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Abstract. We introduce some methods to construct centrally symmetric triangulated manifolds. In particular, we 
show the existence of some infinite series of centrally symmetric triangulated manifolds. We also enumerate centrally 
symmetric triangulated 2-, 3-manifolds with few vertices. 
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1. Introduction 

A map M is an embedding of a graph G on a surface S such that the closure of components of S\ G, called the faces 
of M, are homeomorphic to 2-discs. A map M is said to be a polyhedral map if the intersection of any two distinct 
faces is either empty, a common vertex, or a common edge. Here map means polyhedral map. 

For a vertex u in a map X, the faces containing u form a cycle (called the face-cycle at u) Cu in the dual graph 
of X. So;Cu is of the form (F1,1-·· ·-F1,n 1)-···-(Fk,J-···-Fk,nk)-F1,1, where F;,e is a p;-gon for 1::: e.::: n;, 
1 .::: i ::: k, Pr f=. Pr+l for 1 .::: r ::: k - 1 and Pn f=. Pl. A map X is called semiequivelar ([2], we are including 
the same definition for the sake of completeness) if Cu and Cv are of same type for all u, v E V (X). More precisely, 
there exist integers Pl, ... , Pk ::=: 3 and n1, ... , nk ::=: 1, p; f=. Pi+I (addition in the suffix is modulo k) such that 
Cu is of the form as above for all u E V (X). In such a case, X is called a semiequivelar map of type [p7 1

, ••• , PZk] 
( f [ II] Ilk]) or, a map o type p 1 , ... , Pk • 

All simplicial complexes considered in this paper are finite and abstract. The vertex set of a simplicial complex 
X will be denoted by V(X). For A c V(X), the induced subcomplex X[A] of X on the vertex set A is defined by 
X[A] := {a E X: a c A}. By a triangulated manifold we mean a simplicial complex whose geometric carrier is a 
topological manifold. 

· We call a simplicial complex (or a map) K centrally symmetric (or CS) if there exists an involution I E Aut(K) 
such that l(a) n a = 0 for each face a of K. In that case, we also say that (K, I) is centrally symmetric. See 
[13,15,16], for more on centrally symmetric manifolds and applications. 

For e ::=: 1, a simplicial complex K is called t-neighbourly if every set with at most e vertices forms a face of K . 
. If .(K-, 1)-is centrally symmetric~then.for_any vertex v of K, .{v, I (v)l does not_f9_rITI ~ ~dge .. so, 110 fact:! cont~~n~ ______ _ 
both v and I (v ). Thus, (K, I) is never t-neighbourly fore :::: 2. In [7], Lutz defined centrally t-neighbourly, namely, ~ 
a centrally symmetric simplicial complex (K, I) is called centrally t-neighbourly if a is a face of K for each a 
with at most e vertices and an I (a) = 0. If it is centrally L(dim(K) + l)/2J-neighbourly then it is called nearly 
neighbourly. Thus, a 2m-vertex 3-dimensional centrally symmetric simplicial complex (K, I) is nearly neighbourly 
if and only if Ji (K) = ~) - m. 

The polytopal 3-sphere sg * sg * sg * sg is centrally symmetric. It is not difficult to see that it is the only centrally 
symmetric 3-sphere on 8 vertices. Grtinbaum constructed a IO-vertex centrally symmetric polytopal 3-sphere and 
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(i) T ([36]) (ii) BCS(S3) := 5f4 

Figure 1. Centrally symmetric triangulations of torus and § 2. 

shown that it is unique (see [7]). Grtinbaum has also shown that there does not exist such 3-sphere on 12 vertices 
(see [4, Page 116]). In [6], Lassmann and Sparla have shown that there are three centrally symmetric 3-neighbourly 
triangulations of the product § 2 x § 2 with cyclic symmetry. In [7], Lutz has extended this result and enumerated 
triangulations of product of spheres using cyclic and dihedral group actions. In [5], Klee and Novik have shown 
that there is a centrally symmetric (2d + 4)-vertex triangulation of the product of spheres §i x §d-i for all pairs of 
nonnegative integers i and d with O ::: i ::: d. Lutz [7] has shown existence of vertex transitive central symmetric 
triangulation of spheres and torus under cyclic and dihedral group action. In this article, we have relaxed the condition 
of vertex transitivity and constructed centrally symmetric manifolds of dimension :::: 2 and centrally symmetric maps. 
In particular, we prove the following. 

(i) For each g :::: 1, there exists a centrally symmetric 8g-vertex triangulated 2-manifold of Euler characteristic 
2 - 2g (see Theorem 6). 

(ii) There exist series of centrally symmetric triangulated m-manifolds which are not triangulation of spheres or 
product of spheres for each m :::: 2 (see Theorem 7). 

(iii) There exist series of centrally symmetric serniequivelar maps (see Corollary 9). 
(iv) There exist series of centrally symmetric maps with arbitrary p-gonal faces for p :::: 3 (see Theorem 11). 
(v) There are exactly 6303 centrally symmetric triangulated surfaces with n .::: 12 vertices. Out of these, 1228 are 

orientable and 5075 are non orientable (see Theorem 12). 
(vi) There are exactly 68 centrally symmetric triangulated 3-manifolds on 12 vertices (see Theorem 1_3). 

2. Centrally symmetric triangulated manifolds 

For a triangulated manifold M, a pair of faces {a, fi} is called a pair of antineighbours if there is no edge in M of 
the form uv, where u E a & v E /J. For an m-dimensional cell complex X, let BCS(X) denote the barycentric 
subdivision of X. Then, the vertex set of BC S(X) is {a: a is a face of X} & the facets are {ao, a1, ... , am} where 
ao < a1 < • • · < am are faces of X. We first present two examples of centrally symmetric triangulated 2-manifolds. 

Example 1. 

(i) Let T be the triangulation of the torus on 8 vertices, given in Fig. 1 (i). Let V(T) = {u1, ... , ug} be vertex set 
ofT. Let Ir:= Tii=l (u1, Ut+4) be a map on V(T). Then (T, Ir) is centrally symmetric. 

(ii) Let Sf be the 4-vertex triangulation o/§2. Let V(S}) = {u1, u2, u3, u4}. Then the faces of Sf are V;j := {u;, _uj}, 
Wijk := {u;, u i, uk}, 1 ::::: i, j, k ::: 4 are distinct. Thus the vertex set of BC S(Sf) is {u;, Vij, Wijk: 1 ::: i, j, k :::: 4 
distinct} andfacets are {u;, Vij, Wijk}, 1::: i, j,k::::: 4. Let S := Sf4 = BCS(Sf). Let Is: V(S) i--+ 'V(S) be as 
Is(ui) = Wjkt, Is(vij) = Vk/, Is(Wijk) = u1, {i, j, k, l} = {l, 2, 3, 4}. Then Is de.fines an involution on Sand 
(S, Is) is a CS triangulation o/§2. Moreover,for any facet!::,,, of S, {!::,,,, ls(!::,,,)} is a pair of antineighbours. Note 
that we can generalize this construction on the (d+2)-vertex triangulation sj+2 of the d-sphere §d for all d :::: 2. 

If X and Y are simplicial complex then X x Y is a cell complex whose cells are ea x e p where ea E X and e p E Y. 
In general, product cell complex need not be centrally symmetric. For example, if X is the 3-vertex triangulation of 
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§ 1 then X x X is a 9-vertex map on § 1 x § 1. Since X x X has odd number of vertices, X x X can not be centrally 
symmetric. Here we prove the following (this lemma is used in the proof of Theorem 7). 

Lemma 2. Let X and Y be two simplicial complexes. If X or Y is centrally symmetric then X x Y is a centrally 
symmetric cell complex. 

Proof Without loss, assume that (X, Ix) is centrally symmetric where V(X) {u1, ... , u2m} and 
Ix= nr=l (ui, Ui+m)- Let V(Y) = {v1, ... , Vnl- Let I:= TI'.i=I ni=l (uj X Vk, UJ+m X Vk) be a map on the vertex 
set of Xx Y. 

Claim. The (X x Y, I) is centrally symmetric. 

Observe that, I(I(ue x Y)) = ue x Y for all 1::: e :'.S 2m, and for a EX, I(I(a x Y)) =ax Y since 
Ix (Ix (a)) = a . Again, suppose I (/J x /J') = fJ x /J' for some /J E X and /J' E Y. Then, it implies that Ix (/J) = /J, 
a contradiction since (X, Ix) is centrally symmetric. Therefore, the (Xx Y, I) is a centrally symmetric. This proves 
the result. D 

Observation 3. Let (X, /) be a centrally symmetric m-dimension cell-complex. Let l (o.) .- I (o.) for 
o. E V(BCS(X)). Then (BCS(X), /) is CS simplicial complex. 

Definition 4. Let Ki, K2 be two triangulated m-manifolds. Let L'.'11, L'.'1; E K1 & L'.'12, L'.'1; E K2 be m-simplices. Let 
<p : L'.'11 ➔ fl2, 1/f : L'.'1; ➔ L'.'1; be bijections. If {fl 1, fl;} is a pair of antineighbours in K1 then the quotient K 
obtained from (K1\{L'11, fl;}) U (K2\{fl2, fl;}) by identify u with <p(u) & v with ljl(v)for u E fl1, v E L'.'12 is a 
simplicial complex. Clearly, IKI is the space obtained from IK1#'P K2I by adding an 1-handle. We denote this K by 
K1(Jf)'P'I' K2 or simply by K1@K2. 

We need the following lemma in the proof of Theorems 6 and 7. 

Lemma 5. Let (Ki, Ii), i = 1, 2, be two centrally symmetric triangulated m-manifolds. If there exists facet 
L'.'11 E K1 such that {L'.'11, /i(L'.'11)} is a pair of antineighbours then for any facet L'.'12 E K2 & any bijection 
<p: L'.'11 1-+ L'.'12, there exists an involution I on K1(jf)'P'I' K2, such that (K1(Jf)'P'I' K2, I) is centrally symmetric, where 

1/f = /z O (fJ O /i. 

Proof Assume without loss that Ii= TI7,!,1(ai,a2n1-i+I) & [z = n;~1(b1,b2ni-J+1) and L'.'11 := {a1,a2, ... , 
am+d in K1 and fl2 := {b1, b2, ... , bm+d in K2. We obtain (m - 1)-spheres 81'.'.'11, 8fl2 by removing interiors of 
L'.'11 and L'.'12. We identify 81'.'.'11 with 81'.'.'12 by the map <p: as ➔ bs, 1 ::: s :'.Sm+ 1. From the construction, IK1#'P K2I 
is the connected sum of the manifolds IK1 I & IK2i and hence K1#'P K2 is a triangulated m-manifold. Again, we 
identify 8 Ii ( fl i) with 8 /z ( L'12) by the map 1/f : a2n 1 -s ➔ b2ni-s, 0 :'.S s :'.S m. Hence, I K 1 ® 'P"' K 2 I can be obtain 
from IK1#'P K2I by an 1-handle addition. This implies IK1®'P'I' K2I is am-manifold and hence K1®'P'I' K2 is a 
triangulated m-manifold. 

In K1®'P'I' K2, we identify ai with bi and the new vertices are denoted by bi for 1 < < m + 1. Let 

K := K1®'P'I' K2 & I= TI7,!,m+2(ai, a2n1-i+1) n;~l (bj, b2ni-J+1). 

Claim. The (K, I) is centrally symmetric. 

- -For am-simplex L'1 of_K ,_the.simplex fl or _ _its ~ub~~t, ~a.y __ L'.'1', which is a k-simplex of K belongs to Ki, K2 or 
Kl n K 2. If f1 belongs to Kl or K 2 and L'1 n I ( f1) -:/=- ¢, then by the definition of involution~ L'1 n Ii ( S) -:/=-- cp in Ki 
and which is a contradiction. If L'1 belongs to K1 n K2 then both Ii and [z fix the face L'.'1. This gives a contradiction 
as K1 and K2 are CST manifolds·. We use the same argument for fl'. Therefore, (K, I) is centrally symmetric. 
This proves the result. D 

Theorem 6. For each g ~ 1, there exists a centrally symmetric 8g-vertex triangulated 2-manifold Mg of Euler 
characteristic x(M8 ) = 2 - 2g. 
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Proof. Let (T, h), (S, Is) be the CS triangulated 2-manifolds as in Example I. Then for any facet !Y,. in S, 
{ d, Is ( !Y,.)} is a pair of antineighbours. We prove the theorem by induction on g. 

If g = 1 then Ts serves the purpose. If g = 2 then we take K1 = S & K2 = Ts in Lemma 5. By Lemma 5, we 
get M2 = S@Ts a 16 (= fo(S) + fo(Ts) - 6) vertex CS triangulated 2-manifold. Since x(Ts) = 0 & x (S) = 2, 
x(Mz) = x(Ts)+ x(S)-4 = 0+2-4 = -2. We continue with this construction and at g11i label, Mg= S@Mg-1· 
Clearly, fo(Mg) = fo(S) + fo(Mg-1) - 6 = 14 + 8(g - 1) - 6 = 8g, Ji (Mg) = f1 (S) + Ji (Mg-I) - 6 & 
h(Mg) = fz(S) + h(Mg-1) - 4. These implies that x(Mg) = 2 - 2g. So, Mg is an 8g-vertex CS triangulated 
2-manifold and x (Mg) = 2 - 2g for every g :::: 1. This proves the result. D 

Let X and Y be two simplicial complexes with V (X) n V (Y) = 0. The simplicial complex X * Y := X U Y U 
{a U /3 : a EX, fJ E Y} is called the join of X and Y (see (1)). 

It is not difficult to see that the triangulation sg * • • • * sg (d + 1 copies) of §d is a 2d+1-vertex CS triangulation 
for all d ::::. 2. In [5], Klee and Novik constructed (2d + 4)-vertex triangulation of §i x §d-i for O ::: i ::: d and for 
all d. Here we present infinitely many CS triangulated manifolds which are not triangulation of spheres or product 
of spheres. 

Theorem 7. There exist series of centrally symmetric triangulated m-manifolds which are not triangulation of 
spheres or product of spheres for each m :::: 2. 

' 
Proof Let m :::: 2. Let (M, I) and (M1, I1) be two CS triangulated m-manifolds. Assume that M has a facet !Y,. 

such that {!Y,., I (!Y,.)} is a pair of antineighbours. For example we can take M = BCS(s::;+z) or BCS(sg * • • • * sg) 

or barycentric subdivision of Klee and Novik example, and M1 = BC S(s;:+z) or sg * • • • * sg or Klee and Novik 
example. Then, by Lemma 5, Mz := M@M1 is CS. Clearly, it is not a product of sphere or spheres. Inductively, 
let Mk = M@Mk-1 fork :::: 2. By Lemma 5, Mk is a CS triangulated m-manifolds for each k :::: 2. Thus, there 
are series of centrally symmetric triangulated manifolds. Moreover, if we consider these triangulated manifolds and 
apply Lemma 2 & Observation 3 then we get more centrally symmetric triangulated manifolds. This proves the 
theorem. D 

3. Centrally symmetric maps on surfaces 

Cycles in maps may or may not be homotopic to the generators of the fundamental group of the surface on which 
they lie. The cycles which are homotopic to a generator and non-genus-separating are called non-trivial. Those 
which are homotopic to a point are called contractible cycles. Those cycles which are homotopic to a ~enerator and 
genus-separating are called genus-separating. See [12] for properties and results related to these topological cycles in 
maps on surfaces. If a map M contains a contractible cycle of even length or a non-trivial cycle then we can construct 
series of centrally symmetric maps from M. 

Let L be a contractible cycle of even length in M,. say L = a D, where D is a 2-disc in M. Take two copies of 
(M\D) UL and identify along L by the antipodal map on L. Let the resulting simplicial complex be M#L M. Clearly 
IM#LMI = IMl#IMI. 

Theorem 8. Let M be a map. 

(a) If M contains a non-trivial cycle then there exists a 2-fold covering M of M, where Mis centrally symmetric. 
(b) If M contains a contractible cycle L of even length then M#L Mis centrally symmetric. 

Proof Let C be a non-trivial shortest cycle in M. The cycle C divides face-cycles of the vertices of C, that is, every 
sub-path u-v-w c C of length two is a chord of the f ace-cycle(v) at each vertex v E V ( C). This gives that there are 
sequences Y1, Yz, ... , yk· and Z1, Z2, ... , Ze of faces incident with C on different sides of C. We cut M along the 
cycle C and, hence we get a map Mc which is bounded by two identical cycle C. We denote these boundary cycles 
by Cy and Cz where the faces Y1, Yz, ... , Yk are incident with Cy and Z1, Z2, ... , Ze are incident with Cz in Mc. 
Let Cy := C(u1, ... , ur) and Cz := C(w1, ... , wr)- Then, Cy identified with Cz by the map u; ---+ w; for all 
1 .::: i .::: r in M, that is, u; = w; for all i in M. So, V(Mc) = V(M\C) U V(Cy) U V(Cz) where V(M\C) = 
{v1, v2, ... , v111 }. We consider another copy Mc of Mc. Let V(Mc) = {vi, v;, ... , v:n} U V(C~) U V(C2) and 
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Mc~ Mc by u' ➔ u Vu' E V(Mc), u E V(Mc). Then 8Mc = C~ (= C(ui, ... , u~)) UC~(= C(wi, ... , w;)) 
where the faces Y{, Y~, ... , Y{ are incident with C~ and Zi, z;, ... , Ze are incident with C~. 

Since f: Mc ~ Mc by v j ➔ v1, u; ➔ u; and Wk ➔ wi for all i, j, k, it follows that Y; t-+ Yf and Zj t-+ z1 
by the map/. We identify Cy with C~ by the map h1: u; ➔ w; and Cz with C~ by the map h2: w; ➔ u; for all 

J ::'.:: i :'.:: r. Hence, we get a map, namely, Af = Mc®h'h 2 Mc of genus g(M) = g(Mc) + g(Mc) + 1. Without 

loss, assume that the vertices w; are replaced by u; and w; are replaced by u; in M. Let V(M) = {v1, ... , Vm} U 
{Vi , ... , V :n } U { u J , ... , Ur} U { u; , ... , U ~} and / M : = I1f = I (Vi , V;) I11 = I ( u j , U j). 

Claim. The (M, IM) is centrally symmetric. 

Let F = [x;" ... , x;,] be a facet in M. Then I if (F) = I if ([x;" ... , x;,]) = [x;
1

, ••• , x;) = f ([x;I' ... , x;,]) if 

FE F(M)\{{Y,, Y:: 1::: t:::: k} U {Zs, z;: 1:::: s::: t}}, IM(Y,) = Y: for l ::: t:::: k, Iif(Zs) = z; for l ::: s:::: t, 
lif(Y;) = Y, for 1:::: t::: k & Iif(Z;) = Zs for 1::: s::: e. Hence IM(IM(F)) = F for all FE F(M). So, (M, IM) 
is centrally symmetric. This proves the claim, and hence Part (a). 

The proof of Part (b) is similar to Lemma 5. In construction, consider boundary cycle L = aD in place 
of boundary of simplex. The idea is as follows. Take two copies of (M\D) U L, namely, (M1 \D1) U L 1 & 
(M2\D2) U L2. Let V(M1\D1) = {a1, ... ,ae}, V(M2\D2) = {b1, ... ,be}, L1 = C(x1,x2, ... ,x2,n) and 
L2 = (y1, Y2, ... , Y2m) where ((M1 \D1) U L1) ~ ((M2\D2) U L2) by a; ➔ b; for all i and Xj ➔ Yi for all j. Let 

h1,L2 := nr=l (x;, Yni+;) TI~m+I (x;, Yi-111)- Then, ((M1 \D1) U L1)#h,.L2 ((M2\D2) U L2) is centrally symmetric 

by the involution TI;=I (a,, b, )I Li ,L2 • This completes the proof. D 

Corollary 9. There are series of centrally symmetric semiequivelar maps of different genera. 

Proof Let M be a serniequivelar map of type X. By the construction as in the proof of !heorem 8(a), the map 

M is a semiequivelai map of type X. Again, consider M and we get a 2-fold cover M of M of type X by 
Theorem 8(a). By repeating the construction as in the proof of Theorem 8(a), there is a series of centrally symmetric 
semiequivelar maps of type X from M of different genera. Here, we present an application of the construction on 
one example. 

Let K := {a1a2a3, a1a2a12, a1a11a12, a1a7a9, a1a5a9, a1asa11, a1a3a7, a3a4a5, a3a5a9, a7aga9, a10a11a12, 
a4a10a12, a2a3a4, a2a4ag, a4aga12, a6asa12, a2~a12, a2a6a10, a2asa10, aga9a10, a4a6a10, a4a5a6, a5a6a1, a6a1as, 
a5a7a11, a3a1an, a3a9a11, a9a10a11} (in [3, (Section 2, N1)]) which is a semiequivelar map of type [37] on the 
2-torus. The cycle L = C3 (a2, a12, a4) in K is non-trivial. We cut K along L. Hence, we get a map Y with 
two boundary cycles C1, C2. We represent (Y, Cr,1, Cr,2) to be a map Y with two boundary cycles Cr,1, Cr,2-
Let (K;,CK;,1,CK;,2) for i = 1,2 be two isomorphic copies of (Y,Cr,1,Cr,2), i.e., K; ~ Y,CK;,1 ~ Cr,1, 
CK;,2 '.:::::'. Cr,2- Consider the map Z := K1@ 8182 K2 where CK,,I identified with CK2 ,2 by 81: CK,,I ➔ CK2,2 & 
CK2,1 identified with CK1,2 by 82: CK2 ,1 ➔ CK1,2 in Z. Let /z be an involution on V(Z) by K1 ~ K2, g1: CK,,l ➔ 
CK2,2, 82: CK2 ,J ➔ CK1,2 as in the proof of Theorem 8(a). Clearly, (Z, /z) is a centrally. symmetric map of type 
[37] of genus 3. This Z is 2-fold cover of K. Again, consider two copies of Z and repeat the same construction as 
above with the same cycle. We repeat this process and each step, we get a centrally symmetric serniequivelar map of 
type [37] with different genus. 

From [2], we know that there are semiequivelar maps of type [pq] for each [pq] in {[37], [45], [46], [3~t-l], [33t], 
[kk]: e ::: 3, k ::: 5}. We consider these maps and apply above construction. Hence we get series of centrally 
symmetric semiequivelar maps. These prove the result. D 

Lemma 10. The dual of a centrally symmetric map is centrally symmetric. 

Proof Let (M, I) be a centraliy symmetric map. Let K denote the dual map of M. By the definition of duality, the 
map K has for its vertices the set of facets of M and two vertices of M are ends of an edge of M if the corresponding 
facets in M have an edge in common. 

Let F be a facet of M. Then, Orbit(F) contains exactly two disjoint facets under/. Let k denote the number 
of orbits of facets in M. Then, the map M contains 2k number of facets which is even. Let F; for i = 1, 2, ... , 2k 
denote facets in M such that I (F;) = F2k+l-i for all 1 :::: i :::: 2k. Let u; be the dual vertex of F; in K. Let 
I':= Il7=1(u;, U2k+1-;) si~ce Orbit(F;) = {F;, F2k-(i-J)} = Orbit(F2k-(i-J))-
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Claim. The (K, J') is centrally symmetric. 

Suppose there is a face F which is fix under the involution J', that is, J'(F) = F. Let the dual faces of l'(F) and 
F be / ( X) and X in M respectively. By the definition of duality, I ( X) = X. Hence, X is a fixed face in M under I. 
This shows that M is not centrally symmetric, a contradiction. Therefore, the map K is centrally symmetric under 
the involution I'. This proves the result. □ 

Theorem 11. For any p :::: 3, there exist a series of centrally symmetric maps whose faces are p-gons. 

Proof In [9], Lutz listed an enumerated results on vertex-transitive triangulations up to 15 vertices. This list contains 
d-regular triangulations for 3 ~ d ~ 12. We take dual of these maps. Hence, we get a list of semiequivelar maps of 
all whose faces are p-gons for 3 ~ p ~ 12. From these maps as in the Corollary 9, there are series of CS maps of 
all whose faces are p-gons for each 3 ~ p ~ 12. Also, by Theorem 8(b), there are series of CS maps of all whose 
faces are p-gons for each 3 ~ p ~ 12. Consider these series of maps and apply Lemma 10, hence, there are series 
of centrally symmetric maps with arbitrary faces. 

One can also use the MANIFOLD_ VT [8] to construct higher degreed(:::: 13) vertex-transitive triangulated maps 
and apply above arguments. So, there are series of CS maps of all whose faces are p-gons for many surfaces. Hence 
by Lemma 10, there are series of centrally symmetric maps with arbitrary faces. This proves the result. □ 

4. Enumeration of CST manifolds using computer 

Theorem 12. There are exactly 6303 centrally symmetric triangulated surfaces with at most 12 vertices. Out of 
these, 1228 are orientable and 5075 are non orientable. 

Proof We present an enumeration of CST surfaces by a program which is modified version of MANIFOLD_ VT 
[8] as follows. Lutz (in MANIFOLD_ VT [8]) has used the cyclic group Z2m = ((1, 2, 3, ... , 2m)) and the dihedral 
group Dim = ((1, 2, 3, ... , 2m), (1, 2m)(2, 2m -1) • • • (m, m + 1)), and generated CS vertex transitive triangulated 
maps. We have replaced the groups Z2m, D2m by Z2 = (/: I = (1, 2m)(2, 2m - 1) • · · (m, m + 1)) on the set 
{ 1, 2, ... , 2m} and relaxed the criteria of vertex transitivity. It generates all the possible 1- and 2-orbits, that is, 
1 and 2 dimensional orbits. We neglect those 2-orbits containing F and J (F) for which F n / (F) =I= <p. We also 
ignore those I-orbits for which e = I (e). The remcining orbits are called admissible orbits. Thus, for fixed n = 2m, 
we obtained all admissible 1- and 2-orbits under the group action Z2. In the process, we check link of m vertices 
namely 1, 2, ... , m which are use to define I. We also compute reduced homology groups to check orientability of 
the objects using [14]. Hence we get all possible non isomorphic CST maps. 

As a result form = 3, 4 and 5, we have listed the objects in Table I [11]. Form = 3 the object 6,;ght obtained in 
Table 1 [11] is isomorphic to Lutz's object [7]. Form = 4 we get 4 objects out of which the object 8,;ght in Table 1 
[ 11] is isomorphic to that of Lutz's object [7]. For m = 6, we give the number of non isomorphic objects for different 
genus in Table 2 [11]. In this case and for x = -8, we give the list of all the objects in Table 3 [11]. Table 1 [11] 
gives the list of centrally symmetric triangulated surfaces for n :::: IO vertices. Table 2 [11] gives number of different 
objects on 12 vertices. The total number of objects is 6303. It is clear from the tables by looking at homology groups_ 
that 1228 are orientable and 5075 are non orientable. □ 

Theorem 13. There are exactly 68 centrally symmetric triangulated 3-manifolds on 12 vertices. 

Proof Similarly as above, we have modified the program MANIFOLD_ VT [8]. In this case, the modified program 
generates all possible 2- and 3-orbits. Let Fd be a d-orbit for d E {2, 3}. We ignore those 3-orbit for which 
F3 n J (F3) =I= <p. Also, we ignore those 2-orbit for which F2 n J (F2) =I= <p. Hence, we get all possible admissible 
2- and 3-orbits. We check link of m vertices namely 1, 2, ... , m which are used to define I. We also compute reduced 
homology groups of the objects using [14]. Hence we get all possible non isomorphic CST 3-manifolds. 

As a result form = 6, we have listed all possible 3-manifolds in Table 4 [11]. Table 4 [11] gives the list of centrally 
symmetric 3-manifolds on 12 vertices. The total number of objects is 68. By looking at homology groups we deduce 
that the objects are orientable and triangulation of homological § 2 x § 1 (i.e. objects and § 2 x § 1 have same reduced 
homology groups). D 
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Remark 14. We know from Tables 1, 2, 3 in [11] that the number of CS triangulated 2- & 3-manifolds is very 
large. Thus, we are not listing those here. These list of triangulated manif~lds are ~vailable with the first author. 
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