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1. Introduction 

Let H be a real Hilbert space. A mapping T : H ➔ H is said to be nonexpansive if 

IITx - Tyll ~ llx - yll V x, y E H, 

and T : H ➔ H is said to be 2-strictly pseudocontractive if there exists 2 > 0 such that, 

(Tx - Ty, x - y) ~ llx - yll 2 
- 211(/ - T)x - (I - T)yll 2

, V x, y EH, 

or equivalently 

((I - T)x - (I - T)y, x - y) ::: 211(/ - T)x - (I - T)yll 2
, V x, y EH. 

It is obvious that (1.2) (and consequently (1.3)) for 2 E (0, ½), is identical to the inequality 

IITx - Tyll 2 ~ llx - yll 2 + kll(I - T)x - (I - T)yll 2
, V x, y EH, 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

where k = 1 - 22 < 1. Let C be a nonempty, closed and convex subset of a Hilbert space H and let T : C ➔ C 
be a mapping, then a point x E C is called a fixed point of T if T x = x. The set of fixed points of T is denoted by 
F(T). 

Let C be a convex subset of a Hilbert space Hand T : C ➔ C, the sequence {xn} defined iteratively by x1 E C, 

Xn+l = (1 - an)Xn + anTXn, n;:: 1, (1.5) 

where {an}~1 is a sequence in [0, 1] satisfying the following conditions: (i) limn➔oo an = 0, (ii) L~l an = oo, 
is generally referred to as the Mann sequence in the light of [21]. Many authors have studied the approximation 
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of fixed points of A-strictly pseudocontractive mappings using the Mann iteration (1.5) (see, for example, 
[l,13-17,20,22,23,25,30-33] and the references therein). The Mann iteration (1.5) in general yield only weak 
convergence for approximating fixed points of nonexpansive mappings and to obtain strong convergence, the Mann 
iteration has to be modified. 

In 2007, Marino and Xu [22] obtained weak convergence results using Mann iteration (1.5) for A-strictly 
pseudocontractive mappings in Hilbert spaces and used the "C Q" algorithm to obtain the strong convergence for a· 
finite family of A-strictly pseudocontractive mappings. 

Let G = (V ( G), E ( G)) be a directed graph where V ( G) is the set of vertices of the graph and E ( G) be a set of 
its edges. Assume that G has no parallel edges. We denote by c-1 the directed graph obtained from G by reversing 
the direction of edges. That is 

E(G-1) = {(x, y): (y, x) E E(G)}. 

If x and y are vertices in G, then a path in G from x to y of length n E NU {O} is a sequence {xd?=o of n + l 
vertices such that xo = x, Xn = y, (x;-1, x;) E G for i = l, 2, ... , n. A graph G is connected if there is a (directed) 
path between any two vertices of G. The power behind using graphs instead of partial orders was first recognized 
by Jachymski in [19]. Jachymski [19] studied fixed point theory in a metric space endowed with directed graph, 
introduced the idea of G-contractions and extend the Banach contraction principle to metric space endowed with a 
directed graph. 

Definition 1.1 ([19]). Let (X, d) be a metric space and let G = (V(G), E(G)) be a directed graph such that 
V(G) = X and E(G) contains loops, i.e., L = {(x, x): x EX} s; E(G). Then a mapping f: X ➔ Xis said to be 
a G-coniraction if f preserves edges of G, i.e., 

x, y EX, (x, y) E E(G) => (f(x), f(y)) E E(G), 

and there exists a E (0, 1) such that for any x, y E X, 

(x, y) E E(G) => d(f(x), f(y)) ~ ad(x, y). 

Jachymski [19] further obtained the following theorem. 

(1.6) 

Theorem 1.2 ([19]). Let (X, d) be a complete metric space and let the triple (X, d, G) be such that for any {xn}nEN 
in X with Xn ➔ x and (xn, Xn+I) E E(G) for n E N, there exists a subsequence {xnk} with (xnk, x) E E(G) for 
n EN. Let f be a G-contraction, and X f = {x E X : (x, f (x)) E E(G)}. Then F(T) -/= 0 if and only if X J -/= 0. 

Many authors (for example see, [3-9,11,18,27]) have obtained results that improved and extended in various ways 
Theorem 1.2. 

Definition 1.3 ([28]). Let C be a nonempty convex subset of a Banach space X, G = (V(G), E(G)) be a directed 
graph such that V ( G) = C and T : C ➔ C. Then T is said to be G-nonexpansive if the following conditions hold: 

(1) Tis edge-preserving, i.e.,for any x, y EC such that (x, y) E E(G) => (Tx, Ty) E E(G); 
(2) IITx - Tyll ~ llx - yll, whenever (x, y) E E(G)for any x, y EC. 

Tiamrnee et al. [28], proved Browder's convergence theorem and a strong convergence theorem with the Halpern 
iteration process for a G-nonexpansive mapping in a Hilbert space endowed with a directed graph. Precisely, they 
obtained the following two convergence theorems: 

Theorem 1.4 ([28], Theorem 3.4). Let C be a bounded closed convex subset of a Hilbert space H and let 
G = (V ( G), E ( G)) be a directed graph such that V ( G) = C and E ( G) is convex. suppose C has property G and 
T : C ➔ C is a G-nonexpansive mapping. Assume that there exists xo E C such that (xo, Txo) E E(G). Define 
Tn:C ➔ Cby 

Tnx = (l - an)Tx + anX0, 

for each x EC and n E .N, where {an} is a sequence in (0, 1) such that an ➔ 0. Then the following holds: 
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(i) Tn has a fixed point Un E C, 
(ii) F(T) I- 0, 
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(iii) if F(T) x F(T) s; E(G) and PF(T)XO is dominated by {un}, then the sequence {un} converges strongly to 
wo = PF(T)XO, where PF(T) is the metric projection onto F(T). 

Theorem 1.5 ([28], Theorem 4.5). Let C be a nonempty closed convex subset of a Hilbert space H and let 
G = (V(G), E(G)) be a directed graph such that V(G) = C, E(G) is convex and G is transitive. Suppose 
C has property G. Let T : C -+ C be a G-nonexpansive mapping. Assume that there exists xo E C such that 
(xo, Txo) E E(G). Suppose that F(T) =/=- 0 and F(T) x F(T) s; E(G). Let {xn} be a sequence defined iteratively by 

{

XO EC, 

Xn+l = anX0 + (1 - an)Txn, n :::: 0, 
(1.7) 

where {an} satisfies; (i) an E [O, 1], (ii) L,~o an = oo, (iii) limn➔oo an = 0 and (iv) L,~o lan+l - an I < oo. 
If {xn} is dominated by PF(T)XO and {xn} dominates xo, then {xn} converges strongly to PF(T)XO, where PF(T) is the 
metric projection on F(T). 

In this paper, we study G(.?i,)-strictly pseudocontractive mapping which is an important generalization of the 
G-nonexpansive mappings that have been recently considered by many authors. We further extended the results of 
Tiamrnee et al. [28] obtained for G-nonexpansive mappings to G(),)-strictly pseudocontractive mappings. 

2. Preliminaries 

In this section, we present some important definitions and notable results that will be needed in the sequel. 

Lemma 2.1 ([29]). Assume {an} is a sequence of nonnegative real numbers such that 

an+l :S (1 - Yn)an + Ync5n, n :::: 0, 

where { Yn} is a sequence in (0, 1) and { c5n} is a sequence in JR such that 

(i) :r.~oYn = oo, 
(ii) limsupn➔ooc5n :S Oor :E~0 1c5nYnl < oo, then lim 11➔ ooa11 = 0. 

Lemma 2.2. Let H be a real Hilbert space. Then the following result holds 

llx - Yll 2 = Jlxli2 - 2(x, y) + IIYll 2
, 

and 

llx+yll 2
:::: llxll 2 +2(y,x+y), Vx,y EH. 

Lemma 2.3. Let H be a Hilbert space, then V x, y E H and a E (0, 1 ), we have 

!lax+ (1 - a)yJJ2 = allxll 2 + (1 - a)llyll 2 
- a(l - a)llx - yll 2

. 

Lemma 2.4 ([2]). Let X be a Hilbert space. For any x, y E X, if llx + yll = llx II+ IIYII then there exists t :::: 0 such 
that y = tx or x = ty. 

Lemma 2.5. Let X be a Banach space. Then Xis reflexive if and only if every bounded sequence {xn} in X ftas a 
weakly convergent subsequence {x11k}. 1 

Definition 2.6. Let C be a nonempty closed and convex subset of a real Hilbert space H. For every point x E H, 
there exists a unique nearest point in C denoted by Pcx such that 

llx-Pcxll::::llx-yll Vy EC. 

Pc is called the metric projection of H onto Candis characterized by the variational inequality: 

(x - Pcx, z - Pcx) :::: 0, V z EC. 
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Lemma 2.7. Let H be a Hilbert space and let {x11 } be a sequence of H with x11 ~ x. [Jx =I= y, then 

liminfllx11 -xii< liminfllxn -yll, 
11---+00 11---+00 

Definition 2.8. Le_t C be a nonempty subset of a normed space X and let G = (V(G), E(G)), where V(G) = C 
is a directed graph. C is said to have property G if every sequence {x11 } in C converging weakly to x E C has a 
subsequence {x11k} such that (x11k, x) E E ( G) for all k E N: 

Definition 2.9. Let C be a nonempty closed convex subset of a Hilbert space H and G = (V(G), E(G)) be 
a directed graph such that V(G) = C. Then T is said to be G-monotone if (Tx - Ty, x - y) :=:: 0 whenever 
(x, y) E E(G)for any x, y EC. 

Definition 2.10 ([10,26]). Let G = (V(G), E(G)) be a directed graph. A set X s; V(G) is called a dominating 
set if for every v E V(G)\X there exists x E X such that (x, v) E E(G) and we say that x dominates v or vis 
dominated by x. Let v E V, then a set X s; Vis dominated by v if (v, x) E E(G) for any x E X and we say that X 
dominatesv if(x,v) E E(G)forallx EX. 

In this paper, we will always assume E ( G) contains all loops. 

3. Main results 

In this section, we define G(}i.)-strictly pseudocontractive mapping and prove a fixed point theorem for G(},)-strictly 
pseudocontractive mapping in a Hilbert space. We will start by given the definition of G(l)-strictly pseudocontractive 
mapping, an example of G(l)-strictly pseudocontractive mapping, some properties of G(}i.)-sfrictly pseudocontractive 
mapping and the structure of the-fixed point set of G(), )-strictly pseudocontractive mapping in Hilbert spaces. 

Definition 3.1. Let C be a nonempty closed and convex subset of a Hilbert space Hand let G = (V(G), E(G)) 
be a directed graph such that V(G) = C. Then a mapping T : C --+ C is G(l)-strictly pseudocontractive if the 
following conditions hold: 

(1) Tis edge-preserving, i.e.,forany x, y EC such that (x, y) E E(G) ==>- (Tx, Ty) E E(G); 
(2) There exists}, > 0 such that (Tx -Ty, x - y) :::: llx -yll 2 - },II(/ -T)x - (I -T)yll 2, whenever (x, y) E E(G) 

for any x, y E C. 

Clearly, I - Tis G-monotone if Tis G(l)-strictly pseudocontractive. 

Example 3.2. Let X = C be the Banach space 12 and let G = (12, E(G)) and E(G) = {({xn}, {yn})} : for all 
n EN, x11 , Yn E Zand Yn = 2x11 , n :=:: l}. Define a mapping T : 12 --+ 12 by 

{ 

(-5x1, -5x2, -5x3, ... ) if x11 E Z for all n EN, 
T(x1,x2, ... ,x;, .. . ) = 

(5x1, 5x2, 5x3, ... ) if x 11 ft. Z for some n E N. 
(3.1) 

Clearly, T is edge preserving. Now let x = (x1, x2, x3, ... ) and y = (x1, x2, x3, ... ) be such that x, y E Z2 and 
(x, y) E E(G). 

Then 
00 

11.x - Tx - (y - Ty)ll 2 = L Ix; - Tx; - (y; - Ty;)l 2 

i=l 

00 

= L 16x; -6y;l2 

i=l 

00 

= 36L lxi - y;l2 

i=l 



which implies 
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1 
Iii - 5ilJ2 = -Iii - Ti - (y - Ty)ll 2

. 
36 

00 

II Ti - Tyll 2 == L 15x; - 5yi12 

i=l 

= 2511.x - 5ill 2 

= Iii - 5ill 2 + 2411i - 5ill 2 

= Iii - 5ill 2 + ~Iii - Ti - (y - Ty)ll 2
• 

3 
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(3.2) 

Thus, Tis G(A)-strictly pseudocontractive. Choosex* = (½, ½, ½, ½, 0, 0, 0, ... ) and y* = (¼, ¼, ¼, ¼, 0, 0, 0, ... ), 
then 

IITx* - Ty*ll 2 = 25 > 17 = llx* - y*ll 2 + llx* - Tx* - (y* - Ty*)u2 

> llx* -y*ll 2 +kllx* - Tx* - (y* - Ty*)u2, 'I k E (0, 1), 

which implies Tis not A-strictly pseudocontractive. Furthermore, for (i, y) E E(G), 

II Ti - Tyll = 511i - 5ill > Iii - 5ill-

Hence, T is not G-nonexpansive. 

Remark 3.3. Example 3.2 shows that there exists G(A)-strictly pseudocontractive mappings which are neither 
A-strictly pseudocontractive nor G-nonexpansive. 

Proposition 3.4. Let H be a Hilbert space and G = (V(G), E(G)) a directed graph with V(G) = X. Suppose 
T : H ➔ His a G(A)-strictly pseudocontractive mapping. If H has Property G, then Tis continuous. 

Proof Let {xn} be a sequence in H such that Xn ➔ x, we show that Txn ➔ Tx. 

Let {Txn.} be a subsequence of {Txn}, since Xn- ➔ x, by property G, there is a subsequence {xm,•l such that 
J . J 

(xmj, x) E E(G) for j EN. Since Tis G(A)-strictly pseudocontractive and (xmj, x) E E(G), we obtain 

IITxmj -Txll 2
::: llxmj -xll 2 +kllxmj -Txmj - (x -Tx)u2 

::: llxmj - xll 2 + kllxmj - xll 2 + kllTxmj - Tx11
2 + 2kllxmj - xii llTxmj - Txll, 

which implies 

By the double extract subsequence principle, we conclude that Txn ➔ Tx. Thus Tis continuous. D 
l 

Theorem 3.5. Let H be a Hilbert space and C be a subset of H having Property G. Let G = (V(G), E(G)) be a 
directed graph such that V(G) = C and E(G) is convex. Suppose T : C ➔ C is a G(A)-strictly pseudocontractive 
mapping, F(T) =I= 0 and F(T) x F(T) ~ E(G). Then F(T) is closed and conve~. 
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Proof Let {xn} be a sequence in F(T) such that x 11 --+ x. Since Chas Prope1ty G, there is a subsequence {xnj} of 
{x11 } such that (xnj, x) E E(G) for all k EN. Moreover, by T being G(},)-strictly pseudocontractive, we obtain 

llx - Txll 2 = llx - Xni + Xni - Txll 2 

Therefore, 

.:S llx - Xni 11 2 + llxnj - Tx11 2 + 2ilx - Xni llllxni - Txll 

= llx - Xn-112 + IITxn· - Txli2 + 211x - X11,-llllx11,· - Txll J J . 

.:S llx -Xnili2 + llxni -xll 2 +kll(J -T)xni - (I - T)xll 2 + 211x -Xnillllxni - Txll 

= llx - Xni n2 + llxni - xll2 + kllx - Txf + 211x - Xni llllxni - Txll. 

Thus, x E F(T) and so F(T) is closed. 
Next, we show that F(T) is convex. 
Let x, y E F(T) and a E [0, 1], then (x, x), (x, y) E E(G). Set Za =ax+ (1 - a)y, then since E(G) is convex 

we have (x, za) = (ax + (1 - a)x, ax + (1 - a)y) E E(G). Similarly, we have (y, za) E E(G).--Since T is 
G(},)-strictly pseudocontractive, we get . 

Similarly, 

But, 

llx - Tza u2 = IITx - Tza 11 2 

.:::: llx - Za u2 + kfl(J - T)x - (I - T)za 11 2 

= llx - Za 11 2 + kllza - Tza 11 2
-

llza - Tza 11 2 = llax + (1 - a)y - Tza 11 2 

= lla(x - Tza) + (1 ~ a)(y - Tza)ll 2 

= a llx - Tza 11 2 + (1- a)IIY - Tza 11 2 
- a(l - a)llx - Yl1 2

-

Substituting (3.3) and (3.4) into (3.5), we have 

Therefore, 

llza - Tza 11 2 .:Sa llx - Za u2 + ak llza - Tza 11 2 + (1 - a) IIY - Za f 
"--+ (1 - a)kllza - Tza 11 2 

- a(l - a) llx - yf 

= all(l - a)(x - y)II + (1 - a)lla(y - x)ll 2 

+ kllza - Tza 11 2 
- a(l - a)llx - yll 2

. 

(1 - k)llza - Tza f.:::: a(l - a)211x - yll2 + (1- a)a2 11x - yll2 
- a(l - a)llx - Yll2 

= a(l - a)[l - a+ a - I]llx - yll 2 = 0. 

Thus, F(T) is convex. 

(3.3) 

(3.4) 

(3.5) 

D 
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Theorem 3.6. Let C be a bounded closed and convex subset of a Hilbert space Hand let G = (V(G), E(G)) 
be a directed graph such that V ( G) = C and E ( G) is convex. Suppose C has Property G and let T : C -+ C 
be a G(),)-strictly pseudocontractive mapping. Assume that there exists xo E C such that (xo, Txo) E E(G). De.fine 
Tn,P : C -+ C by 

Tn,pX = (1 - an)[(l - f3)x + f3Tx] + anX0 

for each x E C and n E N, where {an} is a sequence in (0, 1) such that an -+ 0 and /3 E (0, min{l, 2A}). Then the 
following hold: 

(i) Tn,P has a fixed point Un E C, 
(ii) F(T) I 0, 

(iii) if F(T) x F(T) ~ E(G) and PF(T)XO is dominated by {un}, then the sequence {un} converges strongly to 
wo = PF(T)XO, where PF(T) is the metric projection onto F(T). 

Proof 

(i) Let xo be such that (xo, Txo) E E(G), we show that Tn,p is a G-contraction for all n E N and 
/3 E (0, min{l, 2A}) C (0, 1). 

IITn,pX - Tn,pyll 2 = 110 - an)[(l - /3)x + f3Tx] - (1 - an)W - a)y + f3Ty]ll 2 

= (1 - an)2 llx - y - f3[x - Tx - (y - Ty)]11 2 

= (1 - anlrnx - yU 2 - 2f3(x - Tx - (y - Ty), X - y) + /32 11x - Tx - (y - Ty)ll 2
] 

:::: (1 - an)2 [11x - Yll 2 
- 2/3Allx - Tx - (y - Ty)ll 2 + /32 llx - Tx - (y - Ty)ll 2

] 

= (1 - an)2 [11x - yf - /3(2A - /3)11x - Tx - (y - Ty)ll 2
] 

(3.6) 

Therefore, 

IITn,pX - Tn,pyll _:::: (1 - an)llx - YII-

Again, since Tis edge preserving, (Tx, Ty) E E(G), for x, y E E(G), and we have 

(Tn,px, Tn,pY) = ((1 - an)[(l - /3)x + f3Tx] + anX0, (1 - an)[(l - f3)y + f3Ty] + anxo) E E(G). 

Therefore, Tn,p is G-contraction. For any sequence {xn} in C such that Xn -+ x and (xn, Xn+I) E E(G), by 
Property G of C, there is a subsequence {xnk} such that (xnk, x) E E(G) fork EN. Since E(G) is convex and 
(xo, xo) E E(G), we obtain 

(xo, Tn,pxo) = ((1 - an)[(l - f3)xo + f3xo] + anxo, (1 - an)[(l - f3)xo + f3Txo] + anxo) E E(G). 

Therefore all conditions of Theorem 1.2 are satisfied, so Tn,P has a fixed point Un, i.e., Un = Tn,pun. 
(ii) We now show that F(T) I 0. Since {un} is bounded, there is a subsequence {un;} of {un} such that Un; ~ v for 

sorrie-6 'E c.-suppose Tv-"1-v, By-FropertY- G, without_lp~s_Qfg~11~rality, we may assume that (un;, v) E E(G) 
for all i EN. First, we show that Un - Tun ---+ 0, n ➔ oo. - - - - - - - ~ - -- ---

Hence, 

llun - Tun II= 11(1 - an)[(l - f3)un + f3Tun] + anX0 - Tun II 

_:::: 11(1 - an)[(l - f3)un + /3Tun - (1 - an)[(l - /3)Tun + f3Tun]II 

+ llan[(l - /3)Tun + f3Tun] - anxoll 

= (1 - an)(l - /3)11un - Tun II+ an 11[(1 - /3)Tun + f3Tun] - xoll- (3.7) 

(1 - (1 - an)(l - /3))11un - Tun II .:::: anll[(l - /3)Tun + f3Tun] -xoll, 
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and taking limsup, we have llun - Tun II ➔ 0, n ➔ oo. Observe that 

llun; - Tv 11 2 = llun; - Tun; + Tun; - Tv 11 2 

::S llun; - Tun;ll 2 + II Tun; - Tvf + 2llun; - Tun; II Tun; - Tvll 

::S llun; - Tun; 11 2 + 2llun; - Tun; II Tun; - Tvll 

+ llun; -vll 2 +kll(/ - T)un; - (/ - T)vll 2 

::S llun; - Tun; 11
2 + 2llun; - Tun; II Tun; - Tv II 

2 k 
+ llun; - vii + -x_((/ - T)un; - (/ - T)v, Un; - v) 

::S llun; - Tun; 11
2 + 211un; - Tun; II Tun; - Tv II 

2 k k 
+ llun; -vii + -x_ll(/ - T)un;llllun; -vii - -x_((/ -T)v, Un; -v). 

Then from Lemma 2. 7, we have 

. liminfllun; -vll 2 < liminfllun· - Tvll 2 
n➔OO n➔OO I 

2 k k 
+ llun; - vii + -x_ll(/ - T)un; 11 llun; - vii - -x_((/ - T)v, Un; - v)] 

= liminf llun· - vf, 
n➔oo 1 

which is a contradiction. Hence Tv = v. 
(iii) Suppose that F(T) x F(T) s; E(G) and {PF(T)Xo} is dominated by {un}, we show that Un ➔ wo = PF(T)XQ. 

Let {un;} be a subsequence of {un}, we denote Vi =Un;. For each i, Vi is~ fixed point of Tn;,P· Hence, we have 

Vi= (1 - lln;)[(l - /J)vi + /JTv;] + lln;X0 

=} (I - an;)[(I - /J)vi + /Jvi] + lln; Vi = (1 - an;)[(l - /J)vi + /JTvi] + lln;X0 

=} lln; Vi + (I - an;)/J(vi - Tvi) = lln;Xo. 

Since wo is a fixed point of T, we have 

By subtracting (3.9) from (3.8) and taking the inner product of the difference with Vi - wo, we obtain 

(3.8) 

(3.9) 

an; (vi - wo, Vi - wo) + (1 - an;)/3((/ - T)vi - (/ - T)wo, Vi - wo) = an; (xo - wo, Vi - wo). (3.10) 

Again, since PF(T)XO is dominated by {un}, we have (vi, wo) E E(G) for all i E N. Moreover, since Tis 
G(J)-strictly pseudocontractive, then ((/ - T)vi - (/ - T)wo, Vi - wo) ==: 0 for all i E N. Thus from (3.10), 
we have 

Hence, 

llvi - woll 2 ~ (xo - wo, Vi - wo) 

= (xo - wo, v - wo) + (xo - wo, Vi - v). 
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By the variational characterization of the metric projection, we know that (xo - wo, v - wo) ::: 0 and thus we 
have 

llv; - woll 2 
::: (xo - wo, v; - v) ➔ 0, i ➔ oo. 

Therefore, v; ➔ wo - PF(T)XO and by the double extract subsequence principle, we can conclude that 
Un ➔ WO = PF(T)XO, 

□ 

Proposition 3.7. Let C be a convex subset of a vector space X and G = (V(G), E(G)) a directed graph such 
that V(G) = C and E(G) convex. Let G be transitive and T : C ➔ C be edge-preserving. Let {xn} be a sequence 
defined for initial xo E C, 

(3.11) 

where an E [0, l] and /J E (0, 1). /f{xn} dominates xo and (xo, Txo) E E(G) then (xn, Xn+I), (xo, xo) and (xn, Txn) 
are in E(G)for any n EN. 

Proof The proof is similar to the proof of Proposition 4.4 of Tiammee et al., [28] and is omitted. □ 

Theorem 3.8. Let C be a nonempty closed and convex subset of a Hilbert space Hand let G = (V(G), E(G)) bea 
directed graph such that V(G) = C, E(G) is convex and G is transitive. Suppose Chas property G. Let T : C ➔ C 
be a G(},,)-strictly pseudocontractive. Assume that there exists xo E C such that (xo, Txo) E E(G). Suppose that 
F(T) =I=- 0 and F(T) x F(T) 5; E(G). Let {xn} be as in (3.11), where /J E (0, min{l, 2A}) and an E [O, l] satisfies 
the following condition: 

(i) L;::o an = oo, 
(ii) L;::o lan+I - an I < oo, 

(iii) limn➔oo an = 0. 

If {xn} dominates PF(T)XO and xo, then {xn}i converges strongly to PF(T)XO, where PF(T) is the metric projection on 
F(T): 

Proof Let zo = PF(T)XO, From Proposition 3.7, (xn, Xn+I) E E(G) for all n E N. Since zo E F(T) and 
zo = PF(T)XO is dominated by {xn}, we have (xn, zo) E E(G) and 

But, 

llxn+l - zoll 2 = llanxo + (1 - an)[(l - /J)xn + /JTxn] - zoll 2 

= llan(xo - zo) + (1 - an)[(l - /J)xn + /JTxn - zolll 2 

= anllxo - zoll 2 + (1 - an)ll(l - /J)xn + /JTxn - zoll 2 

- an(l - an)ll(l - /J)xn + /JTxn - xoll 2 

::: anllxo - zoll 2 + (1 - an)ll(l - /J)xn + /JTxn - zoll 2
. 

11(1 - /J)xn + /JTxn - zoll 2 = 11(1 - /J)(xn - zo) + /J(Txn - zo)ll 2 

· = (1 - fJ)2 llxn - zoll 2 + /J2 11Txn - zoli2 + 2/J(l - /J)(xn - zo, Txn - zo) 

:S: (1 - /J)2 11xn - zoll 2 + /J 2 [11xn - zoll 2 + kllxn - Txnll 2
] 

[ 2 1 - k 2] +2/J(l-/J) llxn-zoll --
2

-llxn-Txnll 

(3.12) 
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= (1 - 2P + .P2)11xn - zou2 + ,82[11xn - zoll 2 + kllxn - Txn 1121 

+ 2,Bllxn - zoll 2 
- 2P2 11xn - zou2- ft(l - P)(l - k)llxn - Txnll 2

] 

= llxn - zof + ,B[k + P - l]llxn - Txnll 2 

:::: llx11 - zou2. 

Therefore, 

llxn+1· - zo11 2
::::: anllxo - zon2 + (1- an)llxn - zoll 2 

:::: max{llxo - zoll 2
, llx11 - zo11 2

}. 

Thus, {xn} is bounded and consequently, {Tx,i} is bounded for all n E N. From (3.12) and (3.13), we have 

llx11+1 - zoll 2 
::::: an llxo - zon2 + (1 - an)[llxn - zoll 2 + ,8(.P - (1 - k))llx11 - Txn 11 2

] 

· ::::: a11llxo - zon2 + llxn - zo11 2 + ft(.P- (1-k))llxn - Tx1111 2
. 

Now, 

11(1 - ,B)(xn - Xn-1) + ft(Txn - TXn-1)11 2 = llxn - X11-l - ft(xn - Txn - (Xn-1 - TX11-1n1!2 

= llxn - X11-1 ll2 + ft2 llxn - Txn - (X11-l - TX11-1)11 2 

-2,B{xn - Xn-J,Xn-: Txn - (Xn-1 - TX11-1)) 

::::: llx11 - X11-l 11 2 + P2 11xn - Txn - (Xn-1 - Txn-1)1!2 

- 2,82llx11 - Txn - (Xn-1 - TXn-1)11 2 

which implies 

Thus 

11(1 - ft)(Xn - Xn-1) + ft(Txn - TXn-1)11 ::'.:: lfxn - Xn-J 11. 

llxn+l - Xn II= llanXO + (1 - a11)[(1 - ft)xn + ,BTxn] - anXO - (1 - a11-1)[(l - ,B)Xn-1 + ,8Tx11-1]II 

::::: la11 - an-1 II lxo - (1 - ,B)Xn-1 - PTxn-I 11 

+ (1 - an)ll(l - ,B)(xn - X11-1) + ,B(Txn - TXn-1)11 

::::: Ian - an-1 I llxo - (1 - ft)Xn-1 - PTxn-1 II + (1 - an) llxn - Xn-1 II 

::::: Ian - an-ilD + (1 - an)llxn - Xn-1 II, 

where D = sup{llxo - (1 - ft)xn-1 - ftTxn-1 II : n EN}. 
But form, n E N and from (3.17), we have 

(

n+m-1 ) (n+m-1 ) 
llxn+m+l - Xn+m II ::::: ~ la;+1 - a; I D + I! 11 - ai+l I llxm+l - Xm II 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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Since {xn} is bounded and L~o O.i = oo, we obtain 

Hence by L~o lo.n+l - o.nl < oo, we conclude that 

lim llxn+l - Xn II = 0. 
n➔oo 

Moreover, 

llxn -Txnll :':: llxn -Xn+ill + llxn+l -Txnll 

= Uxn - Xn+l II + llo.nXO + (1 - O.n)[(l - /J)xn + /JTxn] - Txn II 

:':: llxn - Xn+ill + O.nllxo - Txnll + (1- O.n)ll(l - /J)xn + /JTxn - Txnll 

:':: llxn - Xn+l II + O.n llxo - Txn II + (1 - O.n)ll(l - /J)(xn - Txn)II, (3.19) 

Therefore 

Hence, 

llxn - Txnll ➔ 0, n ➔ 00. 

Since {xn} is bounded and His a Hilbert space, there exists a subsequence {xnj} of {xn} that converges weakly to 
y EC. 

We next show that limsup(xn - zo, xo - zo) ::: 0. Choose a subsequence {xnj} of {xn} such that 
limsupn➔oo(Xn - zo,xo - zo) = Iimn➔oo(Xnj - zo,xo - ~o). Since Chas Property G, then ({xn), y) E E(G). 
Thus, as in the proof of Theorem 3.6 (ii), we conclude that y = Ty. 

Hence, by the variational characterization of the projection mapping, we get 

lim (xnj - zo, xo - zo) = (y - zo, xo - zo) ::: 0. 
k➔ oo 

Therefore, (xn - zo, xo - zo) ::: 0. 
Furthermore, 

and 

But, 

11(1 - o.n)[(i - /J)xn + f]Txn - zolll 2 = llxn+l - zoll 2 + a~llxo - zoll 2 
- 2an(Xn+I - zo, xo - zo) 

::: Jlxn+l - zoll 2 
- 2o.n(Xn+I - zo, xo - zo). 

11(1 - O.n)[(l - /J)xn + f]Txn - zolll 2 = (1 - O.n)2 11xn - zo - /J(xn - Txn)ll 2 

(3.21) 

= (1-an) 2 [11xn - zoll 2 
- 2/J(xn - Txn,Xn -zo) + /32 llxn -Txnll 2

] 

:':: (1 - O.nfrnxn - zoll 2 
- 2/JAllxn - Txnll 2 + /3 2 llxn - Txnll 2

] 

= (1 - an)2[11xn - zof - /3()., - /J)llxn - Txnf 

(3.22) 
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Thus, 

(1- an)llxn - zoll 2
::::: 11(1 - an)[(l - /J)xn + /JTxn - zou2 

::::: llxn+l - zoll 2 
- 2an(Xn+I - zo,xo - zo}. (3.23) 

Hence, 

It then follows from Lemma 2.1, that limn➔oo llxn - zoll 2 = 0, i.e., Xn -+ zo. □ 
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