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Abstract. Let K /Q be a real quadratic field. Given an automorphic representation 1t for GL2/ K, let As±(1r) 
denote the plus/minus Asai transfer of 1t to an automorphic representation for GL4/Q. In this paper, we construct a 
rigid analytic map from a subvariety of the universal eigenvariety of GLi/ K to an eigenvariety of G~/Q, which at 
nice classical points interpolate this Asai transfer. 
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1. Introduction 

Let K be a real quadratic field. Let k ~ 2 be an integer. Let f be a Hilbert modular form over K of weight k 
(i.e., of parallel weight (k, k)) and level 1. Further assume that f is an eigenform for all the Hecke operators with 
eigenvalues c(a, f), where a runs over integral ideals of OK (the ring of integers in K). The standard L-function for 
f is constructed from c( a, f) as a Dirichlet series over K. 

In [1], Asai introduced the following L-function which is constructed only from the Hecke eigenvalues for ideals 
that come from (Ql. This is now referred to as the Asai L-function. More specifically, the Asai L-function is defined as 

. G(s, f) = ((2s - 2k + 2) f c(m~~• f). 
m=l 

A priori, this function converges for s in a certain right half-plane. It is known that this L-function has an Euler 
product expansion, analytic continuation to all of (C and a functional ~quation. 

Let 1r be the automorphic representation associated to the form f. Then the L-function G(s, f) is (up to a shift) a 
certain automorphic L-function, denoted by L(s, 1C, As+), associated to 1C. The principle of Langlands functoriality 
suggests, in this case, that this automorphic L-function is the standard £-function of an automorphic representation 
for GL4/(Ql. The details of this Asai transfer are recalled in §2. Fix a prime p that is unramified in K. The aim of this 
article is to construct a p-adic version of this Asai transfer. 

Specifically, when p splits in K, we construct a rigid analytic map from a closed subvariety of the eigenvariety 
attached to GL2/ K to the universal eigenvariety attached to GL4/(Ql that interpolate the classical Asai transfer on a 
dense subset of classical points. But when p is inert, we are only able to construct a map to an eigenvariety which 
may be viewed as a quotient of the universal eigenvariety attached to GL4/(Ql. For the purpose of siJplification, we 
have only constructed p-adic Asai transfer for tame level 1 eigenvarieties. There should be no added difficulty to 
extend this arbitrary tame level eigenvarieties. 

Historically, the study of Langlands' functoriality in families of automorphic forms can be traced back to the 
work of Hida [9], where a A-adic Jacquet-Langlands' transfer is constructed between families of Hilbert modular 
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forms and of quaternionic automorphic forms. In the setting of eigenvarieties, Chenevier [7] constructed p-adic 
Jacquet-Langlands transfer, which at classical points interpolate the classical Jacquet-Langlands' transfer for 
GLi. Following Chenevier's method, other instances of p-adic Langlands' functoriality have been established, see 
[8,12-15,19]. 

This article is organized as follows. In §2, we recall some of the basic properties of the Asai transfer. In § 3, 
we recall the construction due to Hansen of universal eigenvarieties attached to certain connected reductive groups. 
In § 4, we explicitly describe the eigenvarieties that are relevant to our construction of the p-adic Asai transfer map. 
In§ 5, we finally construct the p-adic Asai transfer map between eigenvarieties using a comparison theorem obtained 
in section 3. 

Notations. Throughout this article, p will denote a fixed odd integer prime, and K a real quadratic extension in 
which p is unrarnified. The ring of adeles over Q will be denoted by A = AQ. We will denote by A f and A.00 

the finite adeles and the adeles at infinity, respectively. For a set of places S of Q, we will denote by As the adeles 
supported at S and by A.S the adeles supported away from S. We will denote by AK = A ®Q K the adeles over K. 
We similarly define AK,t, A.K,oo, A{ and AK,S when Sis a set of places of K. 

Acknowledgements 

Authors would like to thank the anonymous referee for his detailed review of the paper and pointing out a 
mistake in the previous version of the manuscript. The first named author would like to acknowledge the support 
of Science and Engineering Research Board (SERB) grants EMR/2016/000840 and MTR/2017/000114 in this 
project. The second named author would like to acknowledge the support of NFIG grant of IIT Madras numbered 
MAT/16-17 /839/NFIG/DIPR. 

2. Asai transfer 

Let K = Q( ,JJ) be a real quadratic field. We now recall the Langlands functorial transfer from automorphic 
representations for GL2 over K to automorphic representations of GL4 over Q that is called the Asai transfer. 

2.1 Map between L-groups 

Let G1 denote the algebraic group GL2 over K and let G1 = ResK;QG1 denote the Weil restriction of G1 from 
K to Q. The Langlands dual group for G1 is defined as 

where the nontrivial element c E Gal ( K /Q) acts on the tuple of matrices via permutation. Let G2 denote the algebraic 
group GL4 over Q. The L-group of G2 is given by LG2 = GL4(C). Let As± denote the following representation of 
LG1 acting on <C2 ® <C2 given by 

As±[(A, B)](x ® y) =Ax® By, for A, B E GL2(<C) 

As±[c](x ® y) = ±(y ® x). 

We view these representations as maps between the L-groups As± : LG1 ➔ LG2. The main results of [11] and [16] 
show that the Asai transfer is automorphic. 

2.2 The Asai motive 

We now recall some basic facts about Hilbert modular forms and the associated Asai motive. Let a1, a2 : 
K ➔ ~ denote the two embeddings of K into JR. The weights of Hilbert modular forms are elements of the 
lattice Z[a] := Za1 + Za2. Specifically, the weight of a Hilbert modular form will correspond to a pair (n, v) with 
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n, v E Z[a] such that n + 2v is parallel. By a parallel weight, we mean that n + 2v = mt where t = a1 + a2 

and m E Z. Writing n = n 1 a1 + n2a2, this condition implies that the parity of n 1 and n2 are the same. The parity 
assumption is necessary for the existence of Hilbert modular forms of a particular weight. Let k = n + 2t and assume 
further that ki ::::: 2. 

Let n be an integral ideal in K. Let f be a Hilbert cusp form of weight (n, v) and level n. Suppose that f is a 
primitive eigenform, then the motive M attached to f is a pure simple rank 2 motive defined over K. The Hodge 
types of the motive at O"i are {(ni + 1 + Vi, Vi), (vi, ni + 1 + Vi)}. If a is an integral ideal in K, let c(a, f) denote 
the Hecke eigenvalue for the Hecke operator T(a). Let cf be the Hilbert modular form whose Hecke eigenvalues 
are given by c(a, cf) = c(ac, f). Let c M denote the motive associated to cf. The Hodge type of this conjugate 
motive at O"i will be the Hodge type at O"i o c. 

The motives As±(M) associated to the Asai transfer will be pure simple rank 4 motives defined over (Q. 
The Hodge types at the infinite place of (Q are 

(n1 + n2 + v1 + v2 + 2, VJ+ v2), 

(n1 + 1 + v1 + v2, n2 + 1 + v1 + v2), 

(n2+ 1 +v1 +v2,n1 + 1 +v1 +v2), 

(v1 + v2, n1 + n2 + v1 + v2 + 2). 

Note that the weight of this motive is n1 + n2 + 2(v1 + v2) + 2 = 2m + 2. Note also that when n1 = n2, the Asai 
motive has a middle (i.e., (p, p)) Hodge type and is hence not cohomological. Henceforth, we assume that n1 > n2. 

2.3 Weight of the Asai transfer 

Let G1 and G2 be as above. A weight for G1 is a tuple ,l = (),1, },2) where ,li E £'.l. We say that the weight ,l is 
dominant if Ai = (ai, bi) with ai ::::: bi. We can relate these weights to the ones discussed above by taking ai = ni +vi 
and bi= Vi. 

Let n: be an automorphic representation for G 1- Let ,l be a dominant weight for G 1- We say that n: is cohomological 
of weight ,l if 

H*(g1,oo, K1,oo; 7roo ® ~,1,) =/- 0, 

where 91,00 is the Lie algebra of G1,oo = G1(1R) and K1,oo is the maximal compact modulo the centre in G1,oo, 
and 2J. is the highest weight representation associated to ,l. In order for ,l to support cohomological automorphic 
representations, we require that ,l be pure, i.e., a1 + b1 = a2 + b2. 

A weight for G2 is a tuple µ E Z4. We say that µ = (µi, µ 2, µ3, µ 4) is dominant if µ 1 ::::: µ 2 ::::: 
µ3 ::::: µ4. If II is an automorphic representation for G2 andµ a dominant weight for G2, we define the notion of 
II being cohomological of weight µ in a similar fashion. Similarly, for µ to support cohomological automorphic 
representations, we require thatµ is pure, i.e., µ1 + µ4 = µ2 + µ3. 

Let n: be the automorphic representation over G 1 (A) attached to the primitive eigenform f of weight (n, v ). Then 
71:oo = 11:1 ® 11:2, where 11:00 is the representation at infinity and n:i are discrete series representations up to twists by 
powers of the determinant. The Langlands parameter of n: i is given by 

I I I I T(71:;) = z2-V;Z-n;-V;-2 + Z-n;-V;-2z2-V; • 

One calculates that the Langlands parameter of the Asai transfer is 

(A ±( )) l-v1-v2--n1-n2-v1-v2-I + -n1-n2-v1-v2-l-l-v1-v2 -r s_n: =z z z z 

As the exponents in the Langlands parameter are not half-integers, As±(n:) is not cohomological. However, if we 
normalize the Asai transfer to be As±(n:) ® ldetl 1/2, then the Langlands parameter becomes 

z~-v1-v2z-n1-n2-v1-v2-½ + z-n1-n2-v1-v2-½z~-v1-v2 
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One can verify that this representation is supported in cohomology of weightµ = (µ 1, µ 2 , µ 3 , µ 4) E Z4 which 
we now describe. The weightµ is pure (in the sense.of Clozel) with purity weight w = 2m - 1, i.e., µ 1 + µ 4 = 
w = µ2 + µ3 (here m = n1 + 2v1). We also have 

n1 + n2 
µ1= 

2 
+m-1 

n1 -n2 
µi= 2 +m-1. 

We easily calculate 

from the purity condition. 

Remark 2.3.1. We note from this calculation that when n1 = n2, the weightµ is not dominant. This shows that 
Asai transfer for such automorphic representations do not contribute to the cuspidal cohomology. This applies in 
particular to those that arise from parallel weight Hilbert cusp forms. Hence, we do not include parallel weights in 
our sets of classical weights, see (5.1.1) and (5.2.2). 

2.4 Local Asai transfer of unramified representations 

In this ~ection, we describe the local Asai transfer of unramified representations at almost all finite places in terms of 
unramified Langlands' parameters. Let k be any local field, let Wk denote the Weil group fork. Let -e be an integer 
prime that is unramified in K. We have two cases depending on whether -e splits or is inert in K. 

First we assume that -e is split in K. Say, (l) = [(C. Since G1 = ResK;Q(G1), we have (G1)e = Gi/Qe = 
(G1)1 x (G1)1c. We know that L(G1)[ = L(G1)1c = GL2(C) and L(G1)e = L(G1)[ x L(G1)[c. By an L-parameter for 
(G1)1, we mean a continuous morphism 

such that ip(x) is semi-simple for all x E WK,. Similarly take an L-parameter for (G1)1c denoted by 

'Pc: WK,c ➔ L(G1)[c. 

Now let Frob1, Frobic and Frobe denote the Frobenius elements associated to [, [c and -e respectively. We now assume 
that the parameters ip and ipc are unramified; that is, the maps factors through inertia subgroup and hence are 
determined by the values ip(Frob[) and ipc (Frob[c ). 

Identifying WK, with WQe and using ip and ipc, we now construct an L-parameter for (G1)e as 

cp = ip x 'Pc : WQc ➔ L(G1)e. 

Note that rp is determined by the value cp(Frobe). We now describe the Asai transfer for unramified L-parameters 
below. Suppose that the 

then we see that 
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Applying the Asai transfer As±, we see that 

As±fp(Frobe) = 
[

a1a1c 

The calculation above shows that the local Asai transfer for f at a split place e = nc is same as local Rankin-Selberg 
transfer for f x cf ate. 

Now we assume that e is inert in K. Let Ke denote the completion of K at e. This is an unramified quadratic 
extension of<Qk In this case, L(G1)e = (L(G1)e x L(G1)e) >q Gal(Ke/Qe) where L(G1)e = GL2(<C). We also know 
that WKt is an index 2 subgroup of WQe· We fix a Frobenius element FrobQ,e E WQe \ WKe for the ideal e in Qe and 
take FrobK,e = Frobt,e to be the Frobenius element for the ideal e in Ke. 

We now consider an £-parameter 

(fJ : W Ke ---+ L (G1)e 

of (G1)e. There is an extension of <p to an L-parameter of (G1)e constructed as follows. Pick any j E WQe \ WKe· 
Define a map 

<p : WQe ---+ L(G1)e 

by sending x E WKe to (rp(x), rp(jxj-1 )) x 1 and by sending j to (Id, rp(j2)) x c. 
We now assume that <p is unramified; that is, it is <p factors through the inertia subgroup and is hence determined 

by the value q,(FrobK,e). We now construct <p by taking j = FrobQ,e and it is clear that <pis completely determined 
by the value fp(FrobQ,e). Suppose that 

then we see that 

Applying the Asai transfer map, we get 

±Pe 

This last matrix is equivalent to 

[
±a, ±Pe ±,./iiilfi ] . 

=f=~ 

Unramified £-parameters are in bijection with unramified automorphic representations [4, Proposition l.12.1]. 
Hence this calculation completely determines the Asai transfer of unramified representations at unramified places. 

Remark 2.4.1. 

(1) Given 1C = ®v7Cv, the local Langlands correspondence gives the local Asai transfer As±(1r0 ). If As±(1r)" = 
® 0 As±(1r0 ), the global Asai transfer (i.e., the automorphy of As±(1r)) is proved using the converse theorem. 
The analytic properties for certain L-functions needed to apply the converse theorem are proved using the 
Rankin-Selberg method (in [16]) or the Langlands-Shahidi method (in [11]). 

(2) We have only described the Asai transfer away from a finite set of bad places. However, since the global Asai 
transfer is known, by multiplicity one for GL4 this is sufficient to completely determine the representation 
As±(1r). 
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3. Brief overview of eigenvarieties due to Hansen 

In this section, we first recall the notion of eigenvariety datum and the construction of an eigenvariety from such 
a datum. We then recall the construction of universal eigenvariety due to Hansen for certain reductive groups G. 
Finally, we recall the comparison theorem that allows us to construct rigid analytic maps between eigenvarieties. 
Our main reference for this section will be [8], and we adopt much of its notation. 

3.1 Eigenvariety data 

Let p be an odd prime. An eigenvariety datum is defined as a tuple fJJ = ("fl/, fl", .4, 1I', I.fl). We describe below 
each of the terms appearing in this definition. 

The space 1// is a separated, reduced, relatively factorial rigid analytic space and is called the weight space. In our 
context, the space "fl/ will parametrize homomorphisms from the maximal torus of a reductive group G. The weight 
space contains as a dense subset a set of classical weights that support classical automorphic forms on G. 

Let A 1 denote the rigid analytic affine line. The spectral variety fl" c 1// x A 1 is a Fredholm hypersurface, i.e., a 
closed immersion that is cut out by a Fredholm series. See [8, Definition 4.1.1) for the precise definition. Projection 
on the first coordinate induces a map w : fl" ➔ "fl/ called the weight map. 

The sheaf .,,ft is a coherent sheaf on fl". This sheaf is usually constructed from a suitable graded module M* of 
overconvergent cohomology classes of a complex whose cohomology yields M*. The Hecke algebra 1I' will be a 
commutative Qp-algebra equipped with an action I.fl : 1I' ➔ Endo.2"(.,,f/). The variety fl", in fact, will parametrize 
eigenvalues of an operator U E 1I' acting on the complex whose cohomology is M*. 

The following theorem gives us the eigenvariety associated to an eigenvariety datum. This follows from Buzzard's 
eigenvariety machine [5]. 

Theorem 3.1.1 ([8, Theorem 4.2.21). Given an eigenvariety datum fJJ, there exists a separated rigid analytic space 
&:" together with a finite morphism n : &:" ➔ fl", a morphism w : &:" ➔ "fl/, an algebra homomorphism 
</>&: : 11' ➔ 0(&:"), and a coherent sheaf .,,/{t on &:" together with a canonical isomorphism .,,ft ~ n*.,,f{t 

compatible with the actions of'JI' on .,,ft and .4t (via I.fl and</>&:, respectively). The points of&:" lying over z E fl" 
are in bijection with the generalized eigenspaces for the action of1I' on . .4 (z) (the stalk at z). 

3.2 Universal eigenvariety 

Throughout this section, let G denote a connected reductive algebraic group over Q that is restriction of scalars from 
a number field to (Q of an algebraic group H split at all primes above p. Let B, N, Z and T denote a choice of a 
Borel subgroup, unipotent subgroup, the centre and maximal torus respectively. We also fix a p-integral model for 
H. This allows us to define Zp-valued points of G. Let/ denote the Iwahori subgroup of G(Zp) associated to the 
choice of B. In this subsection, we recall the definition and basic properties of the eigenvariety associated to G. 

The weight space "fl/G associated to G is a rigid analytic space whose (QP points are given by "fl/G(Qp) = 
Homcts(T(Zp), Q;). For any open compact subgroup KP c G(A~), let 1// = 1//G(KP) denote weight space of 
level KP which parametrizes continuous homomorphisms from the torus that are trivial on the closure of Z (KP I) n 
G((Q) c T(Zp)-

A Hecke pair consists of a monoid t::. c G(At) and a subgroup Kt C t::. such that Kt and JKJ<Y/ 
are commensurable for all J E t::.. We will denote by 1!'( t::., Kt) the Qp-algebra generated by double cosets 
Tb = [K 1JK t] under the convolution product. 

The algebra 1I' is the eigenvariety data will be of the form 

11' = 1I'G(KP) = d/ ® 1runr(KP), 

where d/ is a certain subalgebra of the Iwahori Hecke algebra 1I'(G((Qp), /) and the unramified Hecke algebra is a 
commutative algebra given by 

'll'unr(KP) = Q91

1I'(G((Q0 ), Kt) 
viS 



p-adic Asai transfer 311 

for a finite set of primes S. In practice, K(: will be a hyperspecial maximal subgroup of G(Q0), which ensures the 
commutativity of the Hecke algebra. There is a subclass of operators in d/ which are called controlling operators 
which play a crucial role in the construction of the eigenvariety. 

We now proceed to describe the construction of the coherent sheaf A along with the action of the Hecke algebra. 
Let B and N respectively denote the opposite Borel and unipotent subgroup to B and N. For any s E Z2'.:o, define 
i3s = {b e B('llp) I b = 1 e G(Zp/psZp)}. Similarly, define T5 = T(Zp) n BS, f.Js = N(Zp) n i3s and 
is= In Ker{G(Zp)-+ G('llp/ps'llp)}. Furthermore, we define I{= {g E / I g mod ps e N(Z/ps /Z)}. 

Let Q C 1f/ be an admissible affinoid open subset. For n., the tautological character induced from id E "///("///)is 
denoted by 

Let s[Q] denote the smallest integer for which xnlp1n1 is analytic. Fors ::::. s[Q], define 

Ah = f : I -+ O(Q) . { I 
f is analytic on each 1s-cosets and } 

f (gtn) = Xn(t)f (g) for all n E N(Zp), t E T('llp), g E / 

Via the map f t-+ f liJ1, we identify Ah with the space of s-locally analytic O(Q) valued functions on N1• Hence 
Ah is endowed with a Banach O[Q]-module structure. We have natural injective, compact transition maps 
Ah -+ A-:t1 and taking direct limit with respect to these transition maps, we define 

An =limAh. -+ 
s 

The corresponding distribution space is defined as the continuous O(Q)-linear dual of An, 

'Dn = {µ : An-+ O(Q)Iµ is O(.Q)-linear and continuous}. 

If }, E 1f/ is any point, we similarly define the modules A 2, A;. and 'DJ .. 
Fix a controlling operator U e d/. For n as above, there exist complexes C.(KP/,An) and c•(KP/, 'Dn) 

that admit an extension U of the controlling operator U. We remark that the controlling operator acts as compact 
operator on C.(KP I, An) and c•(KP I, 'Dn,). Let fn(X) denote the Fredholm series associated to this action on 
C.(KP I, An). Then these functions patch together to give Fredholm series f e 0(1//){{X}}. The spectral variety 
2' = 2'G is defined as the Fredholm hypersurface :!Z'J associated to this series. 

Given an affinoid open subset Q c "/// and h E Q, there is exists a corresponding affinoid open subset :!Z'n,h c 2'. 
We call this slope-adapted if fn = f lo(n){{X}} has a slopge-.::: h decomposition. The slope-adapted affinoids form an 
admissible open cover of 2'. We also know that if n is slope adapted for h, then C.(KP I, 'Dn) admits a slope-::: h 
decomposition. 

Moreover, there exists a unique complex of coherent analytic sheaves, £•, on fZ' such that Jf;•(fZ'n,11) = 
c• (KP I, 'Dn.) :sh for any slope-adapted :!Z'n,11- Taking cohomology of x•, we get a graded sheaf A* on fZ', 
such that .A*(:!Z'n,11) = H*(KP I, 'Dn):sh• This sheaf comes equipped with a Hecke action, which we denote by 
1/f : 1I'-+ Endo.2' (A*). Finally, we take our coherent sheaf A in the eigenvariety data to be the graded sheaf .A*. 

To summarise, the eigenvariety datum given by 

gives rise to the eigenvariety associated to ·c via Buzzard's machinery. ·The eigenvariety f£" - !!l"{.91) thus 
constructed is a separated rigid analytic variety along with 

(i) a finite morphism 1e : !!l" -+ 2', 
(ii) a morphism (weight map) w : !!l" -+ 11/, 

(iii) an algebra homomorphism <Px : 1I'-+ O(!!l"), and 
(iv) a coherent sheaf .At on f£" together with a canonical isomorphism A ~ 1e*.At compatible with the action of 

1I'. 
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3.3 Points on the eigenvariety and refinements 

The points on the eigenvariety lying over z E fl' are in bijection with the generalized eigenspaces for the action of 1I' 
on Al(z). 

Definition 3.3.1. A finite-slope eigenpacket of weight }, E 1// (Qp) and level KP is a algebra homomorphism 

</> : 1I' -+ QP such that the space 

{v E H*(KP I, 'D;.) ®k;. QP I T · v = <f>(T)v for all T E 1I' and </>(U) :,!= 0} 

is nonzero, that is, there exists a non-zero eigenvector acting by the homomorphism 4>. Here U is the controlling 
operator fixed earlier. 

Another way to define finite-slope eigenpacket is as follows. We denote by 1I' ;.,h (KP) the subalgebra of 
Endk,. (H*(KP I, 'D;J:sh) generated by the image of 1I' ®Qp k).. We define the algebra 11';.(KP) = ~ 11'}.,h(KP). 
Finite-slope eigenpackts of weight 2 and level KP can be identified with algebra homomorphisms </> : 'ir ;. (KP) -+ 
Qp. 

Given any point x E .:!l" (Qp) on the eigenvariety, we can naturally define an algebra homomorphism 

<f,::c . 
</>x : 11'-O(~) - Ox-,x - kx 

called the eigenpacket parametrized by x. The points x E .:!l"(Qp) lying over a given weight 2 E #'(Qp) are in 
bijection with the finite-slope eigenpackets for G of weight }, and level KP obtained by sending x ~ <f>x. 

We say a point x in the eigenvariety ~ (Qp) is classical if </>x is the eigenpacket corresponding to a cohomological 
automorphic representation of G of weight 2 and level KP. 

Before we discuss the notion of refinements, we need to make explicit the Hecke operators that we consider at p. 
Let <1>+ denote the positive roots for the choice of the Borel subgroup B. Define the semi-group 

r+ = {t E T(Qp) I Vp(a(t)).:::: 0, Va E <1>+}, 

and similarly 

r++ = {t E T(Qp) I Vp(a(t)) < 0, Va E ((>+}. 

For the monoid /J. = IJ.p = JT+J, we consider the Hecke operators d/ = 11'(/J., I). Moreover, we define the 
space of Atkin-Lehner operators Jdp c 1I'(G(Qp), I) as the subalgebra of the Iwahori Hecke algebra generated by 

U1 and u,- 1
, where U1 = [It I] denotes the double coset operators for t E r+. Furthermore, we take our controlling 

operators to be of the form U, where t E r++. See [8, §2] for further details. 
We also briefly clarify the action of /J. on the cohomology groups in sight. There is a natural right action of I on Ah. 

Indeed, given f E Ah and y E /, we define fly (g) = f(y g). This action induces an action on An and by duality 
on 'Dn. This action extends to /J. as follows: identifying N1 with// B(Zp), we define t * gB(Zp) = tgt-1 B(Zp) 
fort E r+ and g. E /; the action of /J. on Ah, An and 'Dn as before. The induced action of the Hecke algebra on 
cohomology groups will be denoted as the *-action. 

Now suppose that locally G is of the form GLn/Qp, Then, we take the following generators ford/ and Jdp, 
We denote by U p,i the element in d/ given by the diagonal matrix 

(1, ... ,1,p, ... ,p) 

wberepoccursi times. Weletup,i = u;}_1Up,i E Jdp, 
Let 1Cp be an unramified irreducible representation of GLn(Qp) defined over L. Denote by r : WD(Qp) -+ 

GLn(L) the Weil-Deligne representation associated to 1Cp, Here WD(Qp) denotes the Weil-Deligne group of Qp. 
Let ¢1, ... , </>n be any ordering of eigenvalues of r(Frobp)- This ordering of eigenvalues gives rise to a character x 
of Jdp by the formula x(up,i) = p 1-i¢;. The character xis called a refinement of 1Cp, 

There exists a vector 0 =/:- v E 1r ;, such that Jdp acts on v by x. If 1e is a classical automorphic representation on 

G such that n P is unramified and if x E ~ (Qp) corresponds to 1r, then we obtain a refinement of 1e P by considering 
'Px l.!llp. That is, each classical automorphic representation appears roughly n ! times in ~. Hence, we often denote 
classical points in the eigenvariety as a tuple ( n, x). 
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3.4 Control theorem 

In this section, we define the notion of arithmetic weight and the space of classical automorphic forms above such 
weights. We then state the control theorem due to Ash-Stevens and Urban, which relates overconvergent automorphic 
forms with small slopes and classical automorphic forms. 

Let X* denote the integral weight lattice for G and let xi c X* denote the subset of B-dominant weights. We 
call a weight ,1 E 1f/ arithmetic if l = l 1 E where E is a finite order character of T (Z p) and l 1 E X*. Let s [ E] be 
the smallest integer such that Eis trivial on ys[E]_ Moreover, we say ,1 is dominant arithmetic if l1 E xi. For the 
dominant weight }q, let 2'A 1 denote the highest weight representation and let f;. 1 denote the highest weight vector 
associated to l 1 . 

The control theorem due to Ash-Stevens [2] and Urban [18] which is a generalization of control theorem due 
to Stevens [17] and Chenevier [3,6] relates the space of overconvergent automorphic forms H* (KP I, V;J and the 
classical automorphic forms H*(K P If, 2';.1), where If C I are the subgroups defined earlier. 

The standard action of the Hecke algebra d/ on H*(KPif,2';. 1 ) is modified as follows. Fort Er++ and 
m E H* (KP If, 2',1. 1), we define the *-action in weight l 1 by 

Ut *}q m = l1(t)-1Utm. 

Next, we note that, for g E G and i E I the function f;. 1 (gi) defines an element in 2';_1 ® A;, and pairing it with 
µ E 'D ;. we obtain a map i;. : V ;. ~ 2'A 1 , which we symbolically write as 

iA.(µ)(g) = J J;., (gi)µ(i). 

Then i ;. induces a morphism 

for any s ~ s[E]. This map is an intertwining operator for the action of the Hecke algebra 11', where we take the 
*-action on the source and the *-action in weight l 1 on the target. 

Let W denote the Weyl group of the torus T. For a controlling operator U, we call h E (Q small slope for a 
dominant arithmetic weight l = l 1 E if 

h < inf vp(w - l1(U)) - vp(l1(U)), 
wEW\{l} 

where v P denotes the p-adic valuation. Recall that the Weyl group W acts on weights by the rule w·µ = (µ+p)w -p, 
where p E X* ®z ½ Z denotes half the sum of positive roots with respect to B. 

Theorem 3.4.1 ([8, Theorem 3.2.5]). For the controlling operator U, if h is a small slope for a dominant 
arithmetic weight A = A 1 E, then there exists a natural isomorphism of Hecke modules 

for alls ~ s[E]. 

3.5 Comparison theorem 

In this section we prove a similar version of a comparison theorem Johanssen and Newton [10, Theorem 3.2.1] for 
universal eigenvarieties (which is a generalisation of a comparison theorem Hansen [8, Theorem 5.1.6] which intern / 
is a generalisation of a theorem due to Chenevier [7, Proposition 4.5]) enabling us to construct rigid analytic maps / 
between eigenvarieties. 1 
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Lemma 3.5.1. Let 

be an eigenvariety datum and let !!£ the associated universal eigenvariety. Let j : "fl/' ➔ "fl/ be a closed immersion 
and 1//' is reduced. Let us denote by Pl : ~ x "/// "fl/' ➔ ~ be the natural projection map. Define an eigenvariety 
datum, 

where l/f
1 is composition of 1/f with natural map Endoz(.4) ➔ Endozx..,,//Yf/' (pj .4). Let !!£' be the universal 

eigenvariety associated to !!J'. Then we have a closed immersion 

!!£' c....+ !!£. 

Proof The proof is essentially contained in Johanssen-Newton [10, .§3.l], we give a brief sketch. Let U c ~ be 
an affinoid open, then U' := p1

1(U) is affinoid open in~ X"ff/ 1//'. Let A = Oft'(U) and/ the ideal cut out by 
U'. Let M = .Al(U) and Tu = Jm('lI' ® A ➔ EndA(M)). Then pj .Al(U') = M/1 Mand T~, = Im('lI' ®A ➔ 
EndA;1(M/I M)). Thus we have a natural surjective map¢ : Tu ➔ T~,- Since Spec(Tu)s glues together to form 
!!£, we have a natural closed immersion.?£'"-+ !!£. □ 

Lemma 3.5.2. Let 

be an eigenvariety datum and let !!£ the associated universal eigenvariety. Let z : ~' ➔ ~ be a closed immersion. 
Define an eigenvariety datum, 

where 1/ffl'' is composition of IJI with natural map Endoz (.4) ➔ Endoz, (z* .4). Let !!£" be the universal 
eigenvariety associated to !!J'. Then we have a closed immersion 

!!£ II c....+ !!£. 

Proof We note that if U c ~ is an affinoid open, then z-1 (U) is affinoid open in ~' and the proof follows as in 
Lemma 3.5.1. This lemma is essentially contained in (10, §3.1]. D 

Theorem 3.5.3. Let 

!!J; =(~,fl";, A4, 11';, 1/fi) for i = I, 2 

be two eigenvariety datum associated with two eigenvariety Xi and !!£2 respectively. Moreover, assume all the 
following conditions hold. 

(1) There is a closed immersion of weight spaces j : 1#i <-+ 1fz. 
(2) We have an Qp algebra homomorphism a : 11'2 ➔ 11'1. 

(3) There is a subset !!£cl c Max(.?£1) with j(n1 (x)) E fZ'i for all x E &;cl such that the 11'1 eigenspace of x 
composed with a appears in .42 (j (n1 (x ))). 

Let .?£ denotes the 'Zariski closure of &;cl in !ti with its induced reduced structure. Then, we have a canonical finite 
morphism 

lying over j : 1f'i ➔ ~ such that <frF o a= i* o </Jx-2 • 
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Proof This is a restatement of comparison theorem for extended eigenvarieties due to Johanssen-Newton [10, 
Theorem 3.2.1] for universal eigenvarities. Basic idea is to reduce the problem to the case when #i = 11/i., ~ = .,2z 
and 1I' 1 = 1I'2 by applying Lemma 3.5.1 and Lemma 3.5.2 repeatedly. We give a sketch of their proof in the set up of 
universal eigenvarieties. 

Consider the eigenvariety datum 

and let us denote the associated eigenvariety by !Z'{'. Since i m ( lf/1 o a) ~ i m ( lf/1 ), we have a finite morphism 
f: !Z'1 -+ !!C/1 • For x E f!Ccl, choose xu E {(7l"f)-1(1r1(x))}. Define f!Ccl,u c Max(Xt) which contains xu 
for all x E !!CJ and has the property that for ally E f!Ccl,u we have j(1rf (y)) E .,2z and the 1I'2 eigenspace of y 

appears in .,,f/2 (j (7l" f (y))). Let us denote the reduced Zariski closure of &: cl,u in X"°t by }i;'. Then it is obvious that 

f(!!C) ~ !!Cu. Thus it is enough to construct a morphism from }i;' to &:2, that is we may assume 11'1 = 1I'2 = 'JI'. 
Next consider the eigenvariety datum 

comparing it with the eigenvariety datum §2 using lemma 3.5.1, we see that there is a closed immersion&:{-+ !!l:2. 
Hence it is enough to construct a morphism from !!Cu to &:{, that is we may assume #i = 11/z = "If/. 

Let :!Z'u denotes the Zariski closure of 1rf (f!Ccl,u) in~- Then we have z : :!Z'u c .,2i. Now consider the 
eigenvariety datum 

§~fl',,. = (#i, :!Z'u, z* A1, 1I'2, ( lf/1 o a) .2',,. ). 

By lemma 3.5.2, we have a closed immersion !!l:1 .2',,. cc...+ !!C{', moreover since 1rf is finite and? is reduced, 

1rf Ir factors through :!Z'u. Thus it is enough to ;onstruct a morphism from !!l:1,.2',,. to !!C{, that is we can replace 

~ by :!Z'u. Next consider the eigenvariety datum 

where j is the induced closed immersion from :!Z'u -+ .,2z x;11z #i. Applying lemma 3.5.2, we obtain a closed 
immersion from /!Cz" -+ !!C{. Hence it is enough to construct a morphism from ~ .2',,. to &:2", that is we may 

-u , 
assume 2i = ~ = :!Z' = :!Z'. 

Finally consider the eigenvariety datum 

then the associated eigenvariety ~ contains both ~ .2',,. and !!l:2" as Zariski closed subspaces. Then it is enough to 

show that f!Ccl,u C !!l:2", but it obvious from the defi~ition of f!Ccl,u. □ 

4. Eigenvarieties attached to G i and an auxiliary eigenvariety 

For the fixed odd prime p that is unrarnified in K, let OP = 0 K ® Z P. If p splits as ppc in K, then OP = 
OK,p x OK,pc, If a E Op, then write a = (a1,-a2) E OK,p x OK,pc. On the otherhand, if pis inert in K, then Op 

is a degree 2 extension of Zp, Given a E Op, let a1 and a2 denote its Galois conjugates. 

4.1 Weight spaces 

We first start with a description of the weight spaces for G1 = ResK;IQIGi. Let B1 and T1 denote the standard Borel 
subgroup and maximal torus in G1. Let B1 = ResK;1Q1B1 and T1 = ResK;1Q1T1 denote the corresponding subgroups 
in G1. Let Z1 denote the center of G1 and let Ii denote the Iwahori subgroup of G1 (with respect to B1). 
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We take our level structure to be K1 = IJ0 GL2(Ch,0 ), where the product runs over all the non-archimedean 
places of K. For any (Qp affinoid algebra A, we have 

#i. (A):= 1//Kp O (A)= {,c : r1 (Zp)-+ Ax I K is trivial on Z1 (Q) n K IP Ji}. 
I' I 

Suppose that n = (n1, n2) and v = (v1, v2) are weights with n + 2v = mt as before. Let ,c : T1 (Op) -+ Q; be 

the map, ,c(o., /J) = Il~=I a;;+v; Pt. The unit group o: sits in T1 (Op) diagonally as y ~ (y, y ). Then ,c is in the 
weight space #i. if ,c is trivial on o: (not just on the totally positive units). If k = n + 2t_and w = v + n + t, then 
Hilbert modular forms of weight (k, w) (in the sense of Hida) has weight ,c in the weight space 1/i. 

Note that we will be working with a weight space that 2-dimensional, rather than the 3-dimensional space 1/i. 

Remark 4.1.1. Note that we adopt a slightly different normalization, than usual, in our definition of weight spaces. 
The usual normalization sends (n, v) to ,c that maps (o., /J) ~ Il~=I o.;1

; fJ;°; and the units o: embeds as y i-+ 

(y, y 2). See Buzzard [5], for example. · 

We now describe the weight space for the group G2 = GL4/Q. With our notation as before, let B2 and T2 denote 
the standard Borel and maximal torus of G2. Let Z2 denote the center of G2 and let h denote the Iwahori subgroup 
with respect to Bz. 

We take our level structure to be K2 = Ile GL4(Ze), where the product runs over all integer primes e. And the 
weight space ~ is defined similarly. For any Qp affinoid algebra A, we have 

I x I x is trivial on the closure } 
~(A) := 1//KP G (A) = X : r2(Zp)-+ A (1111 p . 

2, 2 of Z2 "-l') n K
2 

h 

4.2 Hecke algebras 

Let S denote the set of primes of Q which ramify in K and let S be the set of places of K lying above primes in S. 
Let Sp denotes the set of places in K above p. 

For the group G 1, we define our unramified Hecke algebra as the commutative algebra 

'll'~nr = Q9 1I'(G1 (Qv), G1 (Zv)). 
v¢SU{p} 

Note that we are omitting Hecke operators at primes that are ramified in the quadratic extension K. At the prime p, 
we define a subrings di;P C di,P c 1I'(G1 (Qp), /1), as before. Specifically, let <I>{ denote the set of positive roots 

for B1. We define two semigroups rt and r I++ inside r1 (Qp) as 

rt= {t E r1 (Qp) I vp(a(t)) :S: 0 for all o. E <I>{}, and 

r 1++ = {t E r1(Qp) I vp(a(t)) < 0 for all o. E <I>t}. 

Suppose for the moment that p splits in K and suppose that t = (t1, t2) E T1 (Qp), where tI = diag(p01
, p 02

) and 
t2 = diag(pb1 , pb2 ). Then t E rt if and only if a1 :S: a2 and b1 :S: b2. The same t belongs tor/+ if and only if all 
the above inequalities are strict. We have similar conditions when p is inert in K. 

For any t E rt n G1 (Zp), the double coset operators U1 = [/1tli] generate the algebra ~;p• The Atkin-Lehner 

algebra Jdi,p is a commutative subalgebra of 1I'(G1 (Qp), Ii) generated by U1 and u1-
1 with t E rt n G1 (Zp), We 

can naturally identify 

~;p ~ Qp[r/ n G1(Zp)] and di,P ~ Qp(r1(Qp)/T1(Zp)). 

We will call an operator U1 E di+ a controlling operator if t E r1++. Finally, we define the Hecke algebra as 
,P 
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We also view the unramified Hecke Algebra 1I'1nr as a product of local Hecke algebras as 

'JI'lnr = ®~¢SUSp 1I'1,c, 

where the local Hecke algebra 1I'1,c = 1I'(G1(Kc),G1(0K,c)). For a place [ of Knot in SU Sp, let m-r denote 

the uniformizer at [. We denote by Tr and Sr the double coset operators [ GL2 ( 0 K, c) [ m-r 
1
] GL2 ( 0 K, r)] and 

[ GL2(0K r) [m-r ] GL2(0K c)] respectively. The operators Tc and Sr generates the local Hecke algebra 1I'1 r- Let 
' llT[ ' ' 

p E Sp. Let m-p denotes the uniformizer at p. We denote by Up and Sp the double coset operators [11 [1 w-J 11] 
and [11 [ W"p m-J 11]. respectively. Here 11 is the Iwahori subgroup with respect to the Borel subgroup B1. Then Up 

and Sp for all p E Sp generates the algebra di°;p· 
Standard choice of controlling operator is 

Up= Il Uv. 

vlp 

However we will work with different choice of controlling operators, depending on whether p splits or remains 
inert K. 

If p = ppc splits in K, we take Uspl := u:u;c to be the controlling operator. We denote the corresponding 
. . b tJYSpl e1genvanety y ,.;,c, 1 . 

If p = p remains inert in K, we take Uin := -u; to be the controlling operator. We denote the corresponding 

eigenvariety by &:/n. 
A point in z/ (Qp), where t E {spl, in}, is called classical if the eigenpacket cf>x corresponds to a cohomological 

Hilbert cusp form of weight K = (n, v) and tame level 1. 
We now come to the group G2, where our definitions are similar. The unramified Hecke algebra can be written as 

1runr '°'' 1I' . 2 = '<Yf¢SU{p) 2,f, 

where the local Hecke algebra 1I'2,e = 1I'(G2(Qe), G2(Ze)) is generated by operators Te,i corresponding to the double 
coset of matrix 

diag(£, ... , e, 1, ... , 1), 
'--.-' 

where i = 1, ... , 4. We define Sll'-i;P and .fll2,p similarly. For each i = 1, ... , 4, we denote by U p,i, the element of 

.flltP corresponding to the matrix 

diag(l, ... , 1, p, ... , p). 
'--.--' 

The operators U p,i generates the algebra ~";p· The operators u p,i := U p,i u;,}_1 E Sl/2,p generates the Atkin-Lehner 
algebra Sl/2,p· Finally, we take 

Up~ Up,1Up,2U~,3 E-~°;p 
as our choice for the controlling operator. We denote this eigenvariety by fZi. 

4.3 The eigenvariety f£ 

We have previously constructed the eigenvarieties Y; associated to the groups Gi. In this section, we construct an 
auxiliary eigenvariety f£, which plays a role in the construction of the p-adic Asai transfer map when p is inert. 
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Let ~ = (112, .2°2, Jt2, 'll'2, 1/12) denote the eigenvariety datum associated tQ the eigenvariety .2'i. In order to 
construct !ft', we only modify the Hecke algebra and keep the other objects the same as in &:'2. 

Let f'2+ denotes the subgroup T/ whose elements are 

a; EN U {O}, a1 :::: a2 :::: a3 :::: a4 l 
and a3 - a2 E 2N U {O} . 

Analogously, define 

f'/+ = {t E f'/ I a1 < a2 < a3 < a4}. 

Let s#,i;p (resp. sdi,p) denotes the Qp algebra generated by Ur with t E f'/ (resp. by Ur, u1-
1 with t E T/). We call 

Ur E di:P a controlling operator if t E f'/+. 
We denote by Up, 1, U p,2, U p,3 and U p,4 the double coset operators corresponding to the following matrices 

respectively. Then they generates the algebra di;P. We have a natural choice for the controlling operator 

Define Up,I = Up,I, Up,2 = Up,2(D;,i)2, Up,3 = Up,3u;,iup,I and Up,4 = Up,4v;,1, then integral powers of Up,i 

generate the algebra sdi,p· 
We define Hecke algebra ii' 2 as 

'IT' ._ ,...;+ · ']['unr 
Jl2 .- ,5(¥2,p ®Qp 2 ' 

where 11'2nr is the same as before. Let id : 'Il'2 <:..+ 'll'2 denote the natural injection of Hecke algebras. Let !!J denotes 
the eigenvariety datum 

~ = ('Wi, .2°2, .,.{/2, 'Il'2, '1'21t
2 

= 1/12 o id) 

and !ft' denote the associated eigenvariety. We note that, since im('1'2lt) C im(l/12), we have a finite morphism 
/ : .2'i-+ !ft' as in the proof of Theorem 3.5.3. 

Let 1Cp be an automorphic representation of G2(Qp)- We call a character i of .sdz,P an accessible refinement of 
n: p in &:', if there exists a character x of .9/i,p, such that i = x l.iiz,P and x is a refinement of 1r P appearing in &:'2. 

5. p-adic Asai transfer 

In this section, we construct a rigid analytic map between the eigenvarieties attached to GL2/ K and GL4/Q. This 
map is constructed using the comparison theorem 3.5.3 described in the section 3. In order to apply the theorem, we 
need to construct compatible maps at the level of weight spaces and Hecke algebras. 

We first describe the map between the weight spaces. For the weight spaces 1ti and 'Wi defined in the previous 
section, we construct the map j : 1ti 4 'Wi as follows. For a weight K E 1ti, define 

(5.0.1) 
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m-l+n1+n2 m-l+n1-n2 m-n1-n2 m-n1+n2 
-t 2 t 2 t 2 t 2 
- 1 2 3 4 

where, m = n1 + 2v1 = n2 + 2v2. 
The map between the Hecke algebras and the set of classical points depend on whether p is split or inert. We will 

I 
consider these two cases separately. In fact, when p is inert we only construct a map to the auxiliary eigenvariety !!l" 
attached to G~/(Q. 

5.1 The case where p = ppc is split in K 

Recall that in the split case for G1 we are working with the eigenvariety !!£?1
, that is the eigenvariety associated 

to the datum .P1 = (#i, 2;., ..411, 1I'i, 1//1) with respect to the controlling operator Uspl := u:uJc and for G2 we 
are working with the eigenvariety ,%i associated to the .P2 = (Yfz, ~ • ..412, 11'2, lf/2) with respect to the controlling 
operator Up:= Up,1Up,2Up,3· We want to use the comparison theorem (Theorem 3.5.3) to construct this map. The 
map j between weight spaces is given in (5.0.1 ). Below we construct the map of the Hecke algebras and give a set 
of classical points in the universal eigenvariety :z;_spl. 

We first construct the map between Hecke algebras attached to G1 and G2. The Hecke algebra 11'2 is generated by 
the elements Te,i (fore =I= p and unramified in K) and Up,i for i = 1, ... , 4. In 11'1, we also have the standard Hecke 
operators Ti and S1 for ( away from p and Up and Sp for PIP-

We define a map a± : 11'2 ➔ 11'1 as follows: 

Whenl= ((C 

Te,1 

Te,2 

Te,3 

Te,4 

1--+ TcTrc 

1--+ T?Src + S1Tfc - 2lS1Src 

1--+ e-1TrS1TrcS1c 

1--+ e-2 s? s?c 

Up,1 1--+ UpUµc 

Up,2 1--+ uJsµc 

When e is inert 

Te,1 1--+ ±Te 

Te,2 I-+ 0 

Te,3 1--+ -=Fl-1 Te Se 

Te,4 I-+ e-2s2 - e 

Up,3 1--+ p-1UpSpUµcSµc 

U -2s2s2 p,4 I-+ p p pC• 

We now justify the definition of a±. Let 1e be an automorphic representation coming from a Hilbert modular form 
f of weight K = (n, v) as before. Let us choose a refinement off such that Upf = apf and Upcf = aµcf and 

let x E !!£?1 
be the corresponding point. We denote the eigenpacket associated to x by ¢>ir,{ap,apcl· Assume that 

n1 > n2, then by our normalization As±(1e) is cohomological of weight j(K). For any refinement x of As±(1e), for 
primes e f p, As±(1e )e is an unrarnified representation and the Hecke operators Te,; act on the spherical vector via 
the.scalar (¢>ir,{ap ,ape J )(a (Te,;)). 

First suppose that e splits as ((C in K. Denote by a1 and /Jc, the Probe eigenvalues off. Then the characteristic 
polynomial for Frob1 is given by 

X2 - TeX+ N(()Sc = (X - a1)(X - /31). 

Hence Tr acts by ac + /Jc and N(()Sc acts by ac/Jr. Similarly, the characteristic polynomial for Frobcc is given by 
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where ace and Pre are the Frobte eigenvalues of f. On the other hand, characteristic polynomial for Probe 
corresponding to As± (tr )e is given by 

X4 
- Te,1X3 + lTe,2X2 - t 3Te,3X + t 6 Te,4-

From our earlier calculation, we know that the Probe eigenvalues on As±(tr )e are atace, ac/Jce, /Jtate and /J1P1e. Thus 

X 4 
- Te,1 X3 + lTe,2X2 - t 3Te,3X + t 6 Te,4 = (X - acacc )(X - ac/Jcc )(X - Peace )(X - PtPcc ). 

From this, we see that Te, 1 acts by the eigenvalue a ta cc + a tP te + fJ ta ce + fJ cP te = (at + /J t) (ace + fJ te). On the other 
hand we know that Te,1 acts by <P1e,{ap,ape 1(a (Tt,1)). Hence our definition 

a(Te,I) = TtTce. 

The calculations for Te,i when i = 2, 3, 4 are similar. 
Now assume that e is inert in K. Let ae and Pe denote the Probe eigenvalues of f. Then Probe eigenvalues on 

As±(n-) are given by ±ae, ±,Jai/Je, TJae/Je and ±/Je. Thus 

X 4 
- Te,1X3 + lTe,2X2 - l 3Te,3X + l 6 Te,4 = (X T ae)(X T J<iJfi)(X ± J<iJfe)(X T Pe). 

We see that Te,1 acts by ±(ae + Pe), Te,2 by 0, Te,3 by Te-3ae/Je(ae + Pe) and Te,4 acts by -e-6(ae/Je) 2. Hence our 
definition of a± above. 

The following lemma will justify the definition of a± for Hecke operators supported at p. Note that, N(p)Sp (resp. 
N(pc)Spe) acts via the eigenvalue ap/Jp (resp. ape /Jpe ). 

Lemma 5.1.1. The module As±(n-);l contains a vector v± on which dz,p acts via the character associated to the 
tu l ( -3p fJ -2p -1 p ) l · z U · h la 3m-l 4 2 p e p p pc, p pape, p ap pc, apapc . n particu ar, p acts via t e sea r p apapc. 

Proof The proof of this lemma is similar to [8, Lemma 5.5.2]. We give a brief sketch here. For this particular 
refinement, we see that up,I = Up,I acts by apape, up,2 = Up,2u;,{ acts by p-1ap/Jpc, thus Up,2 acts by 

p-1a~apeppe. Similarly up,3 = Up,3u;,1 acts by p-2/Jpape and hence Up,3 acts by p-3a~a:e/Jp/Jpe. Finally 

u p,4 = U p,4u;,1 acts by p-3 /Jpppe and U p,4 acts by p-6a~a~e/J~/J}. 
From the characteristic polynomials of Up and Upc, we see that ap/Jp = ap/Jpe = pm+I. For the computation of 

the Up operator, notice that UP = UP, 1 U p,2 U p,3 and hence acts via 

(p-2/Jpapc)(p- 1apppe)2(apapc)3 = p-4 (ap/Jp)(apc/Jpe)2a:a} = p3m-Ia:a}. 

This completes the proof of the lemma. D 

The *-action of dz,p on As±(tr );} is the usual action, rescaled by j (,c)(l, p, p 2 , p 3)-1, where j (,c) corresponds 
to the highest weight vector 

-(n1 +n2 n1 -nz n1 -nz n1 +nz) 
µ -

2 
+ m - 1, 

2 
+ m - 1, m -

2 
, m -

2 
. 

By our assumption that n1 > nz, the weightµ is a dominant integral weight. We compute 'that 

"1="2 ( ~) ( ~) 
(1 2 3) _ --y-+m-1+2 m---y- +3 m---y-

µ ,p, p ,p - p 

Define the set of classical weights as 

~~1 = {(n, v) E 1/'i In;, v; E Z, n1 > n2::: 0 and 2v1 + vz = O}. (5.1.1) 

We remark that "If/ spl the Zariski closure of "11;~1 in 1f'i is a 2-dimensional subspace of the full weight space. 

Moreover, if f has weight (n, v) e ~~1, then the eigenvalue of *-action of UP on As±(tr )~ is a;a}. 
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Now we compute small slope h for the weight j (K) = µ. By definition, we have 

h = inf vp((w • µ)(l, p, p 2, p 3)) - vp(µ(l, p, p 2, p 3)), 
wES4\{J} · 

where w • µ = (µ + p)w - p. We note that p = (3, 2, 1, 0) and 

vp((w. µ)(l, P, p2, p3)) - vp(µ(l, p, p2, p3)) 

= (µw-1(2) - µ2 + Pw-1(2) - P2) + 2(µw-1(3) - µ3 + Pw-'(3) - P3) 

+ 3(µw-1(4) - µ4 + Pw-1(4) - p4). 

Hence vp((w • µ)(1, p, p 2, p 3)) - vp(µ(l, p, p 2, p 3)) is a non-negative integer linear combination of 

µ1 - µ2 + Pl - P2 = n2 + 1, 

µ 1 - µ 3 + PI - /J3 = n 1 + 1, 

µ1 - µ4 + Pl - p4 = n1 + n2 + 2, 

µ2 - µ3 + P2 - P3 = nJ - n2, 

µ2 - µ4 + P2 - P4 = n1 + 1, 

µ3 - µ4 + P3 - P4 = n2 + 1. 

By taldng w = (1 2) and w = (2 3), we see that 

h = min{n1 - n2, n2 + 1}. 

Proposition 5.1.3. If ap and ape satisfy 

vp(a:a}) < min{n1 - n2, n2 + 1}, 
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then H*(Kf 12, 'Dj(,c)) contains a nonzero vector v± such that every T E 11'2 acts on v± through the scalar 

<Prr,{af?,a!
0
c) (a±(T)). 

Proof. Since nJ > n2, we haveµ = j(K) is dominant and As±(n) is cohomological of weight j(K), see [16]. 

By construction of the map a± we see that Te,i acts by </>J,lai,,a
1
,cJ(a±(Te,i)) on the line As±(n)?1·4 <Ze). From the 

choice of our refinement and the *-action of UP operator (for G2), we see that As± (1t )~ contains a vector on which 
Up acts by a:a}. Finally we note that for Up, any h < ho is a small slope for the dominant weightµ. Applying 
Theorem 3.4.1 we obtain an isomorphism 

H*(Kf 12, 'Dj(,c))<h ~ H*(Kf h, .:.t'j(,c))<h, 

and the target contains a vector satisfying the claim of the proposition. D 

Let 2'spt be the set of points in ~spl of the form (n1, n2, VJ, v2, a-J) such that, (n1, n2, vi, v2) E 1~~1 and 

vp(a) < min{n1 - n2, n2 + 1}. If z = (K, a-J) and if k. = (nJ + 2, n2 + 2) and w = (nJ + VJ + 1, n2 + v2 + 1), 
then .4i (z) ~ H*(Kf Ii, .Sf,c) <a. On the other hand, .,,{/2(j (z)) ~ H*(Kf h 'Dj(,c)) <a :::::: H*(Kf h ~(,c))<a• 

We define ~~l to be the set of classical points on x E f£/P
1
, such that 1q (x) E ~pl• Then, by Proposition 5.1.3, 

the 11'1 eigenspace of x composed with a± appears in A2(j (z)). 
Let &:°spt denote the Zariski closure of ~~1 in .%1. Then, applying the comparison theorem (Theorem 3.5.3), we 

obtain a rigid analytic map of eigenvarieties ~pl ➔ .%2 which p-adically interpolates Asai transfer. · 

Theorem 5.1.4 (p-adic Asai transfer: split case). There exists a rigid analytic map 

</>± : !frspt ➔ .%2 

which sends the point (n, {ap, ape}) to the point (As±(n), x), where xis the refinement given by 

X(Up,J) = apap<', x(up,2) = p-Japftpe, x(up,3) = p-2ppape and x(up,4) = p-3ppp-pe. 
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5.2 The case where pis inert in K 

Assume now that p is inert in K. Recall that in this case for G1 we are working with the eigenvariety &:;.in, that 
is the eigenvariety associated to the datum ~I = (Yf'i, .2i, .A1, 1I' 1, I/fl) with respect to the controlling operator 
Uin := -u: and for G2 we are working with the eigenvariety &:" associated to the~ = (o/Pz, .2"i, .A2, ii'2, 1/121•n) 
with respect to the controlling operator Up := U p,I U p,2U p,3· We want to use the comparison theorem (Theorem 3.5.3) 
to construct this map. The map j between weight spaces is given in (5.0.1). Below we construct the map of the 
Hecke algebras and give a set of classical points in the spectral variety .2i. 

First we define a map ;; ± : j 2 ~ 1I' 1 as follows. On the unrarnified part of the Hecke algebra, the maps ;; ± agrees 
with a±. At p, we define;;± on dz;P by sending 

Up,I 1-+ ±Up 

- 2 
up,2 I-+ upsP 

- 1 
Up,3 1-+ +P- UpSp 

- -2 2 
Up,4 1-+ -p SP. 

The following lemma will justify the definition of;;± for Hecke operators supported at p. For a Hilbert modular form 
f we choose the refinement such that, the Up eigenvalue off is ap. Note that, NK;Q(p)Sp acts via the eigenvalue 

apPp· 

Lemma 5.2.1. The module As±(n )f; contains a vector v on which .sz/i,p acts via the character x associated to 

the tuple (±p-3 Pp, ±p-2 Jappp, +P-I Jappp, ±ap)- As a consequence, the character i = x 1.#i.p of P/2,p is a 

refinement associated to As±(n)~ in&:". In particular, Up acts via the scalar -p4in-Ia!. 

Proof The proof of this lemma is similar to Lemma 4.4.1. We give a brief sketch here. 

First, from the character x of dp, we get an explicit description of the character i of P/2,p· We easily compute that 

i(up,I) = X(Up,I) = ±ap 

i(up,2) = x(up,2)2 = p-2appp 

i(up,3) = X(Up,3)X(Up,2)-I = -p-l 

i(up,4) = x(up,4) = ±p-3 Pp-

- - -2 - - - I - -
Observe that, Up,I up,I, Up,2 = up,2Up,I• Up,3 - up,3Up,2U;, 1 and Up,4 = up,4Up,3; hence, we get that 

U- U- U- d U- . ts b ± - 2 3p - 3 2p d - 6 2p 2 · ti. 1 p,I, p,2, p,3 an p,4 ac y ap, p aP p, +P aP pan -p aP P respec ve y. 

From the characteristic polynomial of Up, we see that appp = p 2m+2. By definition, our controlling operator 

Up= Up,1Up,2Up,3• We compute the action of Up as 

This completes the proof of the lemma. □ 

The *-action of .sllz;P on As±(n )f; is the usual action, rescaled by j (1<:)(l, p, p3, p 4)-1, where j (1<:) corresponds 
to the highest weight vector 

(
n1+n2 n1-n2 n1-n2 n1+n2) 

µ = ---+m-1 ---+m-1 m---- m---- . 
2 ' 2 ' 2 ' 2 



p-adic Asai transfer 

By our assumption that n1 > n2, the weightµ is a dominant integral weight. We compute that 

µ(l, p, p2' p3) = p n12n2+m-1+3{m- n1;n2 )+4(m- n1in2) 

= p8m-1-3n1 -n2 

= p4m-I+6v1 +202. 

Define the set of classical weights as 

~~
1 ={(n,v)E#ilni,ViEZ,n1>n2~0 and 3v1+v2=0}. 
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(5.2.2) 

We remark that 1f/ in the Zariski closure of ~~1 in #i is a 2-dimensional subspace of the full weight space. Moreover, 

if f has weight (n, v) E ~~1, then the eigenvalue of *-action of UP on As±(:,r )~ is -o.!, 
Now we compute small slope h for the weight j (K) = µ. By definition, we have 

h = inf vp((w • µ)(1, p, p 2, p 3)) - vp(µ(l, p, p 2, p 3)). 
wES4\{l} 

As in the split case, we note that 

vp((w. µ)(1, p, p2, p3)) - vp(µ(l, p, p2, p3)) 

= (µw-1(2) - µ2 + Pw-1(2) - P2) + 3(µw-1(3) - µ3 + Pw-1(3) - p3) 

+ 4(µw-1(4) - µ4 + Pw-1(4) - p4). 

By taking w = (1 2) and w = (2 3), we see that 

h = min{n2 + 1, 2(n1 - n2)}. 

Proposition 5.2.3. If 

. { n2 + 1 n 1 - n2 } vp(o.p) < nun -
4
-, 

2 
, 

then H*(Kf [z, 'Dj(K)) contains a nonzero vector v± such that every T E 'TI'2 acts on v± through the scalar 

<PJ,a/8-±(T)). 

Proof. The proof follows from the control theorem, Theorem 3.4.1, exactly as in Proposition 5.1.3. □ 

Let ~n be the set of points in ~in of the form (n1, n2, VI, v2, o.-1) such that, (n1, n2, VI, v2) E ~~l and 

vp(o.) < min {n2t 1, !!.1:2n2 }. If z = (K, o.-1) and if!_= (n1 + 2, n2 + 2) and w = (n1 +VI+ 1, n2 + v2 + 1), 
then .41 (z) ~ H*(Kf Ii, .ZK)<a• On the other hand, A2(j(z)) ~ H*(Kf h 'Dj(K))<a '.::::'. H*(Kf h 2j(K))<a· 

We define ~~1 to be the set of classical points on x E f);r, such that 1q (x) E ~n. Then, by Proposition 5.2.3, 
the 1I'i eigenspace of x composed with a± appears in A2(j (z)). 

Let Xin denote the Zariski closure of ~~1 in fl:/n. Then, applying the comparison theorem (Theorem 3.5.3), we 
obtain a rigid analytic map of eigenvarieties Xin ➔ fl: which p-adically interpolates the classical Asai transfer. 

Theorem 5.2.4 (p-adic Asai transfer: inert case). There exists a rigid analytic map 

<P± : tt';n ➔ fl: 

which sends the point (f, o.p) to the point (As±(n), i) where i is the refinement given by 

i(up,I) = ±o.p, i(up,2) = p-2o.p/Jp, i(up,3) = -p-I and i(up,4) = ±p-3/Jp 

as in Lemma 5.2.1. 
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