Partitions of graphs and Selmer groups of elliptic curves of Neumann-Setzer type

Tomasz Jędrzejak ${ }^{1}$ and Małgorzata Wieczorek ${ }^{2}$
University of Szczecin, Institute of Mathematics, Wielkopolska 15, 70-451 Szczecin, Poland
e-mail: tjedrzejak@gmail.com; wieczorek@wmf.univ.szczecin.pl.

Communicated by: R. Sujatha

Received: November 16, 2013

Abstract

We consider the elliptic curves $E^{u}: y^{2}=x^{3}+u x^{2}-16 x$ and their quadratic twists E_{n}^{u} by a squarefree integer n, where $u^{2}+64=$ $p_{1} \ldots p_{l}$, (p_{i} are primes). When $l \leq 2, n \equiv 1(\bmod 4)$ and all prime divisors of n are congruent to 3 modulo 4 we give a complete description of sizes of Selmer groups of E_{n}^{u} in terms of number of even partitions of some graphs. If n is even or $l>2$, we give some conditions for twists of rank zero. We deduce also that E_{n}^{u} has rank zero for a positive proportion of squarefree integers n with a fixed number of prime divisors.

2000 Mathematics Subject Classification. 11G05, 14H52, 11R42, 94C15.

1. Introduction

Let p be a prime $\neq 2,3,17$. Then there is an elliptic curve of conductor p defined over \mathbb{Q} with a rational 2-division point if and only if $p=u^{2}+64$ for some integer u. If p is of the form $u^{2}+64$, there are, up to isomorphism, just two such curves (connected by a 2-isogeny): $y^{2}=x^{3}+u x^{2}-16 x$ and $y^{2}=x^{3}-2 u x^{2}+p x$, where the sign of u is chosen so that $u \equiv 1(\bmod 4)$. There are the so-called Neumann-Setzer elliptic curves, studied in [15], [16].

Dąbrowski [2] studied quadratic twists by primes of generalized Neumann-Setzer curves $E^{u}: y^{2}=x^{3}+u x^{2}-16 x$, where $u^{2}+64$ is a prime or a product of two primes. By a famous result of Iwaniec [12], there are infinitely many integers u such that $u^{2}+64$ is the product of at most two primes.

In this article we study quadratic twists E_{n}^{u} of E^{u} by square-free integers n. We extend the ideas of Feng and others ([4], [5], [6], [7]) to calculate the Selmer groups of E_{n}^{u} using graph theory. They consider the elliptic curves $y^{2}=x^{3}-n^{2} x$ associated with congruent numbers and are especially interested in rank zero curves (i.e., when n is a non-congruent number). Goto [10] consider the curves $y^{2}=x(x+3 n)(x-n)$ and uses similar method for description of non $\pi / 3$-congruent numbers. In [9] he also considers elliptic curves connected with other θ-congruent numbers. Li and Qiu [14] used graph theory to calculate the Selmer groups of quadratic twists of $E_{\varepsilon p, \varepsilon q}: y^{2}=x(x+\varepsilon p)(x+\varepsilon q)$ where $\varepsilon= \pm 1$ and p, q are odd primes satisfying $q-p=2^{m}(m \geq 1)$. Note that in [3] the second author considers quadratic twists of the family $y^{2}=x(x+p)\left(x-2^{m}\right)$ without using graphs. It seems that the articles cited above are the only ones where the authors use graph theory to calculate Selmer groups.

The case when the quadratic twists of some elliptic curve have rank zero is particularly interesting. This is because it is believed [8] that a positive proportion of quadratic twists have rank zero. There have been numerous papers treating this problem. Most of them focus on the nonvanishing of the L-functions but there is also another approach via the descent method. For example, Yu [18] proved that a positive proportion of quadratic twists of elliptic curves with 2-torsion $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ have rank 0 . Dąbrowski [2] proved that for any positive integer k there are k pairwise non-isogenous curves E_{1}, \ldots, E_{k} such that rank $\left(E_{i}^{(p)}(\mathbb{Q})\right)=0(1 \leq i \leq k)$ for a positive proportion of primes p. The first author showed in [13] that quadratic twists of the Fermat elliptic curve $E_{2}: x^{3}+y^{3}=2$ (note that $E_{2}[2](\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}$) have rank zero for a positive proportion of squarefree integers with a fixed number of prime divisors. He also investigated rank zero cubic twists of this curve and proved a similar result.

In this paper we give a complete description of sizes of Selmer groups of E_{n}^{u} in terms of numbers of even partitions of some graphs when $u^{2}+64=p$ or $p_{1} p_{2}$, and $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4)$ with all primes $q_{i} \equiv 3(\bmod 4)$ (Theorems 1 and 2). We also give conditions (in terms of the values of Legende's symbols) to rank ($E_{n}^{u}(\mathbb{Q})$) equals 0 or (conjecturally) 1 (Corollaries 1, 3, 4 and 6). As a consequence, we deduce that E_{n}^{u} has rank zero for a positive proportion of squarefree integers n with a fixed number of prime divisors (Propositions 2 and 4). When n is even, we (avoid using graphs) only focus on rank zero twists and show similar density result (Propositions 5 and 6, and Corollary 8). Similarly, when $u^{2}+64=p_{1} \ldots p_{l}$ with $l>2$, we will give conditions for rank zero twists without using graph theory (Proposition 7).

2. Preliminaries

2.1 2-descent method

The 2-descent method is described in Silverman book [17, Chap. 10, Section 4]. In this paper we consider a special case for the quadratic twists E_{n}^{u} of E^{u}. Note that $E_{n}^{u}: y^{2}=x^{3}+u n x^{2}-16 n^{2} x$ where $u^{2}+64=p_{1} \ldots p_{t}$ and $n= \pm q_{1} \ldots q_{k}$ or $n= \pm 2 \cdot q_{1} \ldots q_{k}$ (n squarefree integer) and $u \equiv 1(\bmod 4)$. We will assume furthermore that $\operatorname{gcd}(u, n)=1$ and $\operatorname{gcd}\left(u^{2}+64, n\right)=1$. The curve E_{n}^{u} has bad reduction at primes dividing $n\left(u^{2}+64\right)$. Moreover, the reduction at 2 is good if and only if $n \equiv 1(\bmod 4)$. Let S denote the finite set consisting of ∞ and primes of bad reduction of E_{n}^{u}, and let M denote the subgroup of $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ generated by $S \backslash\{\infty\}$ and -1 , i.e.

$$
\begin{aligned}
S & =\left\{\infty, 2^{\epsilon}, p_{1}, \ldots, p_{l}, q_{1}, \ldots, q_{k}\right\} \\
M & =\left\langle-1,2^{\epsilon}, p_{1}, \ldots, p_{l}, q_{1}, \ldots, q_{k}\right\rangle \subseteq \mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}
\end{aligned}
$$

where $\epsilon=0$ for $n \equiv 1(\bmod 4)$ and $\epsilon=1$ for $n \equiv 2,3(\bmod 4)$.
There exists an isogeny ϕ of degree 2 from E_{n}^{u} to $E_{n}^{\prime u}: y^{2}=x^{3}-2 u n x^{2}+$ $n^{2}\left(u^{2}+64\right) x$. Let S_{n}^{ϕ} and $S_{n}^{\phi^{\prime}}$ denote the Selmer groups corresponding to ϕ and its dual, respectively. Then we can identify the Selmer groups S_{n}^{ϕ} and $S_{n}^{\phi^{\prime}}$ with some subgroups of M as follows:

$$
\begin{aligned}
& S_{n}^{\phi}=\left\{d \in M: C_{d}\left(\mathbb{Q}_{v}\right) \neq \emptyset \text { for all } v \in S\right\} \\
& S_{n}^{\phi^{\prime}}=\left\{d \in M: C_{d}^{\prime}\left(\mathbb{Q}_{v}\right) \neq \emptyset \text { for all } v \in S\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{d}: d y^{2}=d^{2}-2 d u n x^{2}+n^{2}\left(u^{2}+64\right) x^{4}, \\
& C_{d}^{\prime}: d y^{2}=d^{2}+4 d u n x^{2}-(16 n)^{2} x^{4} .
\end{aligned}
$$

We define

$$
r s\left(E_{n}^{u} / \mathbb{Q}\right):=\operatorname{dim}_{\mathbb{F}_{2}} S_{n}^{\phi}+\operatorname{dim}_{\mathbb{F}_{2}} S_{n}^{\phi^{\prime}}-2 .
$$

The number $r s\left(E_{n}^{u} / \mathbb{Q}\right)$ we call the Selmer rank of E_{n}^{u} / \mathbb{Q}. Clearly, $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right) \leq r s\left(E_{n}^{u} / \mathbb{Q}\right)$.

Lemma 1. Under the above assumptions we have

1) $C_{d}(\mathbb{R}) \neq \emptyset \Longleftrightarrow d>0$;

1') $C_{d}^{\prime}(\mathbb{R}) \neq \emptyset$;
2) $C_{d}\left(\mathbb{Q}_{p_{j}}\right) \neq \emptyset$;
$\left.2^{\prime}\right) C_{d}^{\prime}\left(\mathbb{Q}_{p_{j}}\right)=\emptyset \Longleftrightarrow\left(\frac{d}{p_{j}}\right) \neq 1$;
3) $\quad\left(q_{i} \equiv 3(\bmod 4)\right.$ and $\left.\left(\frac{u^{2}+64}{q_{i}}\right)=-1\right) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow q_{i} \mid d\right)$;
$\left.3^{\prime}\right) \quad\left(q_{i} \equiv 3(\bmod 4)\right.$ and $\left.\left(\frac{u^{2}+64}{q_{i}}\right)=-1\right) \Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow q_{i} \mid d\right)$;
4) $\quad\left(q_{i} \equiv 3(\bmod 4)\right.$ and $\left.\left(\frac{u^{2}+64}{q_{i}}\right)=1\right) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\frac{d}{q_{i}}\right) \neq 1\right)$;
$\left.4^{\prime}\right) \quad\left(q_{i} \equiv 3(\bmod 4)\right.$ and $\left.\left(\frac{u^{2}+64}{q_{i}}\right)=1\right) \Longrightarrow C_{d}^{\prime}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$;
5) $\quad\left(q_{i} \equiv 1(\bmod 4)\right.$ and $\left.\left(\frac{u^{2}+64}{q_{i}}\right)=-1\right) \Longrightarrow C_{d}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$;
$\left.5^{\prime}\right) \quad\left(q_{i} \equiv 1(\bmod 4)\right.$ and $\left.\left(\frac{u^{2}+64}{q_{i}}\right)=-1\right) \Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\frac{d}{q_{i}}\right) \neq 1\right)$;
6) $\quad\left(q_{i} \equiv 1(\bmod 4)\right.$ and $\left(\frac{u^{2}+64}{q_{i}}\right)=1$ and $\left.\left(\frac{n / q_{i}(u+8 \sqrt{-1})}{q_{i}}\right)=1\right)$
$\Longrightarrow\left(C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\left(\frac{d}{q_{i}}\right) \neq 1\right.\right.$ and $\left(q_{i} \nmid d\right.$ or $\left.\left.\left.\left(\frac{d / q_{i}}{q_{i}}\right) \neq 1\right)\right)\right) ;$
$\left.6^{\prime}\right) \quad\left(q_{i} \equiv 1(\bmod 4)\right.$ and $\left(\frac{u^{2}+64}{q_{i}}\right)=1$ and $\left.\left(\frac{n / q_{i}(u+8 \sqrt{-1})}{q_{i}}\right)=1\right)$
$\Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\left(\frac{d}{q_{i}}\right) \neq 1\right.\right.$ and $\left(q_{i} \nmid d\right.$ or $\left.\left.\left.\left(\frac{d / q_{i}}{q_{i}}\right) \neq 1\right)\right)\right) ;$
7) $\quad\left(q_{i} \equiv 1(\bmod 4)\right.$ and $\left(\frac{u^{2}+64}{q_{i}}\right)=1$ and $\left.\left(\frac{n / q_{i}(u+8 \sqrt{-1})}{q_{i}}\right)=-1\right)$
$\Longrightarrow\left(C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\left(\frac{d}{q_{i}}\right) \neq 1\right.\right.$ and $\left(q_{i} \nmid d\right.$ or $\left.\left.\left.\left(\frac{d / q_{i}}{q_{i}}\right) \neq-1\right)\right)\right) ;$
$\left.7^{\prime}\right) \quad\left(q_{i} \equiv 1(\bmod 4)\right.$ and $\left(\frac{u^{2}+64}{q_{i}}\right)=1$ and $\left.\left(\frac{n / q_{i}(u+8 \sqrt{-1})}{q_{i}}\right)=-1\right)$
$\Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\left(\frac{d}{q_{i}}\right) \neq 1\right.\right.$ and $\left(q_{i} \nmid d\right.$ or $\left.\left.\left.\left(\frac{d / q_{i}}{q_{i}}\right) \neq-1\right)\right)\right) ;$
8) $n u \equiv 1(\bmod 4) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{2}\right)=\emptyset \Longleftrightarrow d \not \equiv 5(\bmod 8)\right)$;
$\left.8^{\prime}\right) \quad n u \equiv 1(\bmod 4) \Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset \Longleftrightarrow d \not \equiv 5,7(\bmod 8)\right)$;
9) $n u \equiv 3(\bmod 4) \Longrightarrow C_{d}\left(\mathbb{Q}_{2}\right) \neq \emptyset$;
$\left.9^{\prime}\right) \quad n u \equiv 3(\bmod 4) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{2}\right)=\emptyset \Longleftrightarrow d \not \equiv 1(\bmod 8)\right) ;$
10) $n u \equiv 2(\bmod 16) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{2}\right)=\emptyset\right.$
$\Longleftrightarrow\left(2 \nmid d\right.$ or $\left.\frac{d}{2} \not \equiv 1(\bmod 8)\right)$ and $\left.d \not \equiv 1(\bmod 8)\right)$;
$\left.10^{\prime}\right) n u \equiv 2(\bmod 16) \Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset\right.$
$\Longleftrightarrow\left(2 \nmid d\right.$ or $\left.\frac{d}{2} \not \equiv 1,7(\bmod 8)\right)$ and $\left.d \not \equiv 1,7(\bmod 8)\right)$;
11) $n u \equiv 10(\bmod 16) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{2}\right)=\emptyset\right.$
$\Longleftrightarrow\left(2 \nmid d\right.$ or $\left.\frac{d}{2} \not \equiv 5(\bmod 8)\right)$ and $\left.d \not \equiv 1(\bmod 8)\right)$;
$\left.11^{\prime}\right) n u \equiv 10(\bmod 16) \Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset\right.$
$\Longleftrightarrow\left(2 \nmid d\right.$ or $\left.\frac{d}{2} \not \equiv 3,5(\bmod 8)\right)$ and $\left.d \not \equiv 1,7(\bmod 8)\right)$;
12) $n u \equiv 6(\bmod 8) \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{2}\right)=\emptyset \Longleftrightarrow d \not \equiv 1(\bmod 8)\right)$;
$\left.12^{\prime}\right) n u \equiv 6(\bmod 8) \Longrightarrow C_{d}^{\prime}\left(\mathbb{Q}_{2}\right) \neq \emptyset$.
Proof. Follows from Goto thesis [9, Prop. 7.1, 7.3, 7.5, 7.7.].

2.2 Graphs and their partitions

This subsection contains necessary terminology of graph theory. Let G be a simple nondirected graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{t}\right\}$ and edge set $E(G)$.

Definition 1. A partition of a vertex set V is a pair $\left\{V_{1}, V_{2}\right\}$ such that $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\emptyset$. The partition $\{\emptyset, V\}$ is called trivial.

Definition 2. For $v \in V_{1}$ we denote by $\#\left\{v \rightarrow V_{2}\right\}$ the number of vertices in V_{1} adjacent to v. A partition $\left\{V_{1}, V_{2}\right\}$ of V is called odd, if there exists $v \in V_{1}$ such that $\#\left\{v \rightarrow V_{2}\right\}$ is odd or there exists $v \in V_{2}$ such that $\#\left\{v \rightarrow V_{1}\right\}$ is odd. Otherwise, a partition $\left\{V_{1}, V_{2}\right\}$ is called even.

Note that trivial partitions are even.
Definition 3. We say that a graph G is odd if any nontrivial partition is odd, otherwise, we call G an even graph. We say that a graph G is semi-odd if there exists only one nontrivial even partition.

3. Main results and their proofs

In this section we assume that $u^{2}+64=p$ or $p_{1} p_{2}$ with $u \equiv 1(\bmod 4)$. We will consider both cases separately. We will study the quadratic twists of $E^{u}: y^{2}=x^{3}+u x^{2}-16 x$ by integers $n \equiv 1(\bmod 4)$. We will give a full description of the size of the corresponding Selmer groups in terms of numbers of even parititions of some graphs.

$$
\text { 3.1 The case } u^{2}+64=p
$$

Suppose that $u^{2^{\prime}}+64=p$ and $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4)$, where, for all $1 \leq i \leq k$, primes $q_{i} \equiv 3(\bmod 4)$ and $\operatorname{gcd}\left(q_{i}, u p\right)=1$. Note that necessarily $p \equiv 1(\bmod 8)$.

Definition 4. We define the nondirected graph $G_{1}(n)$ as follows. The vertex set $V\left(G_{1}(n)\right):=\left\{p, q_{1}, \ldots, q_{k}\right\}$ and the edge set $E\left(G_{1}(n)\right):=\left\{\overline{p q_{i}}-\right.$ $\left.\left(\frac{p}{q_{i}}\right)==1, i=1, \ldots, k\right\}$.

Proposition 1. Under the above assumptions we have
i) $S_{n}^{\phi}=\langle p\rangle,(-1\rangle \subset S_{n}^{\phi^{\prime}}$,
ii) if $\left\{V_{1}, V_{2}\right\}$ is a nontrivial even partition of $G_{1}(n)$, then $\prod_{q \in V_{j}} q \in S_{n}^{\phi^{\prime}}$, where $p \notin V_{j}(j=1$ or 2$)$,
iii) if $q_{i_{1}} \ldots q_{i_{s}} \in S_{n}^{\phi^{\prime}}(1 \leq s \leq k)$, then $\left\{\left\{q_{i_{1}}^{*}, \ldots, q_{i_{s}}\right\}, V\left(G_{1}(n)\right) \backslash\right.$ $\left.\left\{\dot{q_{1}}, \ldots, q_{i_{s}}\right\}\right\}$ is nontrivial even partition,
iv) $\left|S_{n}^{\phi^{\prime}}\right|=2 \times$ number of even partitions of the graph $G_{1}(n)$.

Proof.
i) By Lemma 1, we have $S_{n}^{\phi} \subset\left\langle p, q_{1}, \ldots, q_{k}\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset\left\langle-1, q_{1}, \ldots, q_{k}\right\rangle$ (note that in this case E_{n}^{u} has good reduction at 2). Moreover, if q_{i} divides d then $C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset(i=1, \ldots, k)$. Hence $S_{n}^{\phi} \subset\langle p\rangle$. Again, by Lemma 1 , we get $C_{d}\left(\mathbb{Q}_{p}\right) \neq \emptyset, C_{d}(\mathbb{R}) \neq \emptyset$ and $C_{d}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$ for $1 \leq i \leq k$. Therefore $S_{n}^{\phi}=\langle p\rangle$. Also by Lemma 1, we obtain $C_{-1}^{\prime}(K) \neq \emptyset$ for $K=\mathbb{Q}_{0}$ where $v=p, q_{1}, \ldots, q_{k}$ and ∞. Hence $-1 \in S_{n}^{\phi^{\prime}}$.
ii) Let $\left\{V_{1}, V_{2}\right\}$ be a nontrivial even partition of $G_{1}(n)$. Without loss of generality we may assume that $V_{1}=\left\{q_{1}, \ldots, q_{s}\right\}$ and $V_{2}=$ $\left\{p, q_{s+1}, \ldots, q_{k}\right\}$ for some $1 \leq s \leq k$. Let r denote the product $\prod_{q \in V_{1}} q$. We will show that $\left(\frac{p}{q}\right)=1$ for all $q \in V_{1}$. Suppose, on the contrary, that (without loss of generality) $\left(\frac{p}{q_{1}}\right)=-1$. Then the number of edges \#\{q1 $\left.\rightarrow V_{2}\right\}$ equals 1 , which contradicts the parity of partition $\left\{V_{1}, V_{2}\right\}$. Hence by Lemma $1, C_{r}^{\prime}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for $v=p, q_{1}, \ldots, q_{k}$ and ∞. Consequently $r \in S_{n}^{\phi^{\prime}}$.
iii) Without loss' of generality we assume that $r:=q_{1} \ldots q_{s} \in S_{n}^{\phi^{\prime}}$. Let $V_{1}:=\left\{q_{1}, \ldots, q_{s}\right\}$ and $V_{2}:=\left\{p, q_{s+1}, \ldots, q_{k}\right\}$. We explain, that $\left\{V_{1}, V_{2}\right\}$ is even partition of $G_{1}(n)$. Let $q \in V_{1}$. Then we have $\#\left\{q \rightarrow V_{2}\right\}=\#\{q \rightarrow p\}=0$ if $\left(\frac{p}{q}\right)=1$ and $\#\left\{q \rightarrow V_{2}\right\}=\#\{q \rightarrow$ $p\}=1$ if $\left(\frac{p}{q}\right)=-1$. But if $\left(\frac{p}{q}\right)=-1$ then by Lemma $1, C_{r}^{\prime}\left(\mathbb{Q}_{q}\right)=\emptyset$ because $q \mid r$, contrary to the assumption. Hence the number $\#\left\{q \rightarrow V_{2}\right\}$ is even. Now, let v be any element of V_{2}. If $v \neq p$ then of course $\#\left\{v \rightarrow V_{1}\right\}=0$. We have shown above that $\left(\frac{p}{q}\right)=1$ for all $q \in V_{1}$, hence also $\#\left\{p \rightarrow V_{1}\right\}=0$, and the assertion iii) follows.
iv) By parts ii) and iii) there is one-to-one correspondence between even partitions of $G_{1}(n)$ and positive elements in $S_{n}^{\phi^{\prime}}$ (note that trivial partition corresponds to $1 \in S_{n}^{\phi^{\prime}}$. Since $-1 \in S_{n}^{\phi^{\prime}}$, we have $g \in S_{n}^{\phi^{\prime}}$ if and only if $-g \in S_{n}^{\phi^{\prime}}$. And we are done.

Theorem 1. Under the above assumptions; $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}$ equals the number of even partitions of the graph $G_{1}(n)$. In particular, $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=$ $r s\left(E_{n}^{u} / \mathbb{Q}\right)=0$ if and only if $G_{1}(n)$ is odd. Moreover, $r s\left(E_{n}^{u} / \mathbb{Q}\right)$ is maximal (equals k) if and only if $E\left(G_{1}(n)\right)=\emptyset$.

Proof. Let 2^{e} denote the number of even partitions of the graph $G_{1}(n)$ (this number is indeed a power of 2, see for example [7, p. 5, Lemma 2.2]). By Proposition 1, we get

$$
2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}=2^{\operatorname{dim}_{\mathbb{F}_{2}} S_{n}^{\phi}+\operatorname{dim}_{\mathbb{F}_{2}} S_{n}^{\phi^{\prime}}-2}=2^{1+(e+1)-2}=2^{e} .
$$

Hence $r s\left(E_{n}^{u} / \mathbb{Q}\right)=0$ if and only if $2^{e}=1$, i.e. by definition, that $G_{1}(n)$ is odd. Similarly, $E\left(G_{1}(n)\right)=\emptyset$ if and only if any partition of $G_{1}(n)$ is even, that is $2^{e}=2^{\# V\left(G_{1}(n)\right)-1}=2^{k}$, and the assertion follows.

Corollary 1. Assume that $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4)$, where primes $q_{i} \equiv 3(\bmod 4),\left(\frac{q_{i}}{p}\right)=-1$ and $q_{i} \nmid u$ for all $1 \leq i \leq k$. Then $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=0$.

Proof. It is enough to show that the graph $G_{1}(n)$ is odd. Suppose, by contradiction, that $\left\{V_{1}, V_{2}\right\}$ is even nontrivial partition of it. Let (without loss of generality) $p \in V_{2}$ and let q be some element of V_{1}. Then $\#\left\{q \rightarrow V_{2}\right\}=$ $\#\{q \rightarrow p\}$ is even, which contradicts to $\left(\frac{p}{q}\right)=-1$. Using Theorem 1 yields the assertion.

Corollary 2. Assume that $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4)$, where primes $q_{i} \equiv 3(\bmod 4), q_{i} \nmid u$ for all $1 \leq i \leq k$, and $\exists_{i_{0}}\left(\frac{q_{i_{0}}}{p}\right)=1$, and $\forall_{i \neq i_{0}}\left(\frac{q_{i}}{p}\right)=-1$. Then $r s\left(E_{n}^{u} / \mathbb{Q}\right)=1$.

Proof. We will show that the graph $G_{1}(n)$ is semi-odd, i.e. it has only one nontrivial even partition. Assume without loss of generality that $i_{0}=1$. First, we show that the partition $\left\{V_{1}, V_{2}\right\}$, where $V_{1}=\left\{q_{1}\right\}$ and $V_{2}=\left\{p, q_{2}, \ldots, q_{k}\right\}$, is even. Indeed, $\#\left\{q_{1} \rightarrow V_{2}\right\}=\#\left\{q_{1} \rightarrow p\right\}=0$ because $\left(\frac{q_{1}}{p}\right)=1$. Similarly, for any $v \in V_{2}$ we have $\#\left\{v \rightarrow V_{1}\right\}=\#\{v \rightarrow$ $\left.q_{1}\right\}=0$. Now, we show that there are no other nontrivial even partition of $G_{1}(n)$. Suppose that the partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\} \neq\left\{V_{1}, V_{2}\right\}$ is nontrivial. Without loss of generality let $q_{1} \in V_{1}^{\prime}$. We need to consider two cases: $p \in V_{1}^{\prime}$ or $p \in V_{2}^{\prime}$. In the first case, for $q \in V_{2}^{\prime}$ we have $\#\left\{q \rightarrow V_{1}^{\prime}\right\}=\#\{q \rightarrow p\}=1$ because $\left(\frac{q}{p}\right)=-1$. Hence $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}$ is odd. In the second case, for $q \in V_{1}^{\prime} \backslash\left\{q_{1}\right\}$ we get $\#\left\{q \rightarrow V_{2}^{\prime}\right\}=\#\{q \rightarrow p\}=1$. Thus again $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}$ is odd. Now, by Theorem 1, we obtain $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}=2$, and we are done.

Lemma 2. Under the assumptions from Corollary 2, the global root number $W\left(E_{n}^{u}\right)$ of the L-function associated to $E_{n}^{u} i \bar{s}$ equal tó-1.

Proof. It is well known (for example see [1]) that for any elliptic curve E over \mathbb{Q} its global root number $W(E)$ is equal to $\prod_{l<\infty} W_{l}(E)$ where the product is taken over all primes l and ∞, and $W_{l}:=W_{l}(E)= \pm 1$ is the local root number. Moreover, $W_{\infty}=-1$, and if E has a good reduction at l then $W_{l}(E)=1$. If E has bad reduction at l then W_{l} depends on the reduction
type (see•[1]). In our case we have $W\left(E_{n}^{u}\right)=W\left(E_{n}^{\prime \mu}\right)=-W_{p} \prod_{1 \leq i \leq k} W_{q_{i}}$. The curve $E_{n}^{\prime \mu}$ has potential good reduction at q_{i} (i.e. additive reduction and $\left.\operatorname{ord}_{q_{i}}\left(j_{E_{n}^{i n}}\right) \geq 0\right)$. Hence $W_{q_{i}}=\left(\frac{-1}{q_{i}}\right)=-1$ if $q_{i}:>3$. If $3 \mid n$ then from [11, Table 2], we get $W_{3}=-1$. Hence always $\prod_{1 \leq i \leq k} W_{q_{i}}=(-1)^{k}$. At the prime $p=u^{2}+64$, the curve $E_{n}^{\prime u}$ has multiplicative reduction. We must decide whether this reduction is split or nonsplit. To this aim we consider $a_{p}=p+1-\# E_{n}^{\prime \prime}\left(\mathbb{F}_{p}\right)$. Note that $E_{n}^{\prime \prime}$ over \mathbb{F}_{p} has the equation $y^{2}=x^{3}-2 u n x^{2}$. Therefore $E_{n}^{\prime u}\left(\mathbb{F}_{p}\right)$ contains points $\infty,(0,0)$ and ($2 u n, 0$). Substituting $z:=(y / x)^{2}$, we get $z^{2}=x-2 u n$. This equation has $p-3$ solutions in $\mathbb{F}_{p} \backslash\{0,2 u n\}$ if $\left(\frac{-2 u n}{p}\right)=1$, and $p-1$ solutions if $\left(\frac{-2 u n}{p}\right)=-1$. Note that $\left(\frac{-2 u n}{p}\right)=\left(\frac{\sqrt{-1}}{p}\right)\left(\frac{n}{p}\right)=(-1)^{k-1}$, because $p \equiv 1(\bmod 8)$. Since $E_{n}^{\prime u}$ has nonsplit multiplicative reduction (i.e. $a_{p}=-1$) if and only if $(-1)^{k-1}=-1$, we obtain $W_{p}=(-1)^{k}$. Hence $W\left(E_{n}^{u}\right)=-(-1)^{k}(-1)^{k}=-1$, and we are done.

Corollary 3. Assume the Parity Conjecture. Then under the assumptions from Corollary 2, we have $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=1$.

Proof. By Corollary 2, $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right) \leq 1$ and by Lemma 2, the global root number of the associated L-function is equal to -1 . Therefore (under the Parity Conjecture) the rank is odd and we are done.

For a positive integer k, let A_{k}^{1} denote the set of odd squarefree (positive if k is even and negative if k is odd) integers n such that $\operatorname{gcd}(n, u)=$ $\operatorname{gcd}\left(n, u^{2}+64\right)=1$, and with exactly k prime factors.

Proposition 2. The set $\left\{n \in A_{k}^{1}: \operatorname{rank}\left(E_{n}^{u}(\mathbb{Q})\right)=0\right\}$ has positive density in A_{k}^{1} for all k. In particular, for infinitely many odd squarefree integers the quadratic twists of the curve $y^{2}=x^{3}+u x^{2}-16 x\left(u^{2}+64\right.$ is prime) have rank 0 .

Proof. Let B_{k} denote the set of integers satisfying the assumptions from Corollary 1. Then $B_{k} \subset A_{k}^{1}$ and by this Corollary, $\operatorname{rank}\left(E_{n}^{u}(\mathbb{Q})\right)=0$ for $n \in B_{k}$. By the Dirichlet Prime Number Theorem, the set B_{k} has positive density in A_{k}^{1}, and we are done.

$$
\text { 3.2 The case } u^{2}+64=p_{1} p_{2}
$$

Now suppose that $u^{2}+64=p_{1} p_{2}$ and $n= \pm q_{1} \because q_{k} \equiv 1(\bmod 4)$, where primes $q_{i} \equiv 3(\bmod .4)$ for all $1 \leq i \leq k$. Note that necessarily $p_{1} p_{2} \equiv 1(\bmod 8)$ and $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$.

Definition 5. We define the nondirected graph $G_{2}(n)$ as follows. The vertex set $V\left(G_{2}(n)\right):=\left\{p_{1}, p_{2}, q_{1}, \ldots, q_{k}\right\}$ and the edge set $E\left(G_{2}(n)\right):=\left\{\overline{p_{j} q_{i}}\right.$: $\left.\left(\frac{p_{j}}{q_{i}}\right)=-1, i=1, \ldots, k, j=1,2\right\}$.

Proposition 3. Under the above assumptions we have
i) $\left\langle p_{1} p_{2}\right\rangle \subset S_{n}^{\phi} \subset\left\langle p_{1}, p_{2}\right\rangle,\langle-1\rangle \subset S_{n}^{\phi^{\prime}}$,
ii) $S_{n}^{\phi}=\left\langle p_{1}, p_{2}\right\rangle$ if and only if there exists an even partition $\left\{V_{1}, V_{2}\right\}$ of $G_{2}(n)$ such that $p_{1} \in V_{1}$ and $p_{2} \in V_{2}$ (or vice versa)
iii) if $\left\{V_{1}, V_{2}\right\}$ is an even partition of $G_{2}(n)$ such that $p_{1}, p_{2} \in V_{1}$ or $p_{1}, p_{2} \in V_{2}$, then $\prod_{q \in V_{j}} q \in S_{n}^{\phi^{\prime}}$, where p_{1} and $p_{2} \notin V_{j}(j=1$ or 2$)$,
iv) if $q_{i_{1}} \ldots q_{i_{s}} \in S_{n}^{\phi^{\prime}}(1 \leq s \leq k)$, then $\left\{\left\{q_{i_{1}}, \ldots, q_{i_{s}}\right\}, V\left(G_{2}(n)\right) \backslash\right.$ $\left.\left\{q_{i_{1}}, \ldots, q_{i_{s}}\right\}\right\}$ is even partition (and clearly, satisfies property from iii),
v) $\left|S_{n}^{\phi^{\prime}}\right|=2 \times$ number of even partitions $\left\{V_{1}, V_{2}\right\}$ of the graph $G_{2}(n)$, such that both $p_{1}, p_{2} \in V_{1}$ or both $p_{1}, p_{2} \in V_{2}$.

Proof.

i) By Lemma 1, we have $S_{n}^{\phi} \subset\left\langle p_{1}, p_{2}, q_{1}, \ldots, q_{k}\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset$ $\left\langle-1, q_{1}, \ldots, q_{k}\right\rangle$. Also by Lemma 1 , we get $C_{p_{1} p_{2}}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for $v=p_{1}, p_{2}, q_{1}, \ldots, q_{k}$ and ∞. Thus $p_{1} p_{2} \in S_{n}^{\phi}$. On the other hand, $C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset$ if q_{i} divides d. Hence $\left\langle p_{1} p_{2}\right\rangle \subset S_{n}^{\phi} \subset\left\langle p_{1}, p_{2}\right\rangle$. Similarly, by Lemma $1, C_{-1}^{\prime}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for $v=p_{1}, p_{2}, q_{1}, \ldots, q_{k}$ and ∞, and the assertion follows.
ii) Assume that $p_{1}, p_{2} \in S_{n}^{\phi}$. Then, in particular, $C_{p_{j}}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$ for all $i=1, \ldots, k$ and $j=1,2$. Hence by Lemma 1 , for any prime divisor q of n we have either $\left(\frac{p_{1} p_{2}}{q}\right)=-1$ or $\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=1$. We define the partition $\left\{V_{1}, V_{2}\right\}$ of $G_{2}(n)$ as follows:' $V_{1}:=\left\{p_{1}\right\} \cup\left\{q:\left(\frac{p_{2}}{q}\right)=1\right\}$ and $V_{2}:=\left\{p_{2}\right\} \cup\left\{q \notin V_{1}:\left(\frac{p_{1}}{q}\right)=1\right\}$. We claim that $\left\{V_{1}, V_{2}\right\}$ is an even partition. Indeed, simply $\#\left\{p_{1} \rightarrow V_{2}\right\}=\#\left\{q \in V_{2}:\right.$ $\left.\left(\frac{p_{1}}{q}\right)=-1\right\}=0$ and similarly $\#\left\{p_{2} \rightarrow V_{1}\right\}=0$. Let $q \in V_{1}$ and $q^{\prime} \in V_{2}$. Then $\#\left\{q \rightarrow V_{2}\right\}=\#\left\{q \rightarrow p_{2}\right\}=0$ and $\#\left\{q^{\prime} \rightarrow V_{1}\right\}=\#\left\{q^{\prime} \rightarrow\right.$ $\left.p_{1}\right\}=0$. Conversely, assume that we have an even partition $\left\{V_{1}, V_{2}\right\}$ of $G_{2}(n)$ such that $p_{1} \in V_{1}$ and $p_{2} \in V_{2}$. By part i), it suffices to prove that $p_{1} \in S_{n}^{\phi}$. By Lemma 1, we just have $C_{p_{1}}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for $v=p_{1}, p_{2}$ and ∞. Let q^{\prime} be any element of V_{2}. The number $\#\left\{q^{\prime} \rightarrow-V_{1}\right\}=\#\left\{q^{\prime} \rightarrow p_{1}\right\}$ is even, hence equals 0 , i.e. $\left(\frac{p_{1}}{q^{\prime}}\right)=1$. Similarly, $\#\left\{q \rightarrow V_{2}\right\}=0$, that is $\left(\frac{p_{2}}{q}\right)=1$ for any $q \in V_{1}$. Now take $i \in\{1, \ldots, k\}$. If $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=-1$, then by Lemma $1, C_{p_{1}}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$ just because $q_{i} \nmid p_{1}$. If $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=1$ then by above, $\left(\frac{p_{1}}{q_{i}}\right)=1$ (if $\left.q_{i} \in V_{2}\right)$ or $\left(\frac{p_{2}}{q_{i}}\right)=1$ (if $\left.q_{i} \in V_{1}\right)$. Therefore $\left(\frac{p_{1}}{q_{i}}\right)=\left(\frac{p_{2}}{q_{i}}\right)=1$, and by Lemma $1, C_{p_{1}}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$ so $p_{1} \in S_{n}^{\phi}$.
iii) Without loss of generality assume that $V_{1}=\left\{q_{1}, \ldots, q_{s}\right\}$ and $V_{2}=\left\{p_{1}\right.$, $\left.p_{2}, q_{s+1}, \ldots, q_{k}\right\}$ for some $s \in\{1, \ldots, k\}$. Let $r:=q_{1}, \ldots, q_{s}$. Clearly, $C_{r}^{\prime}\left(\mathbb{Q}_{q_{i}}\right) . \neq \emptyset$ for $i=s+1, \ldots, k$. Now let $i \leq s$. By assumption, the number $\#\left\{q_{i} \rightarrow V_{2}\right\}=\#\left\{q_{i} \rightarrow\left\{p_{1}, p_{2}\right\}\right\}$ is even (i.e. equals 0 or 2). Hence $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=1$, and consequently by Lemma 1 , we get $C_{r}^{\prime}\left(\mathbb{Q}_{q_{i}}\right) \neq \emptyset$. Let $j=1$ or 2 . Since the number $\#\left\{p_{j} \rightarrow V_{1}\right\}=\#\left\{q \in V_{1}:\left(\frac{q}{p_{j}}\right)=-1\right\}$ is even, $\left(\frac{r}{p_{j}}\right)=1$ and by Lemma $1, C_{r}^{\prime}\left(\mathbb{Q}_{P_{j}}\right) \neq \emptyset$. Clearly, $C_{r}^{\prime}(\mathbb{R}) \neq \emptyset$ thus $r \in S_{n}^{\phi^{\prime}}$.
iv) Without loss of generality, we assume that $r:=q_{1}, \ldots, q_{s} \in S_{n}^{\phi^{\prime}}$. Let $V_{1}:=\left\{q_{1}, \ldots, q_{s}\right\}$ and $V_{2}:=\left\{p_{1}, p_{2}, q_{s+1}, \ldots, q_{k}\right\}$. We prove by definition, that $\left\{V_{1}, V_{2}\right\}$ is an even partition of $G_{2}(n)$. By assumption, we have $C_{r}^{\prime}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for $v=p_{1}, p_{2}, q_{1}, \ldots, q_{k}$ and ∞. Hence in particular, by Lemma 1 , we get $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=1$ for $i \leq s$ and $\left(\frac{r}{p_{j}}\right)=1$ for $j=1,2$. Now let $q \in V_{1}$. By above, we obtain that $\#\left\{q \rightarrow V_{2}\right\}=$ $\#\left\{q_{i} \rightarrow\left\{p_{1}, p_{2}\right\}\right\}=0$ if $\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=1$ and $\#\left\{q \rightarrow V_{2}\right\}=$ $\#\left\{q_{i} \rightarrow\left\{p_{1}, p_{2}\right\}\right\}=2$ if $\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=-1$, and the number $\#\left\{p_{j} \rightarrow V_{1}\right\}=\#\left\{q \in V_{1}:\left(\frac{q}{p_{j}}\right)=-1\right\}$ is even too, because $1=\left(\frac{r}{p_{j}}\right)=$ $\prod_{q \in V_{1}}\left(\frac{q}{p_{j}}\right)=(-1)^{\#\left\{q \in V_{1}:\left(\frac{q}{p_{j}}\right)=-1\right\}}$. Clearly, \#\{q$\left.\rightarrow V_{1}\right\}=0$ for any $q^{\prime} \in V_{2}$, and the assertion follows.
v) By parts iii) and-iv) there is one-to-one correspondence between even partitions of $G_{2}(n)$ such that both vertices p_{1} and p_{2} are in the same set and positive elements in $\dot{S}_{n}^{\phi^{\prime}}$ (note that trivial partition has such property and corresponds to $1 \in S_{n}^{\phi^{\prime}}$). Since $-1 \in S_{n}^{\phi^{\prime}}$, we have $g \in S_{n}^{\phi^{\prime}}$ if and only if $-g \in S_{n}^{\phi^{\prime}}$. And we are done.

Lemma 3. Suppose that a graph G has vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{t}\right\}$. Then the number of even partitions $\left\{V_{1}, V_{2}\right\}$ of the graph G such that either both $v_{1}, v_{2} \in V_{1}$ or both $v_{1}, v_{2} \in V_{2}$ is equal to $\alpha \times$ number of even partitions $\left\{V_{1}, V_{2}\right\}$ of the graph G, where $\alpha=1$ or $\frac{1}{2}$.

Proof. Follows from [5, p. 122-123, Lemmas 5.3 and 5.4] (note that we consider non-ordered partitions).

Theorem 2. Under the above assumptions, $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}$ equals the number of even partitions of the graph $G_{2}(n)$. In particular, $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=$ $r s\left(E_{n}^{u} / \mathbb{Q}\right)=0$ if and only if $G_{2}(n)$ is odd. Moreover $r s\left(E_{n}^{u} / \mathbb{Q}\right)$ is maximal (equals $k+1$) if and only if $E\left(G_{2}(n)\right)=\emptyset$.

Proof. Let 2^{e} denote the number of even partitions of the graph $G_{2}(n)$ and let 2^{f}. denote the number of even partitions of the graph $G_{2}(n)$ such that
both vertices p_{1} and p_{2} are in the same set. By Proposition 3 and Lemma 3, we get $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}=2^{\operatorname{dim}_{\mathbb{F}_{2}} S_{n}^{\phi},+\operatorname{dim}_{\mathbb{F}_{2}} S_{n}^{\phi^{\prime}}-2}=2^{2+(f+1)-2}$ if $f<e$ and $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}=2^{\operatorname{din} \mathrm{F}_{2}} S_{n}^{\phi}+\operatorname{di\overline {n}\mathbb {F}_{2}} S_{n}^{\phi^{\prime}-2}=2^{1+(f+1)-2}$ if $f=e$. In both cases $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}=2^{e}$. Then $r s\left(E_{n}^{u} / \mathbb{Q}\right)=0$ if and only if $2^{e}=1$, i.e. by definition, that $G_{2}(n)$ is odd. Similarly, $E\left(G_{2}(n)\right)=\emptyset$ if and only if any partition of $G_{2}(n)$ is even, that is $2^{e}=2^{\# V\left(G_{2}(n)\right)-1}=2^{k+1}$, and the assertion follows.

Corollary 4. Assume that $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4)$, where primes $q_{i} \equiv 3(\bmod 4),\left(\frac{q_{i}}{p_{1}}\right)=-1$ and $q_{i} \nmid u$ for all $1 \leq i \leq k$. Moreover, assume that $\exists_{i_{0}}\left(\frac{q_{i 0}}{p_{2}}\right)=-1$ and $\forall_{i \neq i_{0}}\left(\frac{q_{i}}{p}\right)=1$. Then $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=0$.

Proof. We claim that in this case the graph $G_{2}(n)$ is odd. Suppose, by contradiction, that $\left\{V_{1}, V_{2}\right\}$ is even nontrivial partition of it. Let (without loss of generality) $p_{1} \in V_{2}$ and let q_{i} be some element of V_{1}. Then $\#\left\{q_{i} \rightarrow V_{2}\right\}=\#\left\{q_{i} \rightarrow p_{1}\right\}$ is even, which contradicts to $\left(\frac{p_{1}}{q_{i}}\right)=-1$. If no such q_{i} exists, i.e. $V_{1}=\left\{p_{2}\right\}$, then the number $\#\left\{q_{i_{0}} \rightarrow V_{1}\right\}=\#\left\{q_{i} \rightarrow p_{2}\right\}$ is even, contrary to $\left(\frac{q_{i_{0}}}{p_{2}}\right)=-1$. Using Theorem 2 yields the assertion.

Corollary 5. Assume that $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4)$, where primes $q_{i} \equiv 3(\bmod 4), q_{i} \nmid u$ for all $1 \leq i \leq k$ and $\forall_{i}\left(\frac{q_{i}}{p_{2}}\right)=-\left(\frac{g_{i}}{p_{1}}\right)=1$ (or vice versa). Then $r s\left(E_{n}^{u} / \mathbb{Q}\right)=1$.

Proof. We show that the graph $G_{2}(n)$ is semi-odd, i.e. has only one nontrivial even partition. First, we show that the partition $\left\{V_{1}, V_{2}\right\}$, where $V_{1}=\left\{p_{2}\right\}$ and $V_{2}=\left\{p_{1}, q_{1}, q_{2}, \ldots, q_{k}\right\}$ is even. Indeed, $\#\left\{q_{i} \rightarrow V_{1}\right\}=\#\left\{q_{1} \rightarrow p_{2}\right\}=0$ because $\left(\frac{q_{i}}{p_{2}}\right)=1$. Clearly, $\#\left\{p_{1} \rightarrow V_{1}\right\}=0$ and $\#\left\{p_{2} \rightarrow V_{2}\right\}=\#\left\{q_{i}:\right.$ $\left.\left(\frac{q_{i}}{p_{2}}\right)=-1\right\}=0$. Now, we show that there are no other nontrivial even partition of $G_{2}(n)$. Suppose that the partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\} \neq\left\{V_{1}, V_{2}\right\}$ is nontrivial. Without loss of generality let $p_{2} \in V_{1}^{\prime}$ but now $V_{1}^{\prime} \neq\left\{p_{2}\right\}$. We need to consider two cases: $p_{1} \in V_{1}^{\prime}$ or $p_{1} \in V_{2}^{\prime}$. In the first case, for $q \in V_{2}^{\prime}$ we have $\#\left\{q \rightarrow V_{1}^{\prime}\right\}=\#\left\{q \rightarrow p_{1}\right\}=1$ because $\left(\frac{q}{p}\right)=-1$. Hence $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}$ is odd. In the second case, there exists some $q_{i} \in V_{1}^{\prime}$. Then we get $\#\left\{q_{i} \rightarrow V_{2}^{\prime}\right\}=\#\left\{q_{i} \rightarrow p_{1}\right\}=1$. Thus again $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}$ is odd. Now, by Theorem 2, we obtain $2^{r s\left(E_{n}^{u} / \mathbb{Q}\right)}=2$ and we are done.

Lemma 4. Under the assumptions from Corollary 5, the global root number $W\left(E_{n}^{u}\right)$ of the L-function associated to E_{n}^{u} is equal to -1 .

Proof. The proof is very similar to the proof of Lemma 2. Now we have $W\left(E_{n}^{u}\right)=W\left(E_{n}^{\prime u}\right)=.-W_{p_{1}} W_{p_{2}} \Pi_{1 \leq i \leq k} W_{q_{i}}$. The curve $E_{n}^{\prime \prime}$ has potential good reduction at q_{i}, hence $W_{q_{i}}=-1$ (the sign of W_{3} follows
from [11, Table 2]). At the primes p_{1} and p_{2} the curve $E_{n}^{\prime \prime}$ has multiplicative reduction. Moreover, this reduction at p_{i} is nonsplit if and only if $\left(\frac{-2 u n}{p_{i}}\right)=-1$, and hence $W_{p_{i}}=-\left(\frac{-2 u n}{p_{i}}\right)=-\left(\frac{2 u n}{p_{i}}\right)$. Since $p_{1} \equiv$ $p_{2} \equiv 1,5(\bmod 8)$, we get $\left(\frac{2 u}{p_{1}}\right)=\left(\frac{2 u}{p_{2}}\right)$, and consequently $W\left(E_{n}^{u}\right)=$ $-(-1)^{k}(-1)^{k}=-1$. This finishes the proof.

Corollary 6. Assume the Parity Conjecture. Then under the assumptions from Corollary 5, we have $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=1$.

Proof. By Corollary $5, \operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right) \leq 1$ and by Lemma 4, the global root number of the associated L-function is equal to -1 . Therefore (under the Parity Conjecture) this rank is odd, and we are done.

Proposition 4. The set $\left\{n \in A_{k}^{1}: \operatorname{rank}\left(E_{n}^{u}(\mathbb{Q})\right)=0\right\}$ has positive density in A_{k}^{1} for all k. In particular, for infinitely many odd squarefree integers the quadratic twists of the curve $y^{2}=x^{3}+u x^{2}-16 x\left(u^{2}+64\right.$ is a product of two primes) have rank 0 .

Proof. Let C_{k} denote the set of integers satisfying the assumptions from Corollary 4. Then $C_{k} \subset A_{k}^{1}$ and by this Corollary, $\operatorname{rank}\left(E_{n}^{u}(\mathbb{Q})\right)=0$ for $n \in B_{k}$. By the Dirichlet Prime Number Theorem, the set C_{k} has positive density in A_{k}^{1}, and the assertion follows.

4. Related results

In this section we consider quadratic twists of E^{u} by an even n. We focus on rank zero twists only.

Proposition 5. Assume that $u^{2}+64=p$ and $u \equiv 1(\bmod 4)$. Let $n= \pm 2 q_{1} \ldots q_{k}$, where primes $q_{i} \equiv 3(\bmod 4)$ for all $1 \leq i \leq k$ and let $\frac{n}{2} \equiv 1(\bmod 4), \frac{n}{2} \not \equiv u(\bmod 8)$. If $\left(\frac{p}{q_{i}}\right)=-1$ for all $1 \leq i \leq k$, then $S_{n}^{\phi}=\langle p\rangle$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.

Proof. By Lemma 1, we have $S_{n}^{\phi} \subset\left\langle 2, p, q_{1}, \ldots, q_{k}\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset\langle-1,2$, $\left.q_{1}, \ldots, q_{k}\right\rangle$. From the implication 3 from Lemma 1 , we get $S_{n}^{\phi} \subset\langle 2, p\rangle$. Since $\frac{n}{2} \not \equiv u(\bmod 8)$ (by assumption) and $p \equiv 1(\bmod 8)$, using condition 11 from Lemma 1, we obtain 2, $2 p \notin S_{n}^{\phi}$. Hence $S_{n}^{\phi}=\langle p\rangle$.

Consider now the group $S_{n}^{\phi^{\prime}}$. Since for all $1 \leq i \leq k$ Legendre's symbol $\left(\frac{q_{i}}{p}\right)=-1$, then the condition 3 ' from Lemma 1 leads to the inclusion $S_{n}^{\phi^{\prime}} \subset\langle-1,2\rangle$. Additionally, using condition 11^{\prime} from Lemma 1, we obtain $\pm 2 \notin S_{n}^{\phi}$. Finally, we get $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.

Proposition 6. Assume that $u^{2}+64=p_{1} p_{2}$ and $u \equiv 1(\bmod 4)$. Let $n= \pm 2 q_{1} \ldots q_{k}$, where primes $q_{i} \equiv 3(\bmod 4)$ for all $1 \leq i \leq k$ and let $\frac{n}{2} \equiv 1(\bmod 4)$.

1) If $\frac{n}{2} \not \equiv u(\bmod 8), p_{1} \equiv p_{2} \equiv 5(\bmod 8)$, and for certain $1 \leq i_{0} \leq k$ we have $q_{i_{0}} \equiv 3(\bmod 8)$ and $\left(\frac{p_{1}}{q_{i_{0}}}\right)=\left(\frac{p_{2}}{q_{i_{0}}}\right)=1$ or $q_{i_{0}} \equiv 7(\bmod 8)$ and $\left(\frac{p_{1}}{q_{i_{0}}}\right)=\left(\frac{p_{2}}{q_{i_{0}}}\right)=-1$, and for all $1 \leq i \neq i_{0} \leq k$ we have $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=-1$, then $S_{n}^{\phi}=\left\langle p_{1} p_{2}\right\rangle$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.
2) If $\frac{n}{2} \not \equiv u(\bmod 8), p_{1} \equiv p_{2} \equiv 1(\bmod 8)$, and for certain $1 \leq i_{0} \leq k$ we have $\left(\frac{p_{1}}{q_{i_{0}}}\right)=\left(\frac{p_{2}}{q_{i_{0}}}\right)=-1$, and for all $1 \leq i \neq i_{0} \leq k$ we have $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=-1$, then $S_{n}^{\phi}=\left\langle p_{1} p_{2}\right\rangle$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.
3) If $\frac{n}{2} \equiv u(\bmod 8), p_{1} \equiv p_{2} \equiv 5(\bmod 8)$, and for certain $1 \leq i_{0} \leq k$ we have $q_{i_{0}} \equiv 3(\bmod 8)$ and $\left(\frac{p_{1} p_{2}}{q_{i_{0}}}\right)=1$, and for all $1 \leq i \neq i_{0} \leq k$ we have $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=-1$, then $S_{n}^{\phi}=\left\langle p_{1} p_{2}\right\rangle$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.

Proof. By Lemma 1, we have $S_{n}^{\phi} \subset\left(2, p_{1}, p_{2}\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset\left\langle-1,2, q_{1}\right.$, $\left.q_{2}, \ldots, q_{k}\right\rangle$. Without loss of generality assume that $i_{0}=1$. Let $\left(\frac{p_{1}}{q_{1}}\right)=$ $\left(\frac{p_{2}}{q_{1}}\right)=-1$, then using condition 4 of this Lemma, we obtain $p_{1}, p_{2} \notin S_{n}^{\phi}$. Next, if $q_{1} \equiv 3(\bmod 8)$, then $\left(\frac{2}{q_{1}}\right)=-1$ and $C_{2}\left(\mathbb{Q}_{q_{1}}\right)=C_{2 p_{1} p_{2}}\left(\mathbb{Q}_{q_{1}}\right)=\emptyset$. Consequently $S_{n}^{\phi} \subset\left\langle 2 p_{1}, 2 p_{2}\right\rangle$. However, if $q_{1} \equiv 7(\bmod 8)$, then $\left(\frac{2}{q_{1}}\right)=1$ and $C_{2 p_{1}}\left(\mathbb{Q}_{q_{1}}\right)=C_{2 p_{2}}\left(\mathbb{Q}_{q_{1}}\right)=\emptyset$ and consequently $S_{n}^{\phi} \subset\left\langle 2, p_{1} p_{2}\right\rangle$.

Let $\frac{n}{2} \not \equiv u(\bmod 8)$. Then, using condition 11 from Lemma 1 , we get $C_{2}\left(\mathbb{Q}_{2}\right)=C_{2 p_{1} p_{2}}\left(\mathbb{Q}_{2}\right)=\emptyset$. Additionally, if $p_{1} \equiv p_{2} \equiv 1(\bmod 8)$, then we have $C_{2 p_{1}}\left(\mathbb{Q}_{2}\right)=C_{2 p_{2}}\left(\mathbb{Q}_{2}\right)=\emptyset$, which means that $2 p_{1}, 2 p_{2} \notin S_{n}^{\phi}$.

Thus we obtain: if $\frac{n}{2} \equiv u(\bmod 8), q_{1} \equiv 3(\bmod 8), p_{1} \equiv p_{2} \equiv 5(\bmod 8)$ or $\frac{n}{2} \not \equiv u(\bmod 8), q_{1} \equiv 7(\bmod 8), p_{1} \equiv p_{2} \equiv 5(\bmod 8)$ or $\frac{n}{2} \not \equiv u(\bmod 8)$, $q_{1} \equiv 3(\bmod 4), p_{1} \equiv p_{2} \equiv 1(\bmod 8)$, then $S_{n}^{\phi}=\left\langle p_{1} p_{2}\right\rangle$.

Consider now the group $S_{n}^{\phi^{\prime}}$. Let $\left(\frac{p_{1} p_{2}}{q_{i}}\right)=-1$ for all $2 \leq i \leq k$. Since $\left(\frac{u^{2}+64}{q_{i}}\right)=-1 \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow q_{i} \mid d\right)$, we get $S_{n}^{\phi^{\prime}} \subset\left\langle-1,2, q_{1}\right\rangle$. If $\frac{n}{2} \not \equiv u(\bmod 8)$, then $\pm 2 \notin S_{n}^{\phi^{\prime}}$, because $C_{ \pm 2}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset$. Additionally, if $q_{1} \equiv 3(\bmod 8)$, then $\pm q_{1} \notin S_{n}^{\phi^{\prime}}\left(C_{ \pm q_{1}}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset\right)$ and if $q_{1} \equiv 7(\bmod 8)$, then $\pm 2 q_{1} \notin S_{n}^{\phi^{\prime}}\left(C_{ \pm 2 q_{1}}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset\right)$. Hence if $q_{1} \equiv 3(\bmod 8)$, then $S_{n}^{\phi^{\prime}} \subset$ $\left\langle-1,2 q_{1}\right\rangle$ and if $q_{1} \equiv 7(\bmod 8)$, then $S_{n}^{\phi^{\prime}} \subset\left\langle-1, q_{1}\right\rangle$.

By assumptions we have:

1) $p_{1} \equiv p_{2} \equiv 5(\bmod 8), q_{1} \equiv 3(\bmod 8),\left(\frac{p_{1}}{q_{1}}\right)=\left(\frac{p_{2}}{q_{1}}\right)=1$,
2) $p_{1} \equiv p_{2} \equiv 5(\bmod 8), q_{1} \equiv 7(\bmod 8),\left(\frac{p_{1}}{q_{1}}\right)=\left(\frac{p_{2}}{q_{1}}\right)=-1$,
3), $p_{1} \equiv p_{2} \equiv 1(\bmod 8), q_{1} \equiv 3(\bmod 4),\left(\frac{p_{1}}{q_{1}}\right)=\left(\frac{p_{2}}{q_{1}}\right)=-1$,
when $\frac{n}{2} \not \equiv u(\bmod 8)$. In the first case $\left(\frac{2}{p_{1}}\right)=\left(\frac{-2}{p_{1}}\right)=-1$ and $\left(\frac{2 q_{1}}{p_{1}}\right)=$ $\left(\frac{-2 q_{1}}{p_{1}}\right)=-1$, hence $C_{ \pm 2}^{\prime}\left(\mathbb{Q}_{p_{1}}\right)=C_{ \pm 2 q_{1}}^{\prime}\left(\mathbb{Q}_{p_{1}}\right)=\emptyset$, which means that $S_{n}^{\phi^{\prime}}=\langle-1\rangle$. In the second case, since $\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{-q_{1}}{p_{1}}\right)=-1$, then $S_{n}^{\phi^{\prime}}=\langle-1\rangle$ too. In the third case $\left(\frac{2}{p_{1}}\right)=\left(\frac{-2}{p_{1}}\right)=1$, consequently $\left(\frac{2 q_{1}}{p_{1}}\right)=\left(\frac{-2 q_{1}}{p_{1}}\right)=-1$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$. If $\frac{n}{2} \equiv u(\bmod 8)$ and $q_{1} \equiv 3(\bmod 8)$, then $C_{ \pm q_{1}}^{\prime}\left(\mathbb{Q}_{2}\right)=$ $C_{ \pm 2 q_{1}}^{\prime}\left(\mathbb{Q}_{2}\right)=\emptyset$ and $S_{n}^{\phi^{\prime}} \subset\{-1,2\rangle$. Because in the case $\frac{n}{2} \equiv u(\bmod 8)$ we assume, that $p_{1} \equiv p_{2} \equiv 5(\bmod 8)$, then $\left(\frac{2}{p_{1}}\right)=\left(\frac{-2}{p_{1}}\right)=-1$, so $C_{ \pm 2}^{\prime}\left(\mathbb{Q}_{p_{1}}\right)=\emptyset$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.
Coroliary 7. Under the assumptions from Proposition 5 or Proposition 6, we have $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=0$.

For a positive integer k, let A_{k}^{2} denote the set of even squarefree (positive if k is even and negative if k is odd) integers such that $\operatorname{gcd}(n, u)=\operatorname{gcd}\left(n, u^{2}+\right.$ 64) $=1$, and with exactly k prime factors.

Corollary 8. The set $\left\{n \in A_{k}^{2}: \operatorname{rank}\left(E_{n}^{u}(\mathbb{Q})\right)=0\right\}$ has positive density in A_{k}^{2} for all k. In particular, for infinitely many even squarefree integers the quadratic twists of the curve $y^{2}=x^{3}+u x^{2}-16 x\left(u^{2}+64\right.$ is a prime or a product of two primes) have rank 0 .

Proof. Similar to the proof of Propositions 2 and 4.

5. Generalizations

In this section we consider more general curves $E^{u}: y^{2}=x^{3}+u x^{2}-16 x$, with $u^{2}+64=p_{1} \ldots p_{l}$, where l is a positive integer and p_{i} are primes. We focus on rank zero twists E_{n}^{u} only.

Proposition 7. Suppose that $u^{2}+64=p_{1} \ldots p_{l}, l \geq 2$ and $n= \pm q_{1} \ldots q_{k} \equiv 1(\bmod 4), k \geq l-1$, where $($ for all $1 \leq i \leq k)$ primes $q_{i} \equiv 3(\bmod 4)$ and $q_{i} \nmid u$. Let $\forall_{1 \leq i \leq k}\left(\frac{p_{1}}{q_{i}}\right)=-1, \exists_{1 \leq i_{1} \leq k}\left(\frac{p_{2}}{q_{i_{1}}}\right)=$ $-1, \forall \forall_{i \neq i_{1}, 1 \leq i \leq k}\left(\frac{p_{2}}{q_{i}}\right)=1, \exists_{i_{2} \neq i_{1}, 1 \leq i_{2} \leq k}\left(\frac{p 3}{q_{i_{2}}}\right)=-1, \forall_{i \neq i_{2}, 1 \leq i \leq k}\left(\frac{p_{3}}{q_{i}}\right)=$ $1, \ldots, \exists_{i_{l-1} \neq i_{1}, i_{2}, \ldots, i_{l-2}, i \leq i_{l-1} \leq k}\left(\frac{p_{l}}{q_{i_{-1}}}\right)=-1, \forall \forall_{i \neq i_{l-1}, 1 \leq i \leq k}\left(\frac{p_{l}}{q_{i}}\right)=1$. Then $S_{n}^{\phi}=\left\langle p_{1} \ldots p_{l}\right\rangle, S_{n}^{\phi^{\prime}}=\langle-1\rangle$.

Proof. The table below consists of the values of Legendre's symbol $\left(\frac{p_{j}}{q_{i}}\right)$, $1 \leq i \leq k, 1 \leq j \leq l$, under assumption, which may be taken without loss of generality, that $i_{1}=1, i_{2}=2, \ldots, i_{l-1}=l-1$.

	p_{1}	p_{2}	p_{3}	\ldots	p_{l-1}	p_{l}
q_{1}	-1	-1	1	\cdots	1	1
q_{2}	-1	1	-1	\cdots	1	1
q_{3}	-1	1	1	\ldots	1	1
\vdots	\vdots	\vdots	\vdots		\vdots	\vdots
q_{l-2}	-1	1	1	\ldots	-1	1
q_{l-1}	-1	1	1	\ldots	1	-1
q_{l}	-1	1	1	\ldots	1	1
\vdots	\vdots	\vdots	\vdots		\vdots	\vdots
q_{k}	-1	1	1	\ldots	1	1

In order to calculate the Selmer groups we apply Lemma 1. The starting point is the condition

$$
S_{n}^{\phi}, S_{n}^{\phi^{\prime}} \subset\left\langle-1, p_{1}, p_{2}, \ldots, p_{l}, q_{1}, q_{2}, \ldots, q_{k}\right\rangle
$$

From the equivalence 2^{\prime} from Lemma 1 , we first get $S_{n}^{\phi^{\prime}} \subset\left\langle-1, q_{1}\right.$, $\left.q_{2}, \ldots, q_{k}\right\rangle$. Note (using the same equivalence over $\mathbb{Q}_{p_{1}}$), that no product of odd number of factors q_{i}, either multiplied by -1 or not, belongs to $S_{n}^{\phi^{\prime}}$. Next, over $\mathbb{Q}_{p_{j}}$, where $2 \leq j \leq l$, no product of even number of factors q_{i}, including q_{j-1}, either multiplied by -1 or not, belongs to $S_{n}^{\phi^{\prime}}$. The remaining products of numbers q_{i} (that is the products where q_{i}, $i \in\{1, \ldots, l-1\}$ do not appear) are excluded from the group $S_{n}^{\phi^{\prime}}$, applying $\left(\frac{u^{2}+64}{q_{i}}\right)=-1 \Longrightarrow\left(C_{d}^{\prime}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow q_{i} \mid d\right)$. So are the same products multiplied by -1 . Finally, we get $S_{n}^{\phi^{\prime}}=\langle-1\rangle$.

Consider now the group S_{n}^{ϕ}. The condition $C_{d}(\mathbb{R}) \neq \emptyset \Longrightarrow d>0$ leads to the inclusion $S_{n}^{\phi} \subset\left\langle\dot{p}_{1}, p_{2}, \ldots, p_{l}, q_{1}, q_{2}, \ldots, q_{k}\right\rangle$. Next, from the implication $\left(\frac{u^{2}+64}{q_{i}}\right)=-1 \Longrightarrow\left(C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow q_{i} \mid d\right)$, taking $i=l, l+1, \ldots, k$, we conclude that $S_{n}^{\phi} \subset\left\langle p_{1}, p_{2}, \ldots, p_{l}, q_{1}, q_{2}, \ldots, q_{l-1}\right\rangle$. For $i=1, \cdots, l-1$ we get $\left(\frac{u^{2}+64}{q_{i}}\right)=1$, so $C_{d}\left(\mathbb{Q}_{q_{i}}\right)=\emptyset \Longleftrightarrow\left(\frac{d}{q_{i}}\right) \neq 1$. Obviously, no product M of primes $q_{i}(1 \leq i \leq l-1)$ belongs to S_{n}^{ϕ}, as it is enough to observe that $\left(\frac{M}{q_{i_{0}}}\right)=0$ if $q_{i_{0}} \mid M$, which gives $C_{M}\left(\mathbb{Q}_{i_{0}}\right)=\emptyset$. The table also shows that no product N of numbers $p_{j}, 1 \leq j \leq l$, such that $p_{1} p_{2} \nmid N$ and $\left(p_{1} \mid N\right.$ or $\left.p_{2} \mid N\right)$, belongs to S_{n}^{ϕ} (in particular $p_{1}, p_{2} \notin S_{n}^{\phi}$), as $\left(\frac{N}{q_{1}}\right)=-1$. In turn, the products of numbers p_{j}, such that $p_{1} p_{3} \nmid N$
and ($p_{1} \mid N$ or $p_{3} \mid N$) (in particular, such that $p_{1} p_{2} \mid N$ and $p_{3} \nmid N$) do not belong to S_{n}^{ϕ}, as $\left(\frac{N}{q_{2}}\right)=-1$, etc., finally, S_{n}^{ϕ} does not contain such products N of numbers $p_{j}, 1 \leq j \leq l$, that $p_{1} p_{l} \nmid N$ and $\left(p_{1} \mid N\right.$ or $\left.p_{l} \mid N\right)$, as $\left(\frac{N}{q_{l-1}}\right)=-1$. This way we obtain $S_{n}^{\phi} \subset\left\langle p_{1} p_{2} \ldots p_{l}\right\rangle$.

Corollary 9. Under the assumptions from Proposition 7, we have $\operatorname{rank}\left(E_{n}^{u} / \mathbb{Q}\right)=0$.

Now we show that in some cases the assumption $k \geq l-1$ in the Proposition 7 is necessary but in some cases is not.

Proposition 8. Let $u^{2}+64=p_{1} p_{2} p_{3}$ where $p_{1} \equiv p_{2} \equiv p_{3} \equiv 1(\bmod 8)$. Let $n= \pm q$ or $\pm 2 q$, where q is an odd prime. Then $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 1$.

Proof. By Lemma 1, we have $S_{n}^{\phi} \subset\left\langle 2, p_{1}, p_{2}, p_{3}, q\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset\langle-1,2, q\rangle$. Moreover, $C_{d}(\mathbb{R}) \neq \emptyset \Leftrightarrow d>0$ and $C_{d}^{\prime}(\mathbb{R}) \neq \emptyset$ for all d. We have to consider many (not necessary disjoint) cases according to residue classes of q modulo 8, values of Legendre symbol $\left(\frac{q}{p_{i}}\right)$, and residue classes of n modulo 4.

Case 1. $n \equiv 1(\bmod 4)$. Then the reduction of E_{n}^{u} is good at 2 , hence $S_{n}^{\phi} \subset$ $\left\langle p_{1}, p_{2}, p_{3}, q\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset\langle-1, q\rangle$. By Lemma $1, C_{d}\left(\mathbb{Q}_{p_{i}}\right) \neq \emptyset$ for all d and $i=1,2,3$. Again by Lemma $1, C_{-1}^{\prime}\left(\mathbb{Q}_{p_{i}}\right) \neq \emptyset(i=1,2,3)$, and if $\left(\frac{q}{p_{i}}\right)=1$ for $i=1,2,3$ then $C_{d}^{\prime}\left(\mathbb{Q}_{p_{i}}\right) \neq \emptyset$ for $d= \pm q$ but if $\left(\frac{q}{p_{i}}\right)=-1$ for some $i \in\{1,2,3\}$ then $\pm q \notin S_{n}^{\phi^{\prime}}$. Now it remains to consider C_{d} and C_{d}^{\prime} over \mathbb{Q}_{q}.
Case 1.1. $q \equiv 3(\bmod 4)$. If $\left(\frac{p_{1} p_{2} p_{3}}{q}\right)=-1$ then $C_{d}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ and $C_{d}^{\prime}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ for all d not dividing by q. Thus $\left\langle p_{1}, p_{2}, p_{3}\right\rangle \subset S_{n}^{\phi}$ and $\langle-1\rangle \subset S_{n}^{\phi^{\prime}}$, and consequently $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 2$. If $\left(\frac{p_{1} p_{2} p_{3}}{q}\right)=1$ then $C_{d}^{\prime}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ for all d and $C_{d}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ if $\left(\frac{d}{q}\right)=1$. Therefore $\left\langle p_{1} p_{2} p_{3}, p_{i}\right\rangle \subset S_{n}^{\phi}$ for some i, and $\langle-1\rangle \subset S_{n}^{\phi^{\prime}}$. Hence $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 1$.

Case 1.2. $q \equiv 1(\bmod 4)$. If $\left(\frac{p_{1} p_{2} p_{3}}{q}\right)=-1$ then by Lemma $1, C_{d}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ for all d and $C_{d}^{\prime}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ if and only if $\left(\frac{d}{q}\right)=1$. Thus $\left\langle p_{1}, p_{2}, p_{3}, q\right\rangle \subset S_{n}^{\phi}$ and $\langle-1\rangle \subset S_{n}^{\phi^{\prime}}$, so $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 3$. Assume that $\left(\frac{p_{1} p_{2} p_{3}}{q}\right)=1$. Then $C_{-1}^{\prime}\left(\mathbb{Q}_{q}\right) \neq \emptyset$, hence $(-1\rangle \subset S_{n}^{\phi^{\prime}}$. For at least one $i \in\{1,2,3\}$ we have $\left(\frac{p_{i}}{q}\right)=1$. Thus, by Lemma 1 , we get $\left\langle p_{i}, p_{1} p_{2} p_{3}\right\rangle \subset S_{n}^{\phi}$, and $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 1$.

Case 2. $n \equiv 3(\bmod 4)$. Then E_{n}^{u} has bad reduction at 2 . Besides $\mathbb{Q}_{p_{i}}$ and \mathbb{Q}_{q} we have also to consider C_{d} and C_{d}^{\prime} over \mathbb{Q}_{2}. Considerations over $\mathbb{Q}_{p_{i}}$ and \mathbb{Q}_{q} are similar (almost the same) to that above. Thus we only regard the field \mathbb{Q}_{2}.

Note that $u n \equiv 3(\bmod 4)$. Therefore, by Lemma 1, we obtain, $C_{d}^{\prime}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ for all d and $C_{d}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ if and only if $d \equiv 1(\bmod 8)$. Consequently, the Selmer groups S_{n}^{ϕ} and $S_{n}^{\phi^{\prime}}$ in this case are greater than or equal to the groups S_{n}^{ϕ} and $S_{n}^{\phi^{\prime}}$ in case 1 , and $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 1$.

Case 3. $n \equiv 2(\bmod 4)$. Then E_{n}^{u} has bad reduction at 2 , too. Now, existence of \mathbb{Q}_{2}-rational point on C_{d} and C_{d}^{\prime} depends on residue class un(mod 16) (see Lemma 1) but in all cases $C_{d}\left(\mathbb{Q}_{2}\right) \neq \emptyset$ for $d \in\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ and $C_{-1}^{\prime}\left(\mathbb{Q}_{2}\right) \neq \emptyset$. Thus, the group S_{n}^{ϕ} in case 3 is greater than or equal to S_{n}^{ϕ} in case 1 , and $S_{n}^{\phi^{\prime}} \supset\langle-1\rangle$. Consequently $r s\left(E_{n}^{u} / \mathbb{Q}\right) \geq 1$ and the assertion follows.

Proposition'9. Let $u^{2}+64=p_{1} p_{2} p_{3}$, where $p_{1} \equiv 1(\bmod 8)$ and $p_{2} \equiv$ $p_{3} \equiv 5(\bmod 8)$. Let $n=q$ where $q \equiv 3(\bmod 4)$ is a prime such that $\left(\frac{q}{p_{1}}\right)=$ $\left(\frac{q}{p_{2}}\right)=-\left(\frac{q}{p_{3}}\right)=-1$, and $q \nmid u$. Then $S_{n}^{\phi}=\left\langle p_{1} p_{2} p_{3}\right\rangle$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$. In particular, $r s\left(E_{n}^{u} / \mathbb{Q}\right)=0$.

Proof. Since $n \equiv 3(\bmod 4)$, the curve E_{n}^{u} has bad reduction at 2 , and so $S_{n}^{\phi} \subset$ $\left\langle 2, p_{1}, p_{2}, p_{3}, q\right\rangle$ and $S_{n}^{\phi^{\prime}} \subset\langle-1,2, q\rangle$. Moreover, $\left(\frac{ \pm 2}{p_{2}}\right)=-1,\left(\frac{ \pm 2 q}{p_{3}}\right)=-1$ and $\left(\frac{ \pm q}{p_{2}}\right)=-1$, hence by Lemma $1, S_{n}^{\phi^{\prime}} \subset\langle-1\rangle$ and $C_{-1}^{\prime}\left(\mathbb{Q}_{p_{i}}\right) \neq \emptyset$ for $i=1,2,3$. Since $u n \equiv 3(\bmod 4)$, by Lemma 1, we obtain $C_{d}^{\prime}\left(\mathbb{Q}_{2}\right) \neq \emptyset$ and $C_{d}\left(\mathbb{Q}_{2}\right) \neq \emptyset$ if and only if $d \equiv 1(\bmod 8)$. Thus $S_{n}^{\phi} \subset\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ and $p_{2}, p_{3}, p_{1} p_{2}, p_{1} p_{3} \notin S_{n}^{\phi}$. Now it remains to consider C_{d} and C_{d}^{\prime} over \mathbb{Q}_{q}. Since $\left(\frac{p_{1} p_{2} p_{3}}{q}\right)=1$, we get $C_{d}^{\prime}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ for all d and $C_{d}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ if and only if $\left(\frac{d}{q}\right)=1$. Thus $C_{d}\left(\mathbb{Q}_{q}\right)=\emptyset$ for $d=p_{1}, p_{2} p_{3}$ and $C_{d}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ for $d=p_{1} p_{2} p_{3}$. Hence $S_{n}^{\phi}=\left\langle p_{1} p_{2} p_{3}\right\rangle$ and $S_{n}^{\phi^{\prime}}=\langle-1\rangle$, and we are done.

Acknowledgement

We would like to thank Andrzej Dąbrowski for suggesting the problem and helpful conversations.

References

[1] I. Connell, Calculating root numbers of elliptic curves over \mathbb{Q}, Manuscripta Math., 82 (1994) 93-104.
[2] A. Dabbrowski, On the proportion of rank 0 twists of elliptic curves, C. R. Math. Acad. Sci., Paris 346 (2008) no. 9-10, 483-486.
[3] A. Dąbrowski and M. Wieczorek, On the equation $y^{2}=x\left(x-2^{m}\right)\left(x+q-2^{m}\right)$, J. Number Theory, 124 (2007), 364-379.
[4] B. Faulkner, Estimates related to the arithmetic of elliptic curves, Ph.D. Dissertation, Clemson Univerity (2007).
[5] B. Faulkner and K. James, A graphical approach to computing Selmer groups of congruent number curves, Ramanujan J., 14 (2007) 107-129.
[6] K. Feng, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith., 75 (1996) 71-83.
[7] K. Feng and M. Xiong, On elliptic curves $y^{2}=x^{3}-n^{2} x$ with rank zero, J. Number Theory, 109 (2004) 1-26.
[8] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, Springer Lecture Notes, Springer, Berlin, 751 (1979) 108-118.
[9] T. Goto, A study on the Selmer groups of the elliptic curves with a rational 2-torsion, Doctoral Thesis, Kyushu University (2002).
[10] T. Goto, Odd graphs and Selmer groups of certain elliptic curves, Algebra and Computation, 6 (2005).
[11] E. Halberstadt, Signes locaux des courbes elliptiques en 2 et 3, C. R. Acad. Sci., Paris 326, (1998) 1047-1052.
[12] H. Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math., 47 (1978), 171-188.
[13] T. Jedrzejak, On twists of the Fermat cubic $x^{3}+y^{3}=2$, Int. J. Number Theory, 10, No. 1 (2014), 55-72.
[14] F. Li and D. Qiu, A graphical method to calculate Selmer groups of several families of non-CM elliptic curves, arXiv:0912.5072v1 (preprint 2009).
[15] O. Neumann, Elliptische Kurven mit vorgeschriebenen Reduktionsverhalten. I, Math. Nachr. 49 (1971) 107-123.
[16] B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc., 10 (1975) 367-378.
[17] J. Silverman, The Arthmetic of elliptic curves, Grad. Texts in Math., Springer, 106 (1986).
[18] G. Yu, On the quadratic twists of a family of elliptic curves, Mathematika, 52 (2005), no. 1-2, 139-154.

