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Abstract. Let K /Q be a real quadratic field. Given an automorphic representation 7 for GLy /K, let As*(xr)
denote the plus/minus Asai transfer of 7 to an automorphic representation for GL4/Q. In this paper, we construct a
rigid analytic map from a subvariety of the universal eigenvariety of GL,/K to an eigenvariety of GL4/Q, which at
nice classical points interpolate this Asai transfer.
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1. Introduction

Let K be a real quadratic field. Let k¥ > 2 be an integer. Let f be a Hilbert modular form over K of weight k
(i.e., of parallel weight (k, k)) and level 1. Further assume that f is an eigenform for all the Hecke operators with
eigenvalues c(a, f), where a runs over integral ideals of Ok (the ring of integers in K). The standard L-function for
f is constructed from c(a, f) as a Dirichlet series over K.

In [1], Asai introduced the following L-function which is constructed only from the Hecke eigenvalues for ideals
that come from Q. This is now referred to as the Asai L-function. More specifically, the Asai L-function is defined as

G(s, f) =((2s—2k+2)2@%2.

m=1

A priori, this function converges for s in a certain right half-plane. It is known that this L-function has an Euler
product expansion, analytic continuation to all of C and a functional equation.

Let 7 be the automorphic representation associated to the form f. Then the L-function G(s, f) is (up to a shift) a
certain automorphic L-function, denoted by L(s, 7, As™), associated to . The principle of Langlands functoriality
suggests, in this case, that this automorphic L-function is the standard L-function of an automorphic representation
for GL4/Q. The details of this Asai transfer are recalled in §2. Fix a prime p that is unramified in K. The aim of this
article is to construct a p-adic version of this Asai transfer.

Specifically, when p splits in K, we construct a rigid analytic map from a closed subvariety of the eigenvariety
attached to GL,/K to the universal eigenvariety attached to GL4/Q that interpolate the classical Asai trafisfet on a
dense subset of classical points. But when p is inert, we are only able to construct a map to an eigenvariety which
may be viewed as a quotient of the universal eigenvariety attached to GL4/Q. For the purpose of sin\pliﬁcation, we
have only constructed p-adic Asai transfer for tame level 1 eigenvarieties. There should be no added difficulty to
extend this arbitrary tame level eigenvarieties.

Historically, the study of Langlands’ functoriality in families of automorphic forms can be traced back to the
work of Hida [9], where a A-adic Jacquet-Langlands’ transfer is constructed between families of Hilbert modular
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forms and of quaternionic automorphic forms. In the setting of eigenvarieties, Chenevier [7] constructed p-adic
Jacquet-Langlands transfer, which at classical points interpolate the classical Jacquet-Langlands’ transfer for
GL,. Following Chenevier’s method, other instances of p-adic Langlands’ functoriality have been established, see
[8,12—15,19].

This article is organized as follows. In §2, we recall some of the basic properties of the Asai transfer. In § 3,
we recall the construction due to Hansen of universal eigenvarieties attached to certain connected reductive groups.
In § 4, we explicitly describe the eigenvarieties that are relevant to our construction of the p-adic Asai transfer map.
In § 5, we finally construct the p-adic Asai transfer map between eigenvarieties using a comparison theorem obtained
in section 3.

Notations. Throughout this article, p will denote a fixed odd integer prime, and K a real quadratic extension in
which p is unramified. The ring of adeles over Q will be denoted by A = Ag. We will denote by Ay and Ay
the finite adeles and the adeles at infinity, respectively. For a set of places S of QQ, we will denote by A the adeles
supported at S and by AS the adeles supported away from S. We will denote by Ax = A ®g K the adeles over K.
We similarly define Ag 7, A oo, A‘f( and Ak, s when § is a set of places of K.
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2. Asai transfer

Let K = Q(+/d) be a real quadratic field. We now recall the Langlands functorial transfer from automorphic
representations for GL; over K to automorphic representations of GL4 over Q that is called the Asai transfer.

2.1 Map between L-groups

Let Gy denote the algebraic group GL; over K and let G; = Resg ;@G denote the Weil restriction of Gy from
K to Q. The Langlands dual group for G; is defined as

LG = (GL2(C) x GLy(C)) x Gal(K /Q).

where the nontrivial element ¢ € Gal(K /Q) acts on the tuple of matrices via permutation. Let G2 denote the algebraic
group GL4 over Q. The L-group of G is given by G, = GL4(C). Let AsT denote the following representation of
LG, acting on C2 ® C2 given by
AsT[(A, B)](x ® y) = Ax ® By, for A, B € GL,(C)
AsE[cl(x ® y) = £(y ® x).

We view these representations as maps between the L-groups As* : LG; — £ G,. The main results of [11] and [16]
show that the Asai transfer is automorphic.

2.2 The Asai motive
We now recall some basic facts about Hilbert modular forms and the associated Asai motive. Let 01,02

K — R denote the two embeddings of X into R. The weights of Hilbert modular forms are elements of the
lattice Z[o'] := Zo) + Zo,. Specifically, the weight of a Hilbert modular form will correspond to a pair (n, v) with
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n,v € Z[o] such that n + 2o is parallel. By a parallel weight, we mean that n + 20 = mt where t = 01 + 02
and m € Z. Writing n = n101 + ny03, this condition implies that the parity of n and n; are the same. The parity
assumption is necessary for the existence of Hilbert modular forms of a particular weight. Let k = n+2¢ and assume
further that k; > 2.

Let n be an integral ideal in K. Let f be a Hilbert cusp form of weight (n, v) and level n. Suppose that f is a
primitive eigenform, then the motive M attached to f is a pure simple rank 2 motive defined over K. The Hodge
types of the motive at ¢; are {(n; + 1 + v;, v;), (vi, n; + 1 + 0;)}. If a is an integral ideal in K, let c(a, f) denote
the Hecke eigenvalue for the Hecke operator T (a). Let € f be the Hilbert modular form whose Hecke eigenvalues
are given by c(a,°f) = c(a®, f). Let M denote the motive associated to ¢ f. The Hodge type of this conjugate
motive at o; will be the Hodge type at g; o c.

The motives Ast(M) associated to the Asai transfer will be pure simple rank 4 motives defined over Q.
The Hodge types at the infinite place of  are

(n1 +n2 + 01 +v2 + 2,01 + v2),
(n1+ 1401 +02,n2+ 1+ 01 +02),
(no+ 1401 +v2,n1 + 1401 +02),

(v1 + 02,01 + 2+ 01 +02+2).

Note that the weight of this motive is n; + ny + 2(v; + v2) + 2 = 2m + 2. Note also that when n1 = nj, the Asai
motive has a middle (i.e., (p, p)) Hodge type and is hence not cohomological. Henceforth, we assume thatny > n,.

2.3 Weight of the Asai transfer

Let G and G; be as above. A weight for Gy is a tuple 1 = (A1, A2) where 1; € Z?. We say that the weight 1 is
dominant if A; = (a;, b;) with a; > b;. We can relate these weights to the ones discussed above by taking a; = n; +v;
and b; = v;.

Let z be an automorphic representation for G;. Let A be a dominant weight for G1. We say that z is cohomological
of weight A if

H*(gl,oo: Ki,00 Moo ® 2) # 0,

where g o is the Lie algebra of G1,00 = G1(R) and K, is the maximal compact modulo the centre in G o,
and .Z) is the highest weight representation associated to A. In order for A to support cohomological automorphic
representations, we require that 4 be pure, i.e., a; +b; = az + bs.

A weight for Gy is a tuple u € Z* We say that g4 = (u1, po, 43, u4) is dominant if u; > uz >
13 = pa. If IT is an automorphic representation for G, and u a dominant weight for G,, we define the notion of
IT being cohomological of weight x in a similar fashion. Similarly, for 4 to support cohomological automorphic
representations, we require that y is pure, i.e., u1 + g4 = o + us.

Let 7 be the automorphic representation over G (A) attached to the primitive eigenform f of weight (n, v). Then
T = my ® mp, where 7 is the representation at infinity and z; are discrete series representations up to twists by
powers of the determinant. The Langlands parameter of #; is given by

1 1 PN U S
T(ni)=27—vi2_ni_v’_7+Z—"’ Vi=37770

One calculates that the Langlands parameter of the Asai transfer is
T (Asﬂ: (7[)) — Zl—vl —vzz—nl —n3~01—02—1 + Z—n1 —"2“01_”2"121_0! —vy

—Nn2—01—V25—N1—01—V —n—01—V25—N2—0|—
+z 201 ZZ 1 1 2+Z 101 ZZ 2-0] 2_

As the exponents in the Langlands parameter are not half-integers, As*(x) is not cohomological. However, if we
normalize the Asai transfer to be As™(r) ® |det|!/?, then the Langlands parameter becomes

3 1 1_3
Zi—vl-vz-z-—nl—nz—vl——vg—i +z—n1—n2—vl—l)2-—727—v1—l)2

%—~n2—01—02—% —n1—v1—02 %—nl—ol—vz—%~n2—vl—oz
+2 F4 +z z .
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One can verify that this representation is supported in cohomology of weight u = (uy, u2, u3, pa) € Z* which
we now describe. The weight y is pure (in the sense of Clozel) with purity weight w = 2m — 1, ie., 1 + ug4 =
w = uaz + u3 (here m = ny + 201). We also have

ni+ny
2
nyp—nz

2

m1= +m—1

U2 = +m—1.

We easily calculate

py=m— 212

ny +nz

He=m —
from the purity condition.

Remark 2.3.1. We note from this calculation that when n; = n3, the weight u is not dominant. This shows that
Asai transfer for such automorphic representations do not contribute to the cuspidal cohomology. This applies in
particular to those that arise from parallel weight Hilbert cusp forms. Hence, we do not include parallel weights in
our sets of classical weights, see (5.1.1) and (5.2.2).

- 2.4 Local Asai transfer of unramified representations

In this section, we describe the Jocal Asai transfer of unramified representations at almost all finite places in terms of
unramified Langlands’ parameters. Let k& be any local field, let Wy denote the Weil group for k. Let £ be an integer
prime that is unramified in K. We have two cases depending on whether ¢ splits or is inert in K.

First we assume that £ is split in K. Say, (£) = . Since G; = Resg/@(G1), we have (G1)¢ = G1/Q¢ =
(G1)1 x (G1)ee. We know that £(G1)( = £(G))r = GL,(C) and £(G1)e = £(G1)1 x £(Gy)rc. By an L-parameter for
(G1)1, we mean a continuous morphism

p: Wk — (Gl)r
such that ¢(x) is semi-simple for all x € Wg,. Similarly take an L-parameter for (G1)¢ denoted by
9 : Wk — L(Gl)[c.

Now let Froby, Frobi and Frob, denote the Frobenius elements associated to [, [¢ and ¢ respectively. We now assume
that the parameters ¢ and ¢° are unramified; that is, the maps factors through inertia subgroup and hence are
determined by the values ¢ (Froby) and ¢ (Froby).

Identifying Wg, with Wg, and using ¢ and ¢°, we now construct an L-parameter for (G1)¢ as

§ =9 x9°: W, > L(G)e.

Note that ¢ is determined by the value @(Frobs). We now describe the Asai transfer for unramified L-parameters
below. Suppose that the

¢(Froby) = [a[ ﬁ[] and ¢“(Froby) = [alc /g,c],

@ (Frobg) = ([a[ ﬂr] , [a[c ﬁ[c]) .

then we see that
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Applying the Asai transfer As*, we see that
ao e

AsEa (Froby) = ap e
¢( f) ﬁ[a[c

BiBe
The calculation above shows that the local Asai transfer for f at a split place £ = [[° is same as local Rankin-Selberg
transfer for f x € f at €. A .

Now we assume that ¢ is inert in K. Let K, denote the completion of K at £. This is an unramified quadratic
extension of Q. In this case, L(G1)e = (£(G1)e x L(G1)e) x Gal(K¢/Q¢) where L(G1)e = GL,(C). We also know
that Wk, is an index 2 subgroup of Wg,. We fix a Frobenius element Frobg ; € Wg,\ Wk, for the ideal £ in Q¢ and
take Frobg ¢ = Frob?Q’ ¢ to be the Frobenius element for the ideal £ in K.

We now consider an L-parameter

¢ Wg, > (G1)e

of (G1)¢. There is an extension of ¢ to an L-parameter of (G1), constructed as follows. Pick any j € Wg,\Wk,.
Define a map

¢ : Wo, = L(G1)e

by sending x € Wk, to (p(x), 9»(jxj~1)) x 1 and by sending j to (Id, (%)) x c.

We now assume that ¢ is unramified; that is, it is ¢ factors through the inertia subgroup and is hence determined
by the value ¢(Frobg ¢). We now construct ¢ by taking j = Frobg ¢ and it is clear that ¢ is completely determined
by the value ¢ (Frobg,¢). Suppose that

¢ (Frobg ¢) = [a" ' ﬁf],

#(Frobg,s) = (Id, [‘“ ﬁe]) ‘e

then we see that

Applying the Asai transfer map, we get

, tar

- +
As§(Frobg ¢) = Pe +o,
B '

This last matrix is equivalent to
+a, v
pe
tache
F/oePe

Unramified L-parameters are in bijection with unramified automorphic representations [4, Proposition 1.12.1].
Hence this calculation completely determines the Asai transfer of unramified representations at unramified places.

Remark 2.4.1.

(1) Given # = ®,7,, the local Langlands correspondence gives the local Asai transfer Asi(n,,). If Asi(n)- =
®pAsT(7,), the global Asai transfer (i.e., the automorphy of As®(x)) is proved using the converse theorem.
The analytic properties for certain L-functions needed to apply the converse theorem are proved using the
Rankin—Selberg method (in [16]) or the Langlands—Shahidi method (in [11]).

(2) We have only described the Asai transfer away from a finite set of bad places. However, since the global Asai
uarisfer is known, by multiplicity one for GL4 this is sufficient to completely determine the representation
As™(x). '
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3. Brief overview of eigenvarieties due to Hansen

In this section, we first recall the notion of eigenvariety datum and the construction of an eigenvariety from such
a datum. We then recall the construction of universal eigenvariety due to Hansen for certain reductive groups G.
Finally, we recall the comparison theorem that allows us to construct rigid analytic maps between eigenvarieties.
Our main reference for this section will be [8], and we adopt much of its notation.

3.1 Eigenvariety data

Let p be an odd prime. An eigenvariety datum is defined as a tuple 2 = (¥, &, #,T, y). We describe below
each of the terms appearing in this definition.

The space # is a separated, reduced, relatively factorial rigid analytic space and is called the weight space In our
context, the space # will parametrize homomorphisms from the maximal torus of a reductive group G. The weight
space contains as a dense subset a set of classical weights that support classical automorphic forms on G.

Let A! denote the rigid analytic affine line. The spectral variety 2 C # x Al is a Fredholm hypersurface, i.e., a
closed immersion that is cut out by a Fredholm series. See [8, Definition 4.1.1] for the precise definition. PrOJectlon
on the first coordinate induces a map w : 2 — % called the weight map.

The sheaf .# is a coherent sheaf on 2. This sheaf is usually constructed from a suitable graded module M* of
overconvergent cohomology classes of a complex whose cohomology yields M*. The Hecke algebra T will be a
commutative () ,-algebra equipped with an action y : T — Endp, (#). The variety 2, in fact, will parametrize
eigenvalues of an operator U € T acting on the complex whose cohomology is M*.

The following theorem gives us the eigenvariety associated to an eigenvariety datum. This follows from Buzzard’s
eigenvariety machine [5].

Theorem 3.1.1 ([8, Theorem 4.2.2]). Given an eigenvariety datum 9, there exists a separated rigid analytic space
X together with a finite morphism © : X — %, a morphism w : & — W, an algebra homomorphism
ba : T = OX), and a coherent sheaf M on & together with a canonical isomorphism M = w1
compatible with the actions of T on M and A" (via y and ¢ g7, respectively). The points of Z lying over z € &
are in bijection with the generalized eigenspaces for the action of T on # (z) (the stalk at z).

3.2 Universal eigenvariety

Throughout this section, let G denote a connected reductive algebraic group over QQ that is restriction of scalars from
a number field to Q of an algebraic group H split at all primes above p. Let B, N, Z and T denote a choice of a
Borel subgroup, unipotent subgroup, the centre and maximal torus respectively. We also fix a p-integral model for
H. This allows us to define Z p,-valued points of G. Let I denote the Iwahori subgroup of G(Z) associated to the
choice of B. In this subsecnon we recall the definition and basic properties of the eigenvariety associated to G.

The weight space W associated to G is a rigid analytic space whose Qp points are given by #5(Q p) =

Homes (T'(Zp), Q p) For any open compact subgroup K# C G(A ), let # = #;(KP) denote weight space of
level K P which parametrizes continuous homomorphisms from the torus that are trivial on the closure of Z(K”I) N
G(Q) c T(Zp).

A Hecke pair consists of a monoid A C G(Ay) and a subgroup Ky C A such that Ky and 6K féf
are commensurable for all § € A. We will denote by T(A, Ks) the QQp-algebra generated by double cosets
Ts5 = [K yJK y] under the convolution product.

The algebra T is the eigenvariety data will be of the form

T =Te(K?) = o, @ T"™(K?),

where .sz{p"‘ is a certain subalgebra of the Iwahori Hecke algebra T(G(Q)), I) and the unramified Hecke algebra is a
commutative algebra given by

T (K?) = Q) T(GQ), k)

vgS
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for a finite set of primes S. In practice, K will be a hyperspecial maximal subgroup of G(Q,), which ensures the
commutativity of the Hecke algebra. There is a subclass of operators in d; which are called controlling operators
which play a crucial role in the construction of the eigenvariety.

We now proceed to describe the construction of the coherent sheaf .# along with the action of the Hecke algebra.
Let B and N respectively denote the opposite Borel and unipotent subgroup to B and N. For any s € Zxg, define
BS = (b€ B(Zp) | b =1 € G(Zp/p*Zp))}. Similarly, define T* = T(Z,) N BS, N° = N(Z,) N B and
IS = I N Ker{G(Zp) — G(Z,/p*Zp)}. Furthermore, we define I{ = {g € I | ¢ mod p* € N(Z/p*/Z)).

Let Q C # be an admissible affinoid open subset. For €2, the tautological character induced from id € W (#) is
denoted by

xo:T(Zp) - OQQ)*.

Let s[€2] denote the smallest integer for which yqly s is analytic. For s > 5[], define

5={f:1—>0(n)’

f is analytic on each I*-cosets and
flgtn) = xa(t)f(g) forall n e N(Zy),t € T(Zy), g€ 1}

Via the map f +— f|51, we identify Ag, with the space of s-locally analytic O(Q) valued functions on N'. Hence
& is endowed with a Banach O[2]-module structure. We have natural injective, compact transition maps
AL — AEH and taking direct limit with respect to these transition maps, we define

Aq =1limAg.
S

The corresponding distribution space is defined as the continuous O (Q)-linear dual of Ag,
Dq = {u : Aqg = O(Q)|u is O(Q)-linear and continuous}.

If 2 € # is any point, we similarly define the modules A}, A; and D;.
Fix a controlling operator U € Jz{;‘ . For Q as above, there exist complexes Co(K”1I, Aq) and C*(K?1, Dg)

that admit an extension U of the controlling operator U. We remark that the controlling operator acts as compact
operator on Co(K?1, Ag) and C*(K”1,Dgq). Let fo(X) denote the Fredholm series associated to this action on
C.(KPI, Aq). Then these functions patch together to give Fredholm series f € O(#){{X}}. The spectral variety
Z° = Z is defined as the Fredholm hypersurface &7 associated to this series.

Given an affinoid open subset Q C # and h € Q, there is exists a corresponding affinoid open subset 2 , C Z.
We call this slope-adapted if fo = f|o@)((x}) has a slopge-< h decomposition. The slope-adapted affinoids form an
admissible open cover of Z°. We also know that if Q is slope adapted for A, then Co(K?1, Dq) admits a slope-< A
decomposition.

Moreover, there exists a unique complex of coherent analytic sheaves, J¢*, on Z such that £ *(Zq ) =
C*(K?1,Dq)<p for any slope-adapted 2% . Taking cohomology of J£°, we get a graded sheaf .Z* on &,
such that A *(Zq,n) = H*(K?1,Dq)<y. This sheaf comes equipped with a Hecke action, which we denote by
w : T — Endp, (£*). Finally, we take our coherent sheaf .# in the eigenvariety data to be the graded sheaf .#*.

To summarise, the eigenvariety datum given by

=W, Z AT, y)

gives rise to the eigenvariety associated to G via Buzzard’s machinery. The eigenvariety 2~ = 2(92) thus
constructed is a separated rigid analytic variety along with
(i) afinite morphism = : Z' — %,
(ii) a morphism (weight map) w : 2~ — #,
(iii) an algebra homomorphism ¢ g : T — O(Z), and
(iv) a coherent sheaf . T on 2  together with a canonical isomorphism .# = r,.# " compatible with the action of
T.
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3.3 Points on the eigenvariety and refinements

The points on the eigenvariety lying over z € Z are in bijection with the generalized eigenspaces for the action of T
on . (2).

Definition 3.3.1. A finite-slope eigenpacket of weight . € # (@p) and level KP is a algebra homomorphism
¢:T— @p such that the space

{v e H*(K?1,D;) &, @p | T -0 =¢(T)o forall T €T and ¢U) #0})

is nonzero, that is, there exists a non-zero eigenvector acting by the homomorphism ¢. Here U is the controllmg
operator fixed earlier.

Another way to define finite-slope eigenpacket is as follows. We denote by T, »(KP) the subalgebra of
Endy, (H*(K?1,D3)<n) generated by the image of T ®q, k2. We define the algebra T)(K?) = hm T;,n(KP).
~ Finite-slope eigenpackts of weight 1 and level X7 can be identified with algebra homomorphisms qS W(KP) >
Q,- :

Given any point x € & (Q p») on the eigenvariety, we can naturally define an algebra homomorphism

e T2Z (X)) —> Ogp g — ki

called the eigenpacket parametrized by x. The points x € Z (Q p) lying over a given weight 1 € W(@p) are in
bijection with the finite-slope eigenpackets for G of weight 1 and level K7 obtained by sending x > ¢;.

We say a point x in the eigenvariety: 2" (Q p) 1s classical if ¢y is the eigenpacket corresponding to a cohomological
automorphic representation of G of weight 1 and level K 7.

Before we discuss the notion of refinements, we need to make explicit the Hecke operators that we consider at p.
Let ®* denote the positive roots for the choice of the Borel subgroup B. Define the semi-group

*={t € T(@p) | vp(a(t)) <0,Va € ¥},
and similarly '
tT={teT@Q))|vpa()) <0,Va € ®F}.

For the monoid A = A, = IT™"I, we consider the Hecke operators dp*‘ = T(A, I). Moreover, we define the
space of Atkin-Lehner operators 27, C T(G(Q)p), I') as the subalgebra of the Iwahori Hecke algebra generated by
U; and U,_l, where U, = [1tI] denotes the double coset operators for t € T+, Furthermore, we take our controlling
operators to be of the form U, where t € T*+. See [8, §2] for further details.

We also briefly clarify the action of A on the cohomology groups in sight. There is a natural right action of / on Ag,.
Indeed, given f € A and y € I, we define f|, (g) = f(yg)- This action induces an action on .Ag and by duality
on Dg. This action extends to A as follows: identifying N' with 1/B(Z), we define t x g B(Zp) = tgt~ B(Zp)
fort € T* and g € I, the action of A on A%, Ag and Dgq as before. The induced action of the Hecke algebra on
cohomology groups will be denoted as the x-action.

Now suppose that locally G is of the form GL,/Q,. Then, we take the following generators for .szfp*“ and &7),.
We denote by U, ; the element in d];" given by the diagonal matrix

(1,....1,p,...., p)

where p occurs i times. Weletu,; = U 11 1Up,i € ).

Let 7, be an unramified irreducible representatlon of GL,(Q)) defined over L. Denote by r : WD(Q),) —
GL, (L) the Weil-Deligne representation associated to 7 ,. Here WD(Q,) denotes the Weil-Deligne group of Q,.
Let ¢1, ..., ¢n be any ordering of eigenvalues of r (Frob,). This ordering of eigenvalues gives rise to a character y
of &, by the formula y (1, ;) = p'~"¢;. The character y is called a refinement of 7 ,.

There exists a vector0 £ v € & ;, such that 27, acts on v by y. If z is a classical automorphic representation on
G such that 7, is unramified and if x € & (@p) corresponds to 7, then we obtain a refinement of 7, by considering
&x|a,. That is, each classical automorphic representation appears roughly n! times in Z . Hence, we often denote
classical points in the eigenvariety as a tuple (z, x).
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3.4 Control theorem

In this section, we define the notion of arithmetic weight and the space of classical automorphic forms above such
weights. We then state the control theorem due to Ash—Stevens and Urban, which relates overconvergent automorphic
forms with small slopes and classical automorphic forms.

Let X* denote the integral weight lattice for G and let X% C X™* denote the subset of B-dominant weights. We
call a weight 2 € # arithmetic if 1 = A;€ where ¢ is a finite order character of T(Z,) and A; € X*. Let s[¢] be
the smallest integer such that € is trivial on 7°1€]. Moreover, we say 1 is dominant arithmetic if 1; € X % . For the
dominant weight A1, let .%;, denote the highest weight representation and let f;, denote the highest weight vector
associated to 11.

The control theorem due to Ash—Stevens [2] and Urban [18] which is a generalization of control theorem due
to Stevens [17] and Chenevier [3,6] relates the space of overconvergent automorphic forms H*(K”1,D;) and the
classical automorphic forms H*(K?I{,.%,,), where I] C I are the subgroups defined earlier.

The standard action of the Hecke algebra %Ij‘ on H*(KPI{, %) is modified as follows. For + € T+* and
m € H*(KPI}, %, ), we define the x-action in weight 11 by

Ut %, m = Al(t)_lU,m.

Next, we note that, for g € G and i € I the function £, (gi) defines an element in .%;, ® A, and pairing it with
u € D) we obtain amap i; : D; — £, which we symbolically write as

@) = [ £ (@),
Then i; induces a morphism
i : H(K?1,D;) - H*(KPI}, %)

for any s > s[e]. This map is an intertwining operator for the action of the Hecke algebra T, where we take the
*-action on the source and the x-action in weight 11 on the target.

Let W denote the Weyl group of the torus 7. For a controlling operator U, we call & € Q small slope for a
dominant arithmetic weight 1 = ¢ if

h inf - A —vp(41(U)),
<w€1v{/1\{l}vp(w 1)) —vp(21(U))

where v, denotes the p-adic valuation. Recall that the Weyl group W acts on weights by the rule w-u = (u+p)* —p,
where p € X* ®z %Z denotes half the sum of positive roots with respect to B.

Theorem 3.4.1 ([8, Theorem 3.2.5)). For the controlling operator U, if h is a small slope for a dominant
arithmetic weight . = Aye, then there exists a natural isomorphism of Hecke modules

H*(Kpl, D/l)ﬁh ~~ H*(Kpliy"‘%ﬁ)QEZ/pSZ):é-

forall s > sle].

3.5 Comparison theorem

In this section we prove a similar version of a comparison theorem Johanssen and Newton [10, Theorem 3.2.1] for
universal eigenvarieties (which is a generalisation of a comparison theorem Hansen [8, Theorem 5.1.6] which intern |
is a generalisation of a theorem due to Chenevier [7, Proposition 4.5]) enabling us to construct rigid analytic maps ‘,"
between eigenvarieties. ‘ :
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Lemma 3.5.1. Let
D=0W,%, #,T, vy

be an eigenvariety datum and let 2~ the associated universal eigenvariety. Let j : W' — W be a closed immersion
and W' is reduced. Let us denote by p| : & xy W' — 2 be the natural projection map. Define an eigenvariety
datum,

9/ = (7/,, ,@p Xy W/, 1);‘-/1, Ta l/’/)

where y' is composition of y with natural map Endo,.(.#) — Endp P (p}A). Let Z' be the universal
eigenvariety associated to 9’'. Then we have a closed immersion

' Z.

Proof. The proof is essentially contained in Johanssen-Newton [10,.§3.1], we give a brief sketch. Let U C 2 be
an affinoid open, then U’ := p]_I(U) is affinoid open in & x4 #”. Let A = Q4 (U) and I the ideal cut out by
U'.Let M = #(U) and Ty = Im(T ® A — Ends(M)). Then p{ A (U') = M/IM and Tj;, = Im(T® A —
End4/; (M/IM)). Thus we have a natural surjective map ¢ : Ty — T},,. Since Spec(Ty)s glues together to form
Z, we have a natural closed immersion 2/ — 2. O

Lemma 3.5.2. Let
D=0,%, H#,T, y)

be an eigenvariety datum and let & the associated universal eigenvariety. Let 1 : %' — % be a closed immersion.
Define an eigenvariety datum, :

D =W, L M,T, ya)

where y i is composition of y with natural map Endo, (#) — Endo,, (*A). Let X" be the universal
eigenvariety associated to 9’'. Then we have a closed immersion

2" X.

Proof. We note that if U C Z is an affinoid open, then :~!(U) is affinoid open in 2 and the proof follows as in
Lemma 3.5.1. This lemma is essentially contained in [10, §3.1]. a

Theorem 3.5.3. Let
D= Wi, Zi, M, Ti, yi) for i =1,2
be two eigenvariety datum associated with two eigenvariety 2, and 2, respectively. Moreover, assume all the

following conditions hold.

(1) There is a closed immersion of weight spaces j : W1 — 5.

(2) We have an Q, algebra homomorphism ¢ : T — T;.

(3) There is a subset ' ¢ Max(Z1) with j(z1(x)) € 25 for all x € X such that the T; eigenspace of x
composed with o appears in M (j(71(x))).

Let Z denotes the Zariski closure of ' in &\ with its induced reduced structure. Then, we have a canonical finite
morphism

i -2

lying over j : Wi — W3 such that ¢z o0 =i* o Pg,.
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Proof. This is a restatement of comparison theorem for extended eigenvarieties due to Johanssen-Newton [10,
Theorem 3.2.1] for universal eigenvarities. Basic idea is to reduce the problem to the case when %] = #5, 21 = 2
and Ty = T, by applying Lemma 3.5.1 and Lemma 3.5.2 repeatedly. We give a sketch of their proof in the set up of
universal eigenvarieties.

Consider the eigenvariety datum

Dy = (M, 21, M1, T2, y100)

and let us denote the associated eigenvariety by £/7. Since im(y1 o ¢) C im(y;), we have a finite morphism
f 2 - ,%”]l”. For x € & ¢, choose x? € {(nf)‘l(m(x))}. Define &40 ¢ Max(.Z”) which contains x?
for all x € 2 and has the property that for all y € 2°°*? we have j (z7(y)) € £ and the T, eigenspace of y
appears in .#>(j (7 { (y))). Let us denote the reduced Zariski closure of 2’ cho jp 2P by 27 . Then it is obvious that

f (ﬁf—) C 2. Thus it is enough to construct a morphism from 2~ to %>, that is we may assume T; = T, = T.
Next consider the eigenvariety datum

Dy = (M, 25 xp, W1, pi M, T2, w3),

comparing it with the eigenvariety datum 2, using lemma 3.5.1, we see that there is a closed immersion 27, — 2>.
Hence it is enough to construct a morphism from 2 " to X, that is we may assume %) = %5 =¥

Let Z° denotes the Zariski closure of i (X oy in Z,. Then we have 1 : 7’ C %,. Now consider the
eigenvariety datum

D g = W, Z 1, T, (y1 0 0) 7).

By lemma 3.5.2, we have a closed immersion ﬁ?fl 7 Z 7, moreover since z; is finite and 2" is reduced,
m{ |z factors through Z” . Thus it is enough to construct a morphism from Z, z 0 Z,, thatis we can replace
2 by %’ . Next consider the eigenvariety datum

D" =M, Z', j* (0 M), Ta, (Wh)7),

where j is the induced closed immersion from 2 — % X, #1. Applying lemma 3.5.2, we obtain a closed
immersion from 25" — Z7/. Hence it is enough to construct a morphism from Z, 5 10 Z>", that is we may

assume % = %5 = ° = %.
Finally consider the eigenvariety datum

D=, Z, M =11 j*(p] ), T, y3 = (y100) ez, (v2)2)),

then the associated eigenvariety £73 contains both 2| o< and £>" as Zariski closed subspaces. Then it is enough to
show that 274 < 25", but it obvious from the definition of 2 ¢/ . 0

4. Eigenvarieties attached to G; and an auxiliary eigenvariety

For the fixed odd prime p that is unramified in K, let O, = Og ® Z,. If p splits as pp¢ in K, then O, =
Ok,p X Og pe. If a € Op, then write a = (a1;a2) € Ok p x Ok pe.-On the other hand, if p is inert in K, then O,
is a degree 2 extension of Z,. Given a € O, let a; and a; denote its Galois conjugates.

4.1 Weight spaces

We first start with a description of the weight spaces for G; = Resg /@G1. Let By and T denote the standard Borel
subgroup and maximal torus in Gy. Let B; = Resg/gB1 and T1 = Resg T denote the corresponding subgroups
in G1. Let Z; denote the center of G; and let I; denote the Iwahori subgroup of G; (with respect to B;).
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We take our level structure to be K3 = [], GL2(Ok,,), where the product runs over all the non-archimedean
places of K. For any Q,, affinoid algebra A, we have ’

WA(A) i= Wyp 6,(A) = (< : Ti(Z) > A | xis wivial on Z,(Q) N K[ 1y},

Suppose that n = (n1, n2) and v = (v1, 2) are weights with n + 20 = mr as before. Let « : T((Op) — @: be
the map, x(a, 8) = []X, ali™" % The unit group O% sits in T;(O,) diagonally as y ~ (y, 7). Then « is in the
weight space %] if k is trivial on O (not just on the totally positive units). If k = n + 2¢ and w = v + n + ¢, then
Hilbert modular forms of weight (k, w) (in the sense of Hida) has weight x in the weight space #].

Note that we will be working with a weight space that 2-dimensional, rather than the 3-dimensional space %#].

Remark 4.1.1. Note that we adopt a slightly different normalization, than usual, in our definition of weight spaces.
The usual normalization sends (n,v) to x that maps (a, 8) — [], a;'B;" and the units O embeds as y +>
(y,72). See Buzzard [5), for example. ‘

We now describe the weight space for the group G, = GL4/Q. With our notation as before, let By and 7> denote
the standard Borel and maximal torus of G;. Let Z, denote the center of G2 and let I, denote the Iwahori subgroup
with respect to B,.

We take our level structure to be K, = [1, GL4(Z¢), where the product runs over all integer primes £. And the
weight space #; is defined similarly. For any Q,, affinoid algebra A, we have

TP
W3(4) r=WK;,cz<A>=[x:T2<Zp)—>Ax x is trivial on ecosure]

of Zo(Q) NKI L,
4.2 Hecke algebras

Let S denote the set of primes of Q which ramify in X and let S be the set of places of K lying above primes in S.
Let S, denotes the set of places in X above p.
For the group G, we define our unramified Hecke algebra as the commutative algebra

T = @ T(G1(Q), G1(Zy)).

v&SU{p}

Note that we are omitting Hecke operators at primes that are ramified in the quadratic extension K. At the prime p,
we define a subrings <Q{1+p C #,p, C T(G1(Qp), I1), as before. Specifically, let d)i*' denote the set of positive roots

for B;. We define two semigroups 7;" and T, inside T1(Q)) as
TV = {t € T1I(Qp) | vp(a(?)) <0 forall « € ®}}, and
T, = {t € TI(Qp) | vp(a(r)) <0 forall a € Of}.

Suppose for the moment that p splits in K and suppose that t = (11, ) € T1(Q)), where t; = diag(p®*, p??) and
1 = diag(p?', p*2). Thent € T1+ if and only if @) < a3 and b) < b;. The same ¢ belongs to T1++ if and only if all
the above inequalities are strict. We have similar conditions when p is inert in XK.

Forany t € Tl+ N G1(Zp), the double coset operators U; = [I111;] generate the algebra szl"'p The Atkin-Lehner

algebra &7, is a commutative subalgebra of T(G1(Q)), I1) generated by U; and U,_1 with t € T1+ NGi1(Zp). We
can naturally identify

@', = QT NG1(Zp)] and i, p = Qp(T1(Qp)/T1(Zp)).
We will call an operator U, € 42(1+p a controlling operator if t € T1++. Finally, we define the Hecke algebra as

T := .511';, ®Qp T}mr.
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We also view the unramified Hecke Algebra T}™ as a product of local Hecke algebras as

unr __ o/
T _®[¢§us,,T1"’

where the local Hecke algebra Ty = T(G1(Ky), G1(Ok,1)). For a place [ of K not in Su Sp, let wy denote
the uniformizer at {. We denote by Ty and S the double coset operators [GLz((’)K,[) [w[ 1] GLZ(OK,[)] and

[GLZ Ok, I:w[ w] GL,(O K,[)] respectively. The operators 77 and Sy generates the local Hecke algebra T 1. Let
[
p € Sp. Let wy denotes the uniformizer at p. We denote by U, and Sy the double coset operators [Il [1 - ] Il]
P

and [Il [wp - :| 11], respectively. Here I is the Iwahori subgroup with respect to the Borel subgroup B;. Then Uy
p

and Sy, for all p € S, generates the algebra szfl""p.
Standard choice of controlling operator is

Up =[] o

vlp

However we will work with different choice of controlling operators, depending on whether p splits or remains
inert K.

If p = pp°© splits in K, we take Usp = U;‘ Ugc to be the controlling operator. We denote the corresponding
eigenvariety by 2,7 !

If p = p remains inert in X, we take U;, := —Uf; to be the controlling operator. We denote the corresponding
eigenvariety by 2"

A point in ﬂfﬁ (@ p), where 1 € {spl, in}, is called classical if the eigenpacket ¢, corresponds to a cohomological
Hilbert cusp form of weight x = (n, v) and tame level 1.

We now come to the group G,, where our definitions are similar. The unramified Hecke algebra can be written as

T121nr = ®,€¢Su{p}T2,f;

where the local Hecke algebra Ty, = T(G2(Q¢), G2(Z¢)) is generated by operators T¢ ; corresponding to the double
coset of matrix

diag(¢,...,¢,1,...,1),
Nt e’

i

wherei = 1,...,4. We define %+p and 2% j, similarly. For eachi = 1, ..., 4, we denote by Uy ;, the element of
%’fp corresponding to the matrix

diag(1,..., 1, p,..., p).
e —

i

The operators U, ; generates the algebra ,sz{;,rp. The operators up,; := Up,; U, }_1 € g, p generates the Atkin-Lehner
algebra &% ,. Finally, we take

as our choice for the controlling operator. We denote this eigenvariety by 25.

4.3 The eigenvariety 2~

We have previously constructed the eigenvarieties Z; associated to the groups G;. In this section, we construct an
auxiliary eigenvariety %2, which plays a role in the construction of the p-adic Asai transfer map when p is inert.
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Let 9, = (W, 25, A2, T2, w2) denote the eigenvariety datum associated to the eigenvariety 23. In order to
construct Z , we only modify the Hecke algebra and keep the other objects the same as in 25.
Let T;r denotes the subgroup T2+ whose elements are

p™
G _ pR ai e NU{0},a1 <ax<a3<a4
2 p® and a3 —ay € 2N U {0}
p™
Analogously, define
T2++ ={te T2+ a1 < az < a3 < a4}.

Let Jz{;+p (resp. Jziz p) denotes the QQ, algebra generated by U; with ¢ € f‘2+ (resp. by Uy, U,_1 with t € T2+). We call

Ui e .Q{;-j-p a controlling operator if ¢ € T2++.
We denote by U .15 U .25 U p,3 and U p,4 the double coset operators corresponding to the following matrices

1 1 1 p

1 1 p p
, , and ,
1 p? p p

P p P p

respectively. Then they generates the algebra JZZsz- We have a natural choice for the controlling operator

1

[]P = ﬁp,lﬁp,l’&pﬁ =\ P p3 I
p4

~ 2 7 (-2 = 771 ~ 7 -l
Define up,1 = Up,1,8p,2 = UP)2(Up,1)2’ up3 = Up3U,5Up 1 and itps = UpaU

3 then integral powers of i, ;

generate the algebra Jziz p-

We define Hecke algebra T as
Tz := %Tp ®q, T3™,

where T5™ is the same as before. Let id : T, < T, denote the natural injection of Hecke algebras. Let 2 denotes
the eigenvariety datum '

9 = W, B, M2, T2, walg, = w2 0id)

and Z denote the associated eigenvariety. We note that, since i m(‘/’2|'ﬁ'2) C im(y3), we have a finite morphism
f: Z2 — Z asin the proof of Theorem 3.5.3. _

Let 7, be an automorphic representation of G2(Q)). We call a character ¥ of &% , an accessible refinement of
mpin X, if there exists a character y of &% p, such that ¥ = y/| 7, and y is a refinement of x, appearing in 2>.

S. p-adic Asai transfer

In this section, we construct a rigid analytic map between the eigenvarieties attached to GLy/K and GL4/Q. This
map is constructed using the comparison theorem 3.5.3 described in the section 3. In order to apply the theorem, we
need to construct compatible maps at the level of weight spaces and Hecke algebras.

We first describe the map between the weight spaces. For the weight spaces #; and %, defined in the previous
section, we construct the map j : #] <> #4 as follows. For a weight ¥ € #1, define

J @), 1, 13, 1) = (112) "k (t1t2, 1314, 11183, Tats). (5.0.1)
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We note that, if x(t1, 2, 13, t4) = 17113 137722132, then,

](x)(t1, th, 13, 14) = tn1+n2+vl+vz lt;'+v‘+02 lt:;l2+l)1+vztvl+vz
R 5. ST G s RPN ) Gl R B}
=1 yl t 2 ty pl A 3 ,

where, m = n1 + 201 = na + 2v3.

The map between the Hecke algebras and the set of classical points depend on whether p is split or inert. We will
consider these two cases separately. In fact, when p is inert we only construct a map to the auxiliary eigenvariety 2
attached to GL4/Q.

5.1 The case where p = pp€ is splitin K

Recall that in the split case for G we are working with the eigenvariety 2 5Pl , that is the eigenvariety associated
to the datum 2, = (M, 21, #1, T1, y1) with respect to the controlling operator Uspt == Uy 4U 2 and for G, we
are working with the eigenvariety 2 associated to the 2 = (#5, 25, >, T2, wy) with respect to the controlling
operator U, := Up 1Up 2Up 3. We want to use the comparison theorem (Theorem 3.5.3) to construct this map. The
map j between weight spaces is given in (5.0.1). Below we construct the map of the Hecke algebras and give a set
of classical points in the universal eigenvariety ,%”ISP !

We first construct the map between Hecke algebras attached to G and G,. The Hecke algebra T is generated by
the elements Ty ; (for £ # p and unramified in K)and U, ; fori = 1,...,4.In T\, we also have the standard Hecke
operators Ty and Sy for [ away from p and U, and S, for p|p.

We define a map o* : Ty - T as follows:

When £ = [I¢ When ¢ is inert
Ten = TiTy ;1 — X1y
Ten > TESe + SITZ — 2£8iS Tpp > 0
Tr3 +—> € T8 T See T;3 > FEITeSe
Tea — 725252 Tea > —£7252
Upi > UpUpe
Upa+> UZSpe

Ups > p  UpSpUpc Spe
Up,a > p 2828%

We now justify the definition of ¢*. Let 7 be an automorphic representation coming from a Hilbert modular form
S of weight k = (n, v) as before. Let us choose a refinement of f such that Uy f = apf and Upc f = aye f and

letx € Z] P! be the corresponding point. We denote the eigenpacket associated to x by ¢z (q, .a pc}- Assume that

niy > na, then by our normalization As* (x) is cohomological of weight j (x). For any refinement y of As*(r), for
primes € { p, As*(x) is an unramified representation and the Hecke operators T¢,; act on the spherical vector via

the scalar (¢, (a,,a,c))(0 (T2,1))- :
First suppose that € splits as [[° in K. Denote by a; and f, the Frob; elgenvalues of f Then the characteristic
polynomial for Frob is given by

X? = TiX + N(OS = (X — a))(X — AD).
Hence T acts by a; 4+ B and N([)S; acts by a(f. Similarly, the characteristic polynomial for Froby is given by
X?—TeX + NOSe = (X — ar)(X — fr)
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where ar and fi are the Frobr eigenvalues of f. On the other hand, characteristic polynomial for Frob,
corresponding to As¥ (x), is given by
- Tc’,1X3 + €T 2 X% — 8Tp3X + €6Te,4.
From our earlier calculation, we know that the Frob, eigenvalues on Ast(x )e are aar, afe, fiar and f1fe. Thus
X~ Tp X3 + LT 2 X% — 8Tp3X + T4 = (X — a1ae)(X — aife)(X ~ Broe)(X — Bifc).
From this, we see that T 1 acts by the eigenvalue aar + aife + fiae + B = (ar+ Bo)(ar + Br). On the other
hand we know that T¢,; acts by ¢z (a, e} (¢ (T¢,1)). Hence our definition
O'(Tg’l) = T[T[c.

The calculations for T; ; when i = 2, 3, 4 are similar.
Now assume that £ is inert in K. Let a; and ¢ denote the Frob, eigenvalues of f. Then Frob, eigenvalues on

As* () are given by ta¢, +/azpfe, Foefe and ;. Thus
X4 = Tu X3 + €T X* — 3Ty 3X + 8T = (X F ae)(X F VarBe)(X + Var o) (X F o).

We see that Tp 1 acts by £(a¢ + f¢), T¢,2 by O, T 3 by :F€‘3agﬂg(ag + f¢) and Tp 4 acts by —6"6(agﬂg)2. Hence our
definition of o above.

The following lemma will justify the definition of o+ for Hecke operators supported at p. Note that, N (p) Sp (resp.
N(p©)Spe) acts via the eigenvalue ap By, (resp. ape fpe).

Lemma 5.1.1. The module Asi(n) p contains a vector o¥

tuple (p"3ﬁp,8pc P~ ﬂpapc p 1apﬂpc, apaye). In particular, U, acts via the scalar p

on which g ; acts via the character associated to the
s lajal.

Proof. The proof of this lemma is similar to [8, Lemma 5.5.2]. We glve a brief sketch here. For this particular

refinement, we see that up1 = Up, acts by apape, upz = Up, 2U 1 acts by p lapﬂpc, thus U, 2 acts by

P~ apapcﬁpc. Similarly up3 = U,,,3Up’2 acts by p~2Byay and hence U, 3 acts by p‘3a2apcﬂpﬂpc Finally

Upas = U,,,4U1;:§ acts by p—3ﬂpﬂpc and Up 4 acts by p“6apagc,83,8§c.

From the characteristic polynomials of U, and Uy, we see that apfy = apfpe = p™t1. For the computation of
the U, operator, notice that U, = Uy 1Up 2U,, 3 and hence acts via
(P2 Bpaye ) (P apBpe)  (apape)’ = P—4(apﬂp)(ap‘ﬁpc)zaga§c = p3’"‘1a3a,§c-
This completes the proof of the lemma. O

The *-action of &% , on As”‘(:r),’,2 is the usual action, rescaled by j (x)(1, p, p%, p>)~!, where j (k) corresponds
to the highest weight vector

U= (nl-;nz-{-m—l,n];nz+m—1,m—n1;n2,m—n1;n2).

By our assumption that n; > ny, the weight u is a dominant integral weight. We compute ‘that

) - pm+m—l+2(m—W)+3(m—W)

6m—1-2ny—n;

#(1,p, p*, p°
=D
= p3m—l+4o1+20;

Define the set of classical weights as
Wy ={(n,0) € #i | ni,v; € Z, ny > ny > 0and 201 + vz = 0}. (5.1.1)

We remark that % gp the Zariski closure of %, in %} is a 2-dimensional subspace of the full weight space.

spl
Moreover, if f has weight (n, v) € 1//;0’,, then the eigenvalue of *-action of U on As* ()2 is agol.
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Now we compute small slope h for the weight j (k) = u. By definition, we have

h= inf o,((w-p)(1,p, p?, p¥) —vpu, p, p2, p),
weSa\(1) ‘

where w - 4 = (u + p)* — p. We note that p = (3,2, 1, 0) and
vp((w - W), p, P2, p*) = 0, (u(1, p, P2, P7))
= (Uyp-10) — B2 + Pyp-1@2) = P2) + 2(H p-13) — #3 + Py-1(3) — P3)
+ 3(pp-14) — U4+ Py-1(4) — Pa)-
Hence v,((w - w)(1, p, p%, p3)) — vp(u(l, p, p?, p)) is a non-negative integer linear combination of
uy—u2+pr—pr=nz+1,
p1—pz+pi—p3=ni+1,
H1— pa+p1—ps=n+ny+2,
H2— pu3-t+pr—p3=ny—ny,
p2—ps+pr—pa=ni+1,
Uz —pa+p3—ps=nz+1.
By taking w = (1 2) and w = (2 3), we see that
h = min{ny — ny, ny + 1}.
Proposition 5.1.3. If ay and ayc satisfy
vp(agagc) < min{n; — ny, ny + 1},
then H *(sz I, Djx)) contains a nonzero vector o% such that every T € Ty acts on v* through the scalar

¢n,{asg,a59c](ai(T))'

Proof. Since n1 > na, we have 4 = j(x) is dominant and As*(x) is cohomological of weight j(x), see [16].
By construction of the map % we see that Te,i acts by ¢y, (ap.a pcl(ai(Tg,,-)) on the line Asi(n)g}L“(Z‘). From the

choice of our refinement and the *-action of U, operator (for G2), we see that As* (n‘)f,2 contains a vector on which
U, acts by agagc. Finally we note that for U,, any h < hg is a small slope for the dominant weight 4. Applying
Theorem 3.4.1 we obtain an isomorphism

H*(K3 1, Djg) <n = H*(KS I, L)) <hs
and the target contains a vector satisfying the claim of the proposition. a

Let 2, be the set of points in ﬂfls”l of the form (ny, na, v1, v2, a~1) such that, (n1, ny, v1,03) € V/SZII and
vp(a) < min{n] —nz,ny+ 1}z = (x,a‘l) andifk=@m +2,mx+2andw =1 +v1+1,n2+02+1),
then .#1(z) = H*(K{ 11, %c)<qa. On the other hand, #(j(z)) = H*(K3 I, Dj(x))<a = H*(K3 D2, Zj(x)) <a-
We define ,%’S‘;,’, to be the set of classical points on x € Z;7 !, such that 7, (x) € Z;p1. Then, by Proposition 5.1.3,

the T; eigenspace of x composed with o appears in .#5(j (z)).
Let Z;p1 denote the Zariski closure of ,Q’S;’,,in Z\1. Then, applying the comparison theorem (Theorem 3.5.3), we
obtain a rigid analytic map of eigenvarieties Zsp — 22 which p-adically interpolates Asai transfer. '

Theorem 5.1.4 (p-adic Asai transfer: split case). There exists a rigid analytic map
d’i : r%:vpl )
which sends the point (z, (ap, aye}) to the point (As¥(n), x), where x is the refinement given by

x(up1) = apar, x(Up2) = plapBy, x(Up3) = p~2Bpay and x(ups) = p~>PpPi.
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5.2 The case where p is inert in K

Assume now that p is inert in K. Recall that in this case for G| we are working with the eigenvariety 2", that
is the eigenvariety associated to the datum 2, = (#1, 2, #1, T1, y1) with respect to the controlling operator
Uip = —Uz and for G, we are working with the eigenvariety 2~ associated to the @ = (#5, 25, #>, T2, ylzl.frz)

with respect to the controlling operator U p = U Pl U .2 U p,3- We want to use the comparison theorem (Theorem 3.5.3)
to construct this map. The map j between weight spaces is given in (5.0.1). Below we construct the map of the
Hecke algebras and give a set of classical points in the spectral variety 2.

First we define a map 6% : T, —> T as follows. On the unramified part of the Hecke algebra, the maps 6+ agrees
with %, At p, we define 6 on #,', by sending
f/,,,l = x£Up
Upo > UZSp
I~J,,,3 > q:p‘lU,,Sp
Tyt > —p2S2.

The following lemma will justify the definition of 5* for Hecke operators supported at p. For a Hilbert modular form
S we choose the refinement such that, the U, eigenvalue of f is ap. Note that, Nk ,q(p)S, acts via the eigenvalue

apfp.

Lemma 5.2.1. The module As:!:(n)f,2 contains a vector v on which @b p acts via the character y associated to
the tuple (ip_3,8p, :!:p‘z,/apﬂp, Fpl, /apPp, 0 p). As a consequence, the character ¥ = de-z , of @ p is a

refinement associated to As* (7z)f,2 in & . In particular, U p acts via the scalar — p4’”‘1a;‘,.

Proof. The proof of this lemma is similar to Lemma 4.4.1. We give a brief sketch here.
First, from the character y of &7, we get an explicit description of the character ¥ of 2% ,. We easily compute that

/?(’zp,l) = X(“p,l) = :tap
Fip2) = xWp2)® = p~lapp,
-1

)?(ﬁp,3) = X(up,3)X(up,2)_l =-=p
Fipa) = x(upa) =£p2p,.

Observe that, Up 1 = up 1, Up2 = ﬁp,2U,§,1’

f],,,l, f],,,z, flp,3 and (7,,,4 acts by £a,, p"zaf,ﬂp, Fr

f/p,3 = 12,,,30,,,2[7];} and f],,,4 = iip 4Up 3; hence, we get that
3af,ﬂ p and — p”6a,2, ,2, respectively.
From the characteristic polynomial of U, we see that apf, = p¥"+2, By definition, our controlling operator

Uy, =Up,10,20)p 3. We compute the action of U, as
Fap) (P @y Bp)(Fr > apBp) = —p (@ pBp)ay = —p*" o
This completes the proof of the lemma. O

The *-action of sz;’fp on As* (7:){,2 is the usual action, rescaled by j(x)(1, p, p3, p*)~!, where j (x) corresponds
to the highest weight vector

ny+ny ny —ny ny—ns niy+nz
= +m-—1, - .

+m—-1,m- 3 ,m >
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By our assumption that n; > ny, the weight u is a dominant integral weight. We compute that
3 = pﬂgﬂ+m—1+3(m—lL;—"2)+4(m—ﬂ;i'l)

8m—1-3n; —
=p ny—n2

p(l, p,p%, p

L 4dm—14601 120
=p 1 2

Define the set of classical weights as
H = {(n,0) € #i |ni,0i€Z, n1 >n2>0 and 301+ vy =0} (5.2.2)
We remark that 7,-,, the Zariski closure of Wlff in ] is a 2-dimensional subspace of the full weight space. Moreover,

if f has weight (n,v) € V/ifl’, then the eigenvalue of x-action of U, on Ast (75)5,2 is —a;‘,.
Now we compute small slope 4 for the weight j(x) = u. By definition, we have

h= inf Dp((w/u)(la b, P2, P3))_Dp(:u(1> p, p2, P3))
weSs\(1}

As in the split case, we note that
vp((w - (A, p, P, P7) = vp(u(L, p, P2, P*)
= (Hp-12) — K2+ Py-i) — P2) +3(pyp-13) — #3 + py-1(3) — P3)
+ 4114y — 4+ pyp-14) — Pa)-
By taking w = (1 2) and w = (2 3), we see that
h = min{ny + 1, 2(n; — ny)}.

Proposition 5.2.3. If

np+1 n1—n2]

up(ap)<mm[ R

then H* (KéJ I, Dj)) contains a nonzero vector v* such that every T € 'ﬁ‘z acts on v* through the scalar
P f.a, (6= (T)).
Proof. The proof follows from the control theorem, Theorem 3.4.1, exactly as in Proposition 5.1.3. O

Let %, be the set of pointé in ,@"li” of the form (n1, na, v1, v2, a~1) such that, (nq, na,v1,02) € W,ff and
vp(a) < min{ZH "-mY f 7 = (c,a ) andif k = (1 + 2, ny +2) and w = (ng +v1 + L, np + 02 4 1),
then #1(z) = H*(K{ 11, %) <q- On the other hand, .#(j(z)) = H*(K] 12, Dj(x))<a = H*(K} I, Zj(x)) <a-
We define fz"ff to be the set of classical points on x € £, such that 71(x) € 2%,. Then, by Proposition 5.2.3,
the T eigenspace of x composed with o appears in A(j (2)).

Let Zin denote the Zariski closure of 2’ in Z/"". Then, applying the comparison theorem (Theorem 3.5.3), we
obtain a rigid analytic map of eigenvarieties Z;, = 2 which p-adically interpolates the classical Asai transfer.

Theorem 5.2.4 (p-adic Asai transfer: inert case). There exists a rigid analytic map
$*: Xin > X
which sends the point (f, ap) to the point (As(n), ¥) where 7 is the refinement given by
Zip,1) = tap, 7(ip,2) = p~2apBp, f(iip3) = —p~' and 7 (iip4) = £p~°B,p

as in Lemma 5.2.1.
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