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Abstract. Given two nonnalized Hecke eigenfonns J1, h of weight k1 and k2 respectively of squarefree level N, 
we consider the product of twisted L-functions associated with ft and h by a quadratic charater x, and show that if 
this product does not vanish at the center of the critical strips = 1/2, then it does not vanish for infinitely many such 
twists. This is a generalisation of the work due to R. Munshi (J. Number Theory, 132, 666-674 [2012]) for the full 
modular group to the case of any congruence subgroup of squarfree level N. 
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1. Introduction 

Let /1 and h be two normalized Hecke eigenforms of weight k1 and k2, respectively on fo(N). Let 'D denote the 
set of fundamental discriminants. Define the set 

l:l(/1, h) := {d E 'D: L(f1 ® Xd, 1/2)L(h ® Xd, 1/2) -::fa 0}, 

where L(f; ® Xd, s) denotes the twisted L-function associated with /; (i = 1, 2) by quadratic character Xd for 
d E 'D, and Xd is defined by Xd(n) = (~), where (!) is the generalised Jacobi symbol. 

R. Munshi [ 6] proved that for given two normalized Hecke eigenforms Ji and h on S L2 (Z), if the set /:l (/1, h) 
is nonempty then the cardinality of the set l:l(/1, h) is infinite. We genaralise the work of Munshi [6] for the 
congruence subgroup fo(N), when N is squarefree. We follow the same exposition as given in [6]. The proof uses 
the connection between half-integral weight modular form and integral weight modular form developed by Shimura 
[7] and Waldspi.rrger formula in the context that vanishing of the twisted L-function can be determined by vanishing 
of the coefficients of the associated half-integral weight modular form. We now state the main theorem of the paper. 

Theorem 1.1. Let !1 and h be two normaliz~d Hecke eigenf;nns ~jweight k1 and k2; respectively pn fo(N); 
where N is squarefree. Suppose that there exists a fundamental discriminant d such that (d, N) = 1 and 

L(/1 ® Xd, l/2)L(h ® Xd, 1/2) -::fa 0, 

then there are infinitely many such fundamental discriminants d with the above property. In other words, the 
cardinality of the set /),_ U1, h) is either zero or infinite. 
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2. Preliminaries and basic results 

In this section, we briefly recall some basic definitions and properties of modular forms. 
The full modular group SL2(Z) and congruence subgroup fo(N) of level N E N are defined as follows; 

SL2(Z):= {(: !) :a,b,c,dEZ,ad-bc=l}, 

fo(N) := { (: !) E SL2(Z): c = 0 (mod N)} · 

The group SL2(Z) acts on the complex upper half plane 1t = {r E <C : Im(:r) > O} via fractional linear 
transformation as follows; 

"' QT +b 
y. T := ' 

CT +d 
y = (: !) E SL2(Z) and TE 1t. 

Let k E 'll, and y = ( ~ ~) E S L2 ('ll,), then for a holomorphic function f : 1t ➔ <C define the weight k slash 
operator as follows; 

f lk y (r) :=(er+ d)-k f(y · r). (1) 

Definition 2.1. A modular form of weight k E 'll, for fo(N) is a complex-valued holomorphic function f on 1t 
satisfying; 

f lk y(r) = f(r), for all y = (: !) E fo(N), 

and holomorphic at the cusps of fo(N). Further if f also vanishes at the cusps of fo(N), then f is called a cusp 
form. 

We denote Mk(N) (respectively Sk(N)) the space of modular forms (respectively cusp forms) of weight k for 
I'o(N). 

For N E 4N, y = ( ~ ~) E fo(N) and a holomorphic function f : 1t ➔ <C, define the weight k +½slash operator 
as follows; 

(2) 

where (~) is the extended quadratic residue symbol as in [7]. 

For a fixed positive integer N such that 41N, we denote by Mk+½ (N), the space of modular forms of weight k + ½ 

for fo{N), that is the space of all complex-valued holomorphic functions f satisfying; 

flk+p (r) = f(r), for all y = (: !) E fo(N), 

and holomorphic at the cusps of I'o(N). Further, if f vanishes at cusps of fo(N), then f is called a cusp form and 
we denote the space of all cusp forms by Sk+½ (N). ' 

For every positive integer n, one can define certain linear operator Tn, called n-th Hecke operator on Mk(N). 
The family of Hecke operators acting on Sk(N) are commuting and self-adjoint with respect to the Petersson 
scalar product, therefore there exist an orthonormal basis consisting of cusp forms (called eigenforms) which are 
eigenfunction for all the Hecke operators. We call an eigenform f with Fourier coefficients a f (n) normalized Hecke 
eigenfonn if a f (1) = 1. 

For more details on the theory of modular forms, we refer to [3] and [7]. 
Let J(r:) = L~I a1(n)e(nr) E S2k(N) be a normalized Hecke eigenform of weight 2k on fo(N). 

The £-function associated with f is defined by 

~ a1(n) 
L(f, s) := L,,, ns+k-1/2. 

11=! 

This series converges absolutely for a = Re(s) > 1 and satisfies a functional equation with s ➔ 1 - s. 
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Ford E V, let Xd denotes the associated quadratic character as defined before, we define the twisted L-function 
L(f 0 Xd, s) as 

~ Xd(n)a1(n) 
L(f 0 Xd, s) := L.. ns+k-I/2 . 

n=l 

The sign of the functional equation of the twisted L-function L(f 0 Xd, s) is given by Ed = (-lt sgn (d). 
As a consequence of this we get L(f 0 Xd, 1/2) = 0 if (-ltd < 0. 

The Kohnen plus space in Sk+l (4N) is defined by 
2 

s:+½ (4N) := {f E Sk+½(4N); (-l)kn = 2, 3 (mod 4) ==> a1(n) = 0}. 

If f(r) = L~l a1(n)e(nr) E S2k(N) is a normalized Hecke eigenform (i.e., a1(1) = 1) and g(r) = 
L~I ag(n)e(nr) E s:+½ (4N) is the corresponding form of half-integral weight (in the sense of [4]), then the 

Fourier coefficients of f and g are related by the formula 

a8 (n 21dl) = ag(ldl) L, µ('5) (~) <5k-Ia1(n/'5), 
oln 

(o,N)=I 

for every fundamental discriminant d E V with (- lid > 0. 

(3) 

For a prime p dividing N, define cop E {±1} by J I Wp = wpf, where Wp is the Atkin-Lehner involution on 
S2k(N) defined by 

1 (p a) f I Wp = f l2k ,.jp N pb 

Proposition 2.2 ([ 5] Corollary 1, p. 242). Let d be fundamental discriminant with ( -1 t d > 0 and suppose that 

for all prime divisors p of N we have (i) = cop, Then 

lag(ldl)l 2 = 2a(N) (k - 1)! ldlk-1 L(f 0 Xd, 1/2), 
(g, g) 71:k (f, f) 

where O" (N) denotes the number of different prime divisors of N. 

Given a positive integer k and n E N such that n = 0, ( -1 t (mod 4), n can be uniquely written as 

n = ldlm2, where d EV ,m E Z and (-1/d > 0. 

It follows from equations (3) and (4) that 

ag(n) -::/- 0 => L(f 0 Xd, 1/2) -::/- 0. 

- - 3. Proof of Tbeorem 1.1 -

In this section we give a proof of the Theorem 1.1. 
Let N be a fixed positive squarefree integer. Suppose that 

00 

fi(r) = L,ai(n)e(nr) E S2k;(N), i = 1, 2 
n=l 

(4) 

(5) 
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be two normalized Hecke eigenforms of weight 2ki on fo(N). Let 

00 

Fi(•)= L A;(n)e(n1:) Es:+½ (4N) 
n=l 

be the half-integral weight modular form corresponding to f; (in the sense of [4]). 
We assume that the set I}. U1 , h) is nonempty and cardinality of I}. (/1 , h) is finite. We shall show that this 

assumption of finiteness on I}. (!1, h) will lead us to a contradiction to a already known result about the number of 
zeros of L(/1 x h, s). 

Write H(r:) = Fi (1:)F2(1:). Then for any y = ( ~ ~) E fo(4N), 

(6) 

Let 1q = oo, K2, ... , ,c1z be the non-equivalent cusps of fo(4N), then for each cusp K; there exists g; E SL2(Q) 
such that gioo = Ki and ri := gi r 00 g11

, where f; and r 00 are the stabilizer group of the cusps Ki (i > 1) and oo 
respectively. We define the Eisenstein series corresponding to each cusp Ki as follows; 

(7) 

y er; \fo(4N) 

where j(y, 1:) = (er: +d)(c1: +d)-1 for y = (~ ~). 
These Eisenstein series converge absolutely for Re(s) > 1 and has analytic continuation to the whole complex 

plane. If we write 

· [E1(1:,s,k)] 
-::t E2(1:,s, k) 
.c (1:, s, k) = 

.......... 
. Eh(•, s, k) . 

Then these Eisenstein series together satisfy a functional equation given by 

E ( 1:, s, k) = cf) (s) E ( 1:, l - s, k), 

where <t>(s) is ah x h matrix, called scattering matrix and satisfies the functional equation 

<l>(s)<l>(l - s) = l1zxh• 

Observe that for any a, f3 E SL2(Z), j_(a/3, 1:) = J (a, f3 • 1: )j (/3, 1: ). Consequently we have, 

~--k k 
E;(17·1:,s,k)=(c1:+d) (c1:+d) Ei(T,s,k), 17Efo(4N). 

From the equations (6) and (9), it follows that the function 

( 
k1 - k2) k1+~2+1 

H(1:)Ei T, s, 
2 

y 

is invariant under I'o(4N). Therefore, we can consider the Rankin-Selberg integral 

i ( k1 - k2) k1+;z+1 dudv 
Ri(s) = H(1:)Ei 1:, s, -- Im(1:) -

2
-, (1: = u + iv EH). 

fo(4N)\ri 2 V 

(8) 

(9) 

Theorem 3.1 ([11). If R; (s) is as above, then Ri (s) has a meromorphic continuation to alls, the only possible poles 

being at s = 0, 1, au, 1 - au and p /2, where p's are the nontrivial zeros of the ·Riemann zeta function. Further we 
have the following functional equation · 
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We consider the integral 

1 ( (k1 - k2)) k1 +kz+1 dudv 
Ri(s) = H(r)Ei r, s, --- /m(r) 2 - 2-, 

f'o(4N)\1t 2 V 

1 ~ 1 k1-k2 1 k1+k2+1 dudv 
= H(r) ~ j(g1 y, r) 2 Jm(g1 y · rf /m(r) 2 - 2-, 

f'o(4N)\1t y Ef'; \fo(4N) V 

{ ~ k1-k2 I k1+kz+l dudv 
= lr ~ H(r)j(g11y, r) 2 Jm(g1 y • r)5 /m(r) 2 - 2-. 

f'o(4N)\1t y Ef';\fo(4N) V 

Interchanging the sum and integration in the above equation we get 

Using the change of variable r -+ gi • r, we get 

~ 1 I kr2kz I k1+;2+1 dudv 
Ri(s) = ~ H(gi •r)j(g1 y,gi •T) lm(g1 ygi •r✓Y lm(gi •T) - 2-. 

y El 00 \fo(4N) gil -fo(4N)\1t V 

Now using the Rankin unfolding argument, we have 

1 -(k1-kzl k1 +kz+1 dudv 
Ri(s) = j(gi, r) 2 H(gi · r)Jm(gi · r) 2 /m(r)5-2-. 

f'oo\1t V 

Therefore, 

Ir k1+kz+1 dudv 
R00 (s) = H(r)/m(r) 2 /m(r)5-2-, 

f'oo\1-t'. V 

1 __ k1+kz+I dudv 
= F1(r)F2(r)/m(r) 2 /m(r)5-2-. 

f' 00 \1-t'. V 

Now replacing F1 and F2 by their Fourier series expansions, we have 

r ( OO - ) ( OO ) k +k +.I dudv 
Roo(s) = lr oo\H ~ A1 (n)e(-nr) ~ A2(m)e(mr) /m(r)~+s--;z· (11) 

It is well known that the set { r = u + iv : u E [0, 1], v E [O, oo)} is a fundamental domain for the action of 
r oo on 1-l. Integrating (11) over this region R00 (s) equals 

[1 [00

( 

00 

_ )( 

00 

) ~ dudv Roo(s) = lo lo ~A1(n)e(-nr) ~A2(m)e(mr) /m(r) 2 +s~ 

00 00 -- r' roo k1+kz+I dudv =LL A1(n)A2(m) Jo lo e(-nr)e(mr)/m(r) 2 +s_2_ 

n=l m=l • O O V 

k* = _k_1 _+_k_2_-_l 
2 
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We now consider the Dirichlet series defined by 

which appeared in the the Rankin-Selberg integral R00 • Now, we want to relate D(s) with the normalized 
Rankin-Selberg L-function L(/1 x h, s), where 

Using the formula (3) and decomposition (5), we have 

Therefore, 

A1(n)A2(n) = A1(ldl)A2(ldl) I] L µ(<>i)Xd(<>i)<>/;-lai(m/<>i), 
i=l,2 o;lm 

(o;,N)=l 

A1 (ldl)A2(ldl) ~ 1 IT "'""' k·-1 
D(s) = L, ldls+k* L., m2(s+k*) L., µ(<>i)Xd(<>i)<>i ' ai(m/<>i), 

det:,(!1,h) m=l i=l,2 °;1m 
(o;,N)=l 

Since /i for i = 1, 2 are normalized Hecke eigenforms, therefore the functions L, o;lm µ (<>i)Xd(<>i )J/;-I ai (m/<>i) 
(o;.N)=l 

are multiplicative in m, we get 

00 1 
L, m2m fl L, µ(<>i)Xd(<>i)<>/;-lai(m/Ji) = IT Lp(w, d), 

where w = s + k* and 

Also, 

consequently we have 

m=I i=l,2 o;lm p 
(o;,N)=l 

00 1 
Lp(w, d) == 1 + L pZlw _IT L, µ(<>i)Xd(<>i)<>/;-laf(p1 /<>i), 

l=l z=l,2 o;IP1 

(o;,N)=l 

L µ(<>)Xd(<>)<>k-la(pz /J) = a(pl) - Xd(P)Pk-1a(p1-1), 

<5ip1 

00 1 
Lp(w, d) = 1 + L 2/w [(a1 (pl) - Xd(P)Pk1-la1 (pl-l))(a2(/) - Xd(p)pk2-la(pl-l))]. 

l=l p 

Observe that the local Euler factor of LP (/1 ® h, s) is given by 1 + L~J 01 <P'~f,2 (p') and the local Euler factor of 

L(fi ® Xd, s) is given by (1 - Xd(p)a;(p)p-s + XN (p)p2k;-l-2s)-1, where XN (p) is given by 

' {1 ifpfN 
XN(p) = ' 

0 if pjN. 

Executing the sum overland using the Hecke relation for the fourier coefficients a1 (p1) and a2(1/) we obtain 

Lp(w; d) = Lp(/1 x h, 2s) Ep(s; d), 
Lp(/1 ® Xd, 2s + 1/2)Lp(h ® Xd, 2s + 1/2) 
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where the first factor on the right-hand side is the local Euler factor for the normalized Rankin-Selberg £-function 
L(f1 x h, 2s) (the center of L(f1 x h, s) is 1/2), and the last factor is such that the Euler product ITP Ep(s, d) is 
absolutely convergent for a > 1/8. Therefore, 

D(s) = L(f1 x h, 2s)3(s), (12) 

where 

with 
l(s; d) = E(s; d) 

L(f1 0 Xd, 2s + 1/2)L(h 0 Xd, 2s + 1/2) 

and E (s; d) is an Euler product which converges absolutely in the half plane a > 1 /8. 
Recall our assumption that I::,. U1, h) is nonempty but finite, say 

!::,,.(11, h) ={di, ... , dm}, with ldil < ldzl < d ... ldml-

Then 3 (s) is meromorphic in the half plane a > ½, and it is holomorphic in the half plane a ::::: ¼. Following the 
argument of Munshi [6] (section 6), if we consider 

R = {s = a + it : 1/3 ::: a ::: a, T ::: t ::: T + H} 

and 

Then by applying the Littlewood lemma which states that 

[°· v(a)da = -l. { logg(s)ds, 
}113 21rz laR 

where o R denotes the boundary of R and v (a) denotes the number of zeroes minus the number of poles of 
meromorphic function g in the region R, we get 

1 lT+H 1 lT+H L fJ - 1/3 = - log 1/(1/3 + it)ldt - - log lf(a + it)ldt 
2n T 2n T 

p=P+iyER, 
f(p)=O 

1 fa 1 la + - -arg(f(a + i(T + H)))da - - arg(f(a + iT))da. 
2n 1/3 2n 1/3 

Also for large a, log 1/(a + it)I = 02:. (1) and as a ---+ oo, we have 

and finally 

f(a +it)= 1 + 0.6(e-a(logld2l-logld11)), 

L fJ - 1/3 = 01',(H). 
p=P+iyER 

f(p)=O 

If we denote by N(T, 3) the number of zeros of 3(s) (counted with multiplicity) in the region {s a > 1/2, 
itl < T}, we obtain 

N(T, 3) = O.6(T). 
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-+ 
Now using the functional equation satisfied by R (s), as given in (10), we get the following functional equation 

D(s) = G(s)D(l - s), 

where G(s) is determined by the scattering matrix <I>(s), and it involves Gamma functions. Using (12), we get 

3(1 - s/2) 
L(f1 ® h, s) = G(s)L(f1 ® h, 2 - s) -c 

.::. s/2) 
(13) 

We now look at the number of zeros of L (f 1 ® h, s) and the function in the right band side of the functional equation 
(13) in the ractangle 

R = {S =a+ it : 1/2.:::: a .:::: 1, ltl .:::: T}. 

It is well known that (see [2]) number of zeros N (T, Ji ® h) of L(f1 ® h, s) is of order cT log T, where c is a non 
zero constant. Now, G(s) will have atmost 0(1) possible zeros in R, and L(f1 ® h, 2 - s) will not have any zero 
in Ras 2 - Re(s) ~ 1. Also 3(s /2) has no poles in the region, the major contribution to zeros ofright hand side is 
coming from 3 (1 - s /2), which is of order O 1:,, (T) and hence we get a contradiction. 
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