number 
field of degree n and let OK denote the ring of integers of K. For any non-zero ideal 2l. of OK, the norm N(Ql.) is 
defined as the number of elements in the quotient OK /Ql. which is finite by a theorem of Dedekind. The Dedekind 
zeta function (K (s) is defined for Re (s) > 1 as the infinite series 

where the sum is over all non-zero ideals in OK. Also, for Re (s) > 1, 

( 
1 )-

1 

(K(s) = TI 1 - (N~)s ' 
\J3 

where the product is over all prime ideals in OK. ( K (s) can be analytically continued to all of C, except for a simple 
pole at s = 1. Moreover, it has a functional equation relating ( K (s) to ( K (1 - s). In the case of a totally real field K, 
this functional equation takes the form 

F(s) = F(l - s), (2.2) 

where 

(2.3) 

where Dis the absolute discriminant of Kand n = [K : Q]. 
In particular, we have 

and 

form= 1, 2, .... 

Thus, it is equivalent to give values of (K(s) at s = 2, 4, 6, ... or at s = -1, -3, -5, .... Hecke conjectured that 
these numbers namely ( K ( -1), ( K ( -3), . . . are rational; in fact, they generalise Bernoulli numbers ( corresponding 
to the special case K = Q). Siegel proved this and gave an explicit formula for these numbers in [8] which is also 
stated in p. 59 of [10]. For the sake of simplicity, we will content ourselves by stating the specialization of this 
formula to a real quadratic number field. 

In [10], Zagier exploited the simple arithmetic of quadratic fields to evaluate in elementary form the terms 
appearing in Siegel's formula , thus giving a more simplified expression for (K(l - 2m) (K a quadratic field), 
involving only rational numbers. Define sf (2m) as · · /_ 

sf (2m) = "'_Ex(j)j2m-1e2m-1((l/j)2D), 
jll 

(2.4) 
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where D is the discriminant of K, the arithmetic function er (n) is defined as 

er(n) = L Gr /i.n ~ x 2

), 

lxl:::✓ri .\ 

(2.5) 

x2sn(mod 4) 

where r is a positive integer and not a perfect square and ar(n) = Ldln dr. 

Theorem 2.5 (Siegel-Zagier formula). Let m = 1, 2, ... be a natural number and Ka quadratic field. Then, 

r 

(K(l - 2m) = 4 Lb1(4m)sf (2m), (2.6) 
l=l 

where r = [¥] + 1 and the coefficients b1(4m) are computable rational numbers which are tabulated on p.60 of [JO] 
for 1:::: l.:::: 10. 

For a proof of the Siegel-Zagier formula, see section 3 of [10]. Form = 1, the formula reduces to 

1 
(K(-1) = 

60
e1(D). 

For further reading on the Siegel's formula, we refer the interested reader to [8] and [10]. 

3. Bateman's conjecture in the case n = l(mod 4) and square-free 

(2.7) 

In this section, we first reformulate Bateman's conjecture and then show that in the case when n is square-free and 
congruent to 1 modulo 4, the conjecture is true. 

Using (1.7) and (1.9), the conjecture can be reformulated in terms of the sum 

as follows: 

S*(n) = 

* 1C2 3/2 (5 4 ) ~ . S (n) = -n - - -x2(n) ~ Ak(n) 
6 3 3 k>O 

k odd 

if n is not a perfect square 

j 2sn(4) 

4 L a ( n-/) + 2n, . if n is a perfect square. 
Ul:::✓ri 
j 2sn(4) 

For n E N, denote by /d (n) the number of integers m such that 

~
2 = n(mod~, 0 :::: m :::: d - 1. 

Clearly, fo~ an odd prime p, Jp(n) = 1 + (i) where U denotes the Jacobi symbol. 

Lemma 3.1. For p odd, n = 1 (mod 4) and square-free, and a. > 1 

{ 

1 + (!!.) 
fpa(n) = p ' 

0, 

pfn 

pin. 

(3.1) 

Proof If pf n, then this follows directly using Lemma 2.2. If pin, then the result follows from Lemma 2.3. D 
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Lemma 3.2. With fd(n) defined as before, we have 

1
2, p = 2, n = l(mod4) 

f2P(n)= 4, /3>2, n=l(mod8) 

0, p > 2, n = 5(mod 8). 

Proof. This follows directly from Lemma (2.4). 

Lemma3.3. 

L, f:~) = 7r
8

2 

L, Ac(n) 
d>O c>O 

d odd c odd 

where fd(n) and Ac(n) are defined as before. 

Proof. See pg. 134 of [1] or Lemma 2.12 of [9]. 

Lemma 3.4. For Re (s) > 0, n = 1 (mod 4) and square-free, 

where (K(s) is the Dedekind zeta function associated to the field K = Q(,Jn). 

Proof Since fd(n) is multiplicative function of d, we have, 

L, f:~) = IT (1 + fp(n)p-s + fp2(n)p-2s + ... ) 
d>O p odd 

d odd 

For d odd, using Lemma 3 .1, the above is same as 

139 

□ 

□ 
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where (2n(s) = ((s) Ilpl2n(l - p-s) and Xn(P) = (i) is the primitive quadratic character modulo 11; and L(s, Xn) is 
the L-function attached to Xn• Since ((s)L(s, Xn) = (x(s), where (K(s) is the Dedekind zeta function associated 
to the field K = (Ql(.Jn), we get 

which is what we wanted to show. 

Theorem 3.5. For n square-free and congruent to I modulo 4, 

Proof. By definition, 

Using Lemma (3.3), we get 

""' · (n-j2) S*(n) = 4 L..., a --
lk,.Jii 

4 

i2=n(4) 

S*(n) = ~n312 - - - x2(n) L Ak(n). 
2 (5 4 ) · 

6 3 3 k>O 

k odd 

S*(n) = ~n3/2 (~ _ 4x2(n)) L id~). 
3 3 3 d>O d 

d odd 

Now, applying Lemma (3.4) for s = 2, we get 

S*(n) = ~n3/2 (~ _ 4X2(n)) ~ (i _ (~)) (K(2) 
3 3 3 5 4 ((4) 

Using (2.2), we get(x(2) = n-3124n 4(K(-I). We also know that ((4) =~~.Using these, we get, 

I I 

□ 



Now, applying (2.7), we get 

Also, 
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1 
(K(-1) = -

60 
I: (n-j2) 

Ul:s:Jn a - 4-

J2=n(4) 

(
~ _ 4x2(n)) = 4 ~ f2ft(n). 
3 3 ~ 22P 

P=2 

(Seep. 135 of [1]). Using these results, we get 

where 

S*(n) = E*(n) I: (n-j2) 
IJl:s:.Jn a - 4-

J2=n(4) 

E*(n) = 44 
x 6 (l _ (~)) (~ hJJ(n)) . 

60 4 ~ 22P 
P=2 

Now, using Lemma (3.2), for n = 1 (mod 8), 

and for n = 5(mod 8), 

Using the fact that 

00 f2ft(n) 2 00 4 5 
L22fi= 24 + L22P = 24 
P=2 P=3 

00 
f2ft(n) 2 

00 
0 1 

L22P= 24 + L22P = s· 
P=2 P=3 

n = l(mod 8) 

n = 5(mod 8), 

we get that for n = l(mod 4), E*(n) = 4. This completes the proof. 

4. Concluding remarks 

141 

D 

It should be possible to extend our results for all moduli. Part of the difficulty in doing this is first to extend Zagier's 
results to allow for this case and we hope to return to this at a later date. 
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