
J. Ramanujan Math. Soc. 29, No.I (2014) 75-92 

Partitions of graphs and Selmer groups of elliptic 
curves of Neumann-Setzer type 

Tomasz J~drzejak1 and Malgorzata Wieczorek2 

University of Szczecin, Institute of Mathematics, Wielkopolska 15, 
70-451 Szczecin, Poland 
e-mail: tjedrzejak@gmail.com; wieczorek@wmfuniv.szczecin.pl 

Communicated by: R. Sujatha 

Received: November 16, 2013 

Abstract. We consider the elliptic curves Eu : y2 = x 3 + ux2 - 16x 
and their quadratic twists E~ by a squarefree integer n, where u2 + 64 = 
Pl ... pz, (p; are primes). When l :::, 2, n = l(mod 4) and all prime 
divisors of n are congruent to 3 modulo 4 we give a complete description 
of sizes of Selmer groups of E~ in terms of number of even partitions of 
some graphs. If n is even or l > 2, we give some conditions for twists of 
rank zero. We deduce also that E~ has rank zero for a positive proportion 
of squarefree integers n with a fixed number of prime divisors. 
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1. Introduction 

Let p be a prime f. 2, 3, 17. Then there is an elliptic curve of conductor 
p defined over (Q with a rational 2-division point if and only if p = u2 + 64 
for some integer u. If. p is of the form u2 + 64, there are, up to isomorphism, 
just two such curves (connected by a 2-isogeny): y 2 = x 3 + ux2 - 16x and 
y 2 = x~ -.2ux2 +-PX, where the sign of u is chosen so that u =-l(mod 4). -
There are the so-called Neumann-Setzer elliptic cur11es, studied in [15], [16]. 

D<ibrowski [2] studied quadratic twists by primes of generalized 
Neumann-Setzer curves Eu : y 2 = x 3 + ux2 - 16x, where u2 + 64 is a 
prime or a product of two primes. By a famous result of lwaniec [12], there 
are infinitely many integers u such that u2 + 64 is the product of at most two 
primes. 
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In this article we study quadratic twists E~ of Eu by square-free integers n. 
We extend the ideas of Feng and others ([4], [5], [6], [7]) to calculate the 
Selmer groups of E~ using graph theory. They consider the elliptic curves 
y2 = x 3 - n2x as_sociated with congruent numbers and are especially 
interested in rank zero curves (i.e., when n is a non-congruent number). 
Goto [10] consider the curves y2 = x (x + 3n )(x - n) and uses similar method 
for description of non n /3-congruent numbers. In [9] he also considers 
elliptic curves connected with other 0-congruent numbers. Li and Qiu [14] 
used graph theory to calculate the Selmer groups of quadratic twists of 
E.p,cq : y 2 = x(x + t:p)(x + t:q) where t: = ±1 and p, q are odd primes 
satisfying q - p = 2m (m ~ 1). Note that in [3] the second author considers 
quadratic twists of the family y2 = x (x + p) (x - 2m) without using graphs. 
It seems that the articles cited above are the only ones where the authors use 
graph theory to calculate Selmer groups. 

The case when the quadratic twists of some elliptic curve have rank zero 
is particularly interesting. This is because it is believed [8] that a positive 
proportion of quadratic twists have rank zero. There have been numerous 
papers treating this problem. Most of them focus on the nonvanishing of 
the £-functions but there is also another approach via the descent method. 
For example, Yu [18] ·proved that a positive proportion of quadratic twists 
of elliptic curves with 2-torsion (Z/2Z)2 have rank 0. D~browski [2] proved 
that for any positive integer k there are k pairwise non-isogenous curves 

E1, ... , Ek such that rank (E;P\Q)) = 0 (1 ~ i ~ k) for a positive propor­
tion of primes p. The first author showed in [13] that quadratic twists of the 
Fermat elliptic curve E2 : x 3 + y3 = 2 (note that E2[2](Q) ~ Z/2Z) have 
rank zero for a positive proportion of squarefree integers with a fixed number 
of prime divi~ors. He also investigated rank zero cubic twists of this curve 
and proved a ~imilar result. 

In this paper we give a complete description of sizes of Selmer groups 
of E~ in terms of numbers of even partitions of some graphs when 
u2 + 64 = p or PIP2, and n = ± q1 ... qk = l(mod 4) with all primes 
qi = 3(mod 4) (Theorems 1 and 2). We also give conditions (in terms of the 
values of Legende's symbols) to rank (E~ (Q)) equals O or (conjecturally) 1 
(Corollaries l, 3, 4 and 6). As a consequence, we deduce that E~ has rank 
zero for a positive proportion of squarefree integers n with a fixed num­
ber of primy divisors (Propositions 2 and 4). When n is even, we (avoid 
using graph~) only focus on rank zero twists and show similar density result 
(Propositions 5 and 6, and Corollary 8). Similarly, when u2 + 64 = PI ... Pt 
with l > 2, we will give conditions for rank zero twists without using graph 
theory (Proposition 7). 
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2. Preliminaries 

2.1 2-descent method 
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The 2-descent method is described in Silverman book [17, Chap. 10, 
Section 4]. In this paper we consider a special case for the quadratic twists 
E~ of Eu. Note that E~ : y 2 = x 3 + unx2 - l6n2x where u2 + 64 = PI ... Pt 
and n = ±q1 ... qk or n = ±2 · q1 ... qk (n squarefree integer) and 
u = l(mod 4). We will assume furthermore that gcd(u, n) = 1 and 
gcd(u2 + 64, n) = 1. The curve E~ has bad reduction at primes dividing 
n(u2 + 64). Moreover, the reduction at 2 is good if and only if n = l (mod 4). 
Let S denote the finite set consisting of oo and primes of bad reduction of E~, 
and let M denote the subgroup of(Q)* /({Q)*)2 generated by S\{oo} and -1, i.e. 

where€= 0 for n = l(mod 4) and€= 1 for n = 2, 3(mod 4). 
There exists an isogeny </J of degree 2 from E~ to E~u : y2 = x 3 - 2unx2 + 

n 2 (u 2 + 64)x. Let st and st' denote the Selmer groups corresponding to <p 
and its dual, respectively. Then we can identify the Selmer groups st and st' 
with some subgroups of M as follows: 

where 

We define 

St = {d E M : Cd((Q)v) =/= 0 for all v E S}, 

Cd : dy2 = d 2 
- 2dunx2 + n2 (u 2 + 64)x4, 

Cd : dy2 = d 2 + 4dunx2 
- (I6n) 2x 4 

. . 

rs(E~/(Q)) := dimIF2 st+ dimIF2 sf' - 2. 

The number rs(E~ /(Q)) we call the Selmer rank of E~ /(Q). Clearly, 
rank (E~ /{Q)) :S rs(E~ /{Q)). 

Lemma 1. Under the above assumptions we have 

1) Cd(IR) =/= 0 ~ d > 0; ' 

1') Cd(IR) =/= 0; 

2) Cd ((Q)p j) =/= 0; 

2') Cd((Q)pj) = 0 {=} (ff) =/= l; 
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3) (qi= 3(mod 4) and (u2
;

64 ) = -1) ===} (Cd(Qq;) = 0 {=:::> qi Id); 

3') (qi = 3(mod 4) and (u
2

;
64

) = -1) ===} (C~(Qq;) = 0 {=:::> qi Id); 

4) (qi= 3(mod 4) and (u
2

;
64 ) = 1) ===} (Cd(Qq;) = 0{=:::> (f) =J-1); 

4') (qi = 3(mod 4) and (u
2

;
64

) = 1) ===} C~(Qq;) =J. 0; 

5) (qi= l(mod 4) and (u2
;

64 ) = -1) ===} Cd(Qq;) =J. 0; 

5') (qi = l(mod 4) and (u
2

;
64

) = -1) ===} ( C~(Qq;) = 0 {=:::> (f) #= 1); 

6) (qi= l(mod 4) and (u2
;

64 ) = 1 and (nfq;(u~S✓-1)) = 1) 

====> ( Cd(Qq;) = 0 {=:::> ( (f) =J. 1 and (qi f d or (d~t) =J. 1))); 

6') (qi = l(mod 4) and (u2
; 64 ) = 1 and (nfq;(u~S✓-1)) = 1) 

===} (C~(Qq;) = 0 {=:::> ((f) =J. 1 and (qi f d or (d~t) =J. 1))); 
7) (qi= l(mod 4) and (u2

; 64 ) = 1 and (nfq;(u~S✓-1)) = -1) 

===} (Cd(QqJ=0{=:::> ((f) =J-1 and (qi f d or(~) =J. -1))); 

7') (qi= l(mod 4) and (u2
; 64 ) = 1 and (nfq;(u~S✓-1)) = -1) 

===} ( C~(Qq) = 0 {=:::> ( (f) =J-1 and (qi f d or(~) =J.-1))); 

8) nu= l(mod 4) ===} (Cd(Q2) = 0 {=:::> d ¢= 5(mod 8)); 

8') nu = l(mod 4) ===} (C~(Q2) = 0 {=:::> d ¢= 5, 7(mod 8)); 

9) nu = 3(mod 4) ===} Cd(Q2) .=I- 0; 

9') nu= 3(mod 4) ===} (Cd(Q2) = 0 {=:::> d ¢= l(mod 8)); 

10) nu= 2(mod 16) ===} (Cd(Q2) = 0 

{=:::> (2 f d or~ ¢= l(mod 8)) and d ¢= l(mod 8)); 

10') nu= 2(mod 16) ====> (C~(Q2) = 0 

{=:::> (2 f d or~ ¢= 1, 7(mod 8)) and d ¢= 1, 7(mod 8)); 

11) nu= lO(mod 16) ==> (cd(Q2) = 0 

{=:::> (2 f d or ~ ¢= 5(mod 8)) and d ¢= 1 (mod 8)); 

11') nu= lO(mod 16) ==> (C~(Q2) = 0 

{=:::> (2 f d or~¢= 3, 5(mod 8)) and d ¢= 1, 7(mod 8)); 

12) nu= 6(mod 8) ===} (Cd(Q2) = 0 {=:::> d ¢= l(mod 8)); 

12') nu= 6(mod 8) ===} C~(Q2) =J. 0. 

Proof Follows from Goto thesis (9, Prop. 7.1, 7.3, 7.5, 7.7.]. D 
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2.2 Graphs and their partitions 

This subsection contains necessary terminology of graph theory. Let G be 
a simple nondirected graph with vertex set V ( G) = { v 1, ... , v1 } and edge 
set E(G). 

Definition 1. A partition of a vertex set V is a pair {V1, V2} such that 
V1 U V2 = V and V1 n V2 = 0. The partition {0, V} is called trivial. 

Definition 2. For v E Vi we denote by #{v ➔ V2} the number of vertices 
in V1 adjacent to v. A partition {Vi, V2} of V is called odd, if there exists 
v E Vi such that#{v ➔ V2} is odd or there exists v E V2 such that#{v ➔ Vi} 
is odd. Otherwise, a partition {V1, V2} is called even. 

Note that trivial partitions are even. 

Definition 3. We say that a graph G is odd if any nontrivial partition is odd, 
otherwise, we call G an even graph. We say that a graph G is semi-odd if 
there exists only one nontrivial even partition. 

3. Main results and their proofs 

In this section we assume that u2 + 64 = p or PIP2 with u = l(mod 4). 
We will consider both cases separately. We will study the quadratic twists of 
Eu : y 2 = x 3 + ux2 - 16x by integers n = l(mod 4). We will give a 
full description of the size of the corresponding Selmer groups in terms of 
numbers of even parititions of some graphs. 

3.1 The case u 2 + 64 = p 

Suppose that u 2 + 64 = p and n = ±q1 ... qk = I (mod 4), where, for all 
1 ~ i ~ k, primes qi = 3(mod 4) and gcd(% up) = I. Note that necessarily 
p = l(mod 8). 

I 
Definition 4. We define the nondirected graph G1 (n) as follows. The vertex 
set V (G1 (n)) := {p, q1, ... , qk} -~_n!1,_!__h_§_ §;{j,g(!_ seLE(-G1.(n)}--,= -{pqi-:-- -
(p_) - 1- -·- -- -1---- - -k}-----~ ~-

q; == ·;z = , ... , . -

Proposition 1. Under the above ~ssumptions we have 

. ¢ ~ 1) Sn = (p), (-1) C Sn, 
¢' ii) if {Vi, V2} is a nontrivial even partition ofG1(n), then nqEVjq E Sn, 

where p rJ_ V1 ( j = I or 2), 
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iii) if% .. ·% E. sf (1 ::: . s ::: k), then {{qjP ... , q;s}, V(G1 (n))\ 
{ qi 1' .. : , q is}} is nontrivial even partition, 

iv) 1st' I = 2x number of even partitions of the graph G1 (n). 

Proof 

. tp t/J' 1) ByLemmal,wehaveS11 C (p,qi, ... ,qk)andS11 C (-l;qJ, ... ,qk) 
(note that in this case E~ has good reduction at 2). Moreover, if q; 

divides d then Cd (Qq,-) = 0 (i = 1, ... , k ). Hence st c (p). Again, 
by Lemma 1, we get Cd((Qp) -f. 0, Cd~) f. 0 and f:d((Qq;) -f. 0 

for 1 . ::: i ::: k. Therefore st = (p). Also by Lemma 1, we obtain 
C~1 (K) -f. 0 for K = Q0 where v = p, q1, ... , qk and oo. 

Hence -1 Est'. · 
ii) Let {V1, V2} be a nontrivial even partition· of Gi (n). Without loss 

of generality we may ;issume that V1 = {qi, ... , qs} and V2 = 
{p; qs+i, .. . , qk} for some 1 ::: s ::: k. Let r denote the product IlqeVi q. 

We will show that ( ~) = 1 for all_ q E Vi. Suppose, on the. con­

trary, that (without loss of generality) ( .l!..) = -1. Then the number of qi . 
edges #{qi ➔ V2} equals 1, which contradicts the parity of partition 
{Vi, V2}. Hence by Lemma 1, c;(Q0 ) -f. 0 for v = p, q1, ... , qk and oo. 

Consequently r E st'. 
', iii) Without loss· of g~nerality we assume .that r := q1 ... qs E sf. 

Let Vi := {q1, ... , qs} and V2 := {p, qs+1, ... , qk}- We explain, 
that {V1, V2} is even partition of Gi (n). Let q _ E V1. Then we have 
#{q ➔ V2} = #{q ➔ p} = 0 if(~) = 1 and #{q ➔ V2} = #{q ➔ 
p} = 1 if(~) = -1. But if (i) =·-1 then by Lemma 1, c;((Qq) = 0 
because q I r, contrary to the assumption. Hence the number #{q ➔ V2} 
is even. Now, let v be any element of V2. If v f. p then of course 
#{ v ➔- V1} = 0. We have shown above that ( i) = 1 for all q E Vi, 
hence also #{p ➔ V1} = 0, and the assertion iii) follows. 

iv) By parts ii) and iii) there is one-to-one correspondence between even 

partitions of G 1 (n) and positive-elements in sf (note that trivial partition 

corresponds to 1 E st'). Since -1 E st', we have g E st' if and only 

if - g E st'. And we are done. 
□ 

Theorem 1. Under the above assumptinns; ys(E~/Q) equals the number 
of even partitions of the graph G1 (n). In particular, rank (E~ /(Q) = 
rs(E~/(Q) = 0 if and only if G1 (n) is odd. Moreover, rs(E~ /(Q) is maximal 
( equals k) if and only if E(G1 (n)) = 0. 
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Proof Let 2e denote the number of even partitions of the graph G1 (n) (this 
number is indeed a power of 2, see for example [7, p. 5, Lemma 2.2]). 

By Proposition 1, we get 

Hence rs(E~/Q) = 0 if and only if 2e = 1, i.e. by definition, that G1 (n) is 
odd. Similarly, E(G1 (n)) = 0 if and only if any partition of G1 (n) is even, 
that is 2e = 2#V(Gi(n))-l = 2k, and the assertion follows. □ 

Corollary 1. Assume that n = ±q1 ... qk = l(mod 4), where primes 
qi= 3(mod 4), (~) = -1 and qd ufor all l Si ::: k. Then rank (E~/Q) =0. 

Proof It is enough to show that the graph G1 (n) is odd. Suppose, by con­
tradiction, that { V1, V2} is even nontrivial partition of it. Let (without loss of 
generality) p E V2 and let q be some element of V1. Then #{q ➔ V2} = 
#{ q ➔ p} is even, which contradicts to (:) = -1. Using Theorem 1 yields 
the assertion. D 

Corollary 2. Assume that n = ±q1 ... qk = l (mod 4), where primes 
qi = 3(mod 4), q; f u for all l ::: i S k, and 3;0 (q;) = 1, and 

V;,6;0 (~) = -1. Then rs(E~/Q) = l. 

Proof We will show that the graph G1 (n) is semi-odd, i.e. it has only 
one nontrivial even partition. Assume without loss of generality that 
io = l. First, we show that the partition {V1, V2}, where V1 = {qi} and 
V2 = {p, q2, ... , qk}, is even. Indeed, #{q1 ➔ V2} = #{q1 ➔ p} = 0 
because ( ~) = 1. Similarly, for any v E V2 we have #{ v ➔ Vi} = #{ v ➔ 
q1} = 0. Now, we show that there are no other nontrivial even partition 
of G1 (n ). Suppose that the partition ·{ V{, VD -::/=- {Vi, V2} is nontrivial. With­
out loss of generality let q1 E V{. We need to consider two cases: p E V{ or 
p E V2. In the first case, for q E V2 we have #{q ➔ V{} = #{q ➔ p} = 1 
because(}) = -1. Hence {V{, V2} is odd. In the second case, for q E V{\{qi} 

we get #{q ➔ V2} = #{q ➔ p·} = 1. Thus again {V{,"V;U is odd. 
Now, by Theorem 1, we obtain 2rs(E~/(Q) = 2, and we are done. □ 

Lemma 2. Under the assumptions from Corollary 2, the global root number 
W ( E~ )· of the-L-function associated·to E~ -rs eqtial-ur-..:_-1 .-- ~-· · - -~ · · --- ·- ·-

Proof It is well known (for example see [1]) that for any elliptic curve 
E over Q its global root number W(E) is equal to ITz<oo Wz(E) where the 
product is taken over all primes land oo, and Wz := Wz(E) = ±1 is the local 
root number. Moreover, W 00 = - l, and if E has a good reduction at l then 
Wz (E) = 1. If E has bad reduction at l then Wz depends on the reduction 
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type (see· [I]). In our cas' we have _W(E~) = W(E~u) = ~ WpfIJ<i~k Wq;; 
The curve E~u has potential · good reduction at qi (i.e. additive reduction 
and ordq;(}E~u) ·::: 0), Hence Wq; = (~n == -1 if qi > 3. If 31n then 

from [11, Table 2], we get W3 = -1. Hence always ITi<i<k W~; = (-ll. 

At the prime p = u2 + 64, the curve E~u has multipli;ative reduction. 
We must decide whether this reduction is split or nonsplit. To this aim we 
consider ap = p + 1 -.#E~u (IF p), Note that E~u over IF P has the equation 
y2 = x3 - 2unx2 . Therefore' E;:' (IF p) contains points oo, (0, 0) and (2un, 0). 
Substituting z := (y / x )2, we get z2 = x -:- 2un. This equation has p - 3 solu-

. tions in IF p \ {O, 2un} if (-;un) = 1, and p ~ 1 solutions if (-;un) = -1. Note 

that (-;u 11
) ~ '('✓;1)(i) = (-ll-1, because p = l(mod 8). Since E~u has 

nonsplit multiplicative reduction (i.e. ap = -1) if and only if (- ll-1 = -1, 
we obtain Wp = (-ll. HenceW(E~) = -(-ll(-ll = -1, and we are 
done. · D 

Corollary 3. Assume the Parity Conjecture. Then under the assumptions 
from Corollary 2, we have rank (E~/Q) = I. 

Proof By Corollary 2, rank (E~ /Q) .::: 1 and by Lemma 2, the global root 
number of the associated £-function is equal to -1. Therefore (under the 
Parity Conjecture) the rank.is_ odd and we are done. . D 

For a positive integer k, let Al denote the set of odd squarefre; (posi­
tive if k is even and negative if k is odd) integers n such that gcd(n, u) · 
gcd(n, u 2 + 64) = 1, and with exactly k prime factors. 

Proposition 2. The set {n E Al : rank (E~ (Q)) = O} has positive density 
in Al for all k. In particular, for infinitely many odd squarefree integers the 
quadratic twists of the curve y2 = x 3 + ux2 - 16x (u 2 + 64 is prime) have 
rank 0. 

Proof Let Bk denote the set of integers satisfying the assumptions from 
Corollary 1. Then Bk C Af and by this Corollary, rank (E~ (Q)) = 0 for 
n E Bk, By the Dirichlet Prime Number Theorem, the set Bk has positive 
density in Al, and we are done. D 

· , 3.2 The case u2 + 64 = P1P2 

Now suppose that u2 + 64 = p1p2 and n = ±q1 :·.·1,qk = l(mod 4), 
where primes qi = 3(mod, 4) for all 1 .::: i .::: k. Note 'that necessarily 
PIP2 = l(mod 8) and Pl =-Pi·= l(mod 4). 
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Definition 5. We define the nondirected graph G2 (n) as follows. The vertex 
set V(G2(n)) := {p1, P2, q1, ... , qk} and the edge set E(G2(n)) := {pjqi : 
(!!.i..) - -1 . - 1 k . - 1 2} q; - ' l - ' ••• ' ' ] - ' • . 

Proposition 3. Under the above assumptions we have 

i) (p1p2) C st C (p1,p2), (-1) C st', 
ii) st = (p1, pz) if and only if there exists an even partition {V1, V2} 

of G2(n) such that PI E Vi and pz E V2 (or vice versa) 
iii) if {V1, V2} is an even partition of G2(n) such that PI, pz E Vi 

or PI, pz E V2, then ITqEVjq E st', where PI and P2 ~ Vj (j = l or 2), 

iv) if%-·•qis E S{(l::::: s::::: k), then {{%,··•,qis},V(G2(n))\ 
{ % , ... , % } } is even partition ( and clearly, satisfies property from iii), 

v) 1st' I= 2x number of even partitions {Vi, V2} of the graph G2(n), such 
that both PI, P2 E Vi or both PI, P2 E V2. 

Proof 

¢, ¢,' i) By Lemma 1, we have Sn C (pi, p2, qi, ... , qk) and Sn C 
(-1, q1, ... , qk)- Also by Lemma 1, we get Cp1p2 (Q0 ) ,j:. 0 for 

v = PI, P2, q1, ... , qk and oo. Thus PIP2 E st. On the other hand, 
Cd(Qq;) = 0 if qi divides d. Hence (p1p2) C st C (p1, pz). Similarly, 
by Lemma 1, C~1 (Qv) ¥- 0 for v = PI, p2, qi, ... , qk and oo, and the 
assertion follows. 

ii) Assume that PI, p2 E sf Then, in particular, C P /Qq;) ,j:. 0 for all 
i = l, ... , k and j = 1, 2. Hence by Lemma 1, for any prime divisor q 
of n we have either ( P.lP.1.) = -1 or ( l!l.) = ( Pz) = 1. We define the 

q lq q 
partition {Vi, V2} of G2(n) as follows: Vi := {pd U {q : ( T) = 1} 
and V2 := {p2} U {q ~ Vi : (~1

) = 1}. We claim that {Vi, V2} 

is an even partition. Indeed, simply #{p1 ➔ V2} = #{ q E V2 : 
(I!,}) = -1} = 0 and similarly #{p2 ➔ V1} = q. Let q E V1 and 

q' E V2. The!!l/:{q ➔ V2} = #{q ➔ pz} = 0 and #{q' ➔ Vi} = #{q' ➔ 
PI} = 0. Conversely, assume that we have an even partition {Vi, V2} of 
G2(n) such that PIE Vi and pz E V2. By part i), it suffices to prove that 
Pl E sf By Lemma 1, we just have C Pi (Qv) ,j:. 0 for v = PI, pz and 
00. !-,e! q' l;>e_any _element ofY.2. The number-#{q_(, ➔-Vr} =·#{-qL"""'F vrr·c 

-a- -is even, hence equals 0, i.e. (-~t) = 1. Similarly, #{q ➔ \/2} = 0, that 

is ( T) = 1 for any q E Vi . ..Now take i E {1, ... , k}. If (P~f2
) = -1, 

then by Lemma 1, C Pi (Qq;) ¥- 0 just because qi f PI. If ( F~f2
) = 1 

then by above, ( ~) = 1 (if qi E V2) or ( f) = 1 _(if qi E V1 ). Therefore 

(~) = (f;-) = 1,andbyLemmal,Cp1 (QqJ ,j:.0sop1 E sf 
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iii) Without loss of generality assume that Vt = { q1, ... , qs} and V2 = {PI, 
P2, qs+1, · ... , qk} for some s E {1, ... , k}. Let r := q1, ... , qs, Clearly, 
c;(Qq;) _-:fa 0 for. i = s + 1, ... , k. Now let i ::: s. By assumption, the 
number #{qi ➔ V2} = #{qi ➔ ·{PI, p2}} is even (i.e. equals O or 2). 
Hence ( P~f2

) = 1, and conseq~ently by ~mma 1, we get c;(Qq;) -:fa 0. 

Letj = lor2.Sincethenumber#{pj ➔ VJ} =#{q E Vi: (t) = -1} 

is even, (;) = 1 and by Lemma 1, c;(Qpi) -:fa 0. Clearly, c;~) 'I- 0 
,j/ 

thus r E Sn . 
iv) Without loss of generality, we assume that r, := qI, ... , qs E st'. Let 

V1 := {q1, .. ,,qs} and V2 := {PI,P2,qs+I, .. .',qk}. We prove by 
definition, that {Vi, V2} is an even partition of G2 (n ). B·y assumption, 
we have c;(Qu) 'I- 0 for v = PI,P2,q1, .. ,,qk and oo. Hence in 
p_¥ticular, by Lemma 1, we get ( P~f2

) = 1 for i ::: s and (;) = 1 
for j = 1, 2. Now let q E V1. By above, we obtain that #{q ➔ V2} = 
#{qi ➔ {PI,P2}} = Oif (~) == (~) = 1 and#{q ➔ V2}= 

#{qi ➔ {PI,P2}} = 2 if(~) = (Rf) = -1, and the number 

#{pi ➔ VJ} = #{ q E V1 : ( t) = -1} is even too, because 1 = ( ;) = 

#{qeVi:( ..9... )=-1} 
Tiqev, (t) = (-1) Pj • Clearly, #{q' ➔ Vi} = 0 for any 

q' E V2, and the assertion follows. 
v) By parts iii) and-iv) there is one-to-one correspondence between even 

partitions of G2(n) such that both vertices PI and p2 are in the same set 

and positive elements in sf (note that trivial partition has such property 

and corresponds to ·1 E st').· Since -1 E st', we have g E st' if and 

only if - g E sf. And we are done. □ 

Lemma 3. Suppose that a graph G has vertex set V = {vi, v2, v3, ... , vr}. 
Then the number of even partitions {VI, V2} of the graph G such that either 
both v1, v2 E V1 or both v1, v2 E V2 is equal to a. xnumber of even partitions 
{V1, V2} of the graph G, where a= 1 or½, 

Proof Follows from [5, p. 122-123, Lemmas 5.3 and 5.4] (note that we con­
sider non-ordered partitions). □ 

Theorem 2. Under the above assumptions, 2rs(E~ IQ) equals the number 

of even partitions of the graph G2(n). In particular; rank (E~ /Q) = 
rs(E~ /Q) = 0 if and only if G2(n) is odd. Moreover rs(E~ /Q) is maximal 
(equals k + 1) if and only if E(G2(n)) = 0. 

Proof Let 2e denote the number of even partitions of the graph G2(n) and 
let 2/. denote the number of even partitions of the graph G2(n) such that 
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both vertices PI and p2 are in the same set. By Proposition 3 and Lemma 3, 

we get 2rs(E~/CQ) = 2dimf2 sf ;+-dimf2 sf -2 = 22+(!+1)-2 if f < e and 

2rs(E~/Q) = 2dimf2 sf +dim~·2 sf-2 = 21+U+l)-2 if f = e. In both cases 

2rs(E~/CQ) = 2e. Then rs(E~/(Q) = 0 if and only if 2e = 1, i.e. by defini­
tion, that G2(n) is odd. Similarly, E(G2(n)) = 0 if and only if any partition 
of G2(n) is even, that is 2e = 2#V(G2(n))-l = 2k+I, and the assertion 
follows. D 

Corollary 4. Assume that n = ±q1 ... qk = 1 (mod 4), where primes 
qi = 3(mod 4), (-}i) = -1 and qi f u for all 1 ::: i ::: k. Moreover, assume 

that 3· (q;o) = -1 and 'v·..1..· (<li..) = 1 Then rank (Eu/lfl'I) = 0 10 p2 1 ,-10 p · n "1:. • 

Proof We claim that in this case the graph G2 (n) · is odd. Suppose, 
by contradiction, that {Vi, V2} is even nontrivial partition of it. Let (with­
out loss of generality) PI E V2 and let qi be some element of Vi. Then 
#{qi ➔ V2} = #{qi ➔ pi} is even, which contradicts to (El) = -1. If no 
such qi exists, i.e. Vi = {p2}, then the number #{qi0 ➔ Vi} : #{qi ➔ p2} is 

even, contrary to ( ~~) = -1. Using Theorem 2 yields the assertion. D 

Corollary 5. Assume that n = ±q1 ... qk = l(mod 4), where primes 
qi = 3(mod 4), qi f u for all l ::: i ::: k and Yi (9A) = -(-}i) = 1 (or vice 
versa). Then rs(E~/(Q) = 1. 

Proof We show that the graph G2 (n) is semi-odd, i.e. has only one nontrivial 
even partition. First, we show that the partition {Vi, V2}, where Vi = {p2} and 
V2 = {p1, q1, q2, ... , qk} is even. Indeed, #{qi ➔ Vi} = #{q1 ➔ p2} = 0 
because ( 9A) = 1. Clearly, #{p1 ➔ V1} = 0 and #{p2 ➔ V2} = #{ qi : 

( }i) = -1} = 0. Now, we show that there are no other nontrivial even par­

tition of G2(n). Suppose that the partition {V{, VD -:fa {Vi, V2} is nontrivial. 
Without loss of generality let p2 E V{ but now V{ -:fa {p2}.' We need to 
consider two cases: PI E V{ or Pl E v;. In the first case, for q E v; 
we have #{q ➔ V{} = #{q ➔ pi} = 1 because (%) = -1. Hence 

{V{, v;} is odd. In the second case, there exists some qi E V{. Then we get 
#{qi ➔ V;J = #{qi ➔ pi} = 1. Thus again {V{, VD is odd. Now, by 
Theorem 2, we obtain 2rs(E~ IQ) = 2 and we are done. D 

Lemma 4. Under the assumptions from Corollary 5, the global root number 
W(E~) of the L-function associated to E~ is equal to -1. 

Proof The proof is very similar to the proof of Lemma 2. Now we have 
W(E~) = W(E~u) =. -Wp1 Wp2 ITi:c=i::ckWq;· The curve E~u has poten­
tial good reduction at qi, hence Wq; = -1 (the sign of W3 follows 
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from [11, Table 2]). At the primes Pl and pz the curve E~u has multi­
plicative reduction. Moreover, this reduction · at Pi is nonsplit if and only 
if (-Zun) = -1 and hence W. = -(-Zun) = -(2un). Since PI 

Pi ' Pl Pi Pi -

p2 = 1, 5(mod 8), we get (!~) = (!~), and consequently W(E~) 

-( -1 t ( -1 t = -1. This finishes the proof. D 

Corollary 6. Assume the Parity Conjecture. Then under the assumptions 
from Corollary 5, we have rank (E~ /(Q) = 1. 

Proof By Corollary 5, rank (E~ /(Q) ::S 1 and by Lemma 4, the global root 
number of the associated £-function is equal to -1. Therefore (under the Parity 
Conjecture) this rank is odd, and we are done. D 

Proposition 4. The set {n E Al : rank (E~ ((Q)) = O} has positive density 
in Al for all k. In particular, for in.finitely many odd squarefree integers the 
quadratic twists of the curve y2 = x3 + ux2 - 16x (u 2 + 64 is a product of 
two primes) have rank 0. 

Proof Let Ck denote the set of integers satisfying the assumptions from 
Corollary 4. Then Ck c Al and by this Corollary, rank (E~((Q)) = 0 for 
n E Bk. By the Dirichlet Prime Number Theorem, the set Ck has positive 

. density in Al, and the assertion follows. □ 

4. Related results 

In this section we consider quadratic twists of Eu by an even n. We focus on 
rank zero twists only. 

Proposition 5. Assume that u2 + 64 = p and u = l(mod 4). Let 
n = ±2q1 ... qk, where primes qi = 3(mod 4) for all 1 :'.S i ::S k and let 
~ = l(mod 4), ~ ¢ u(mod 8). If (f;) = -1 for all 1 :'.S i ::S k, then 

</> <I>' Sn = (p) and Sn = (-1). 

</> # Proof By Lemma 1, we have Sn C (2, p, q1, ... , qk) and Sn C (-1, 2, 
q1, ... , qk), From the implication 3 from Lemma 1, we get 

sf c (2, p). Since~ ¢ u(mod 8) (by assumption) and p = l(mod 8), using 

condition 11 from Lemma 1, we obtain 2, 2p fJ. sf Hence st = (p). 

Consider now the group s( Since for all 1 ::s i ::S k Legendre's symbol 
(}) = -1, then the condition 3' from Lemma 1 leads to the inclusion 

s{ c (-1, 2). Additionally, using condition 11' from Lemma 1, we obtain 
4> . <I>' ±2 fJ. Sn. Fmally, we get Sn = (-1). D 
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Proposition 6. Assume that u2 + 64 = p1p2 and u = l(mod 4). Let 
n = ±2q1 ... qk, where primes qi = 3(mod 4) for all 1 _::: i _s: k and let 

~ = l(mod 4). 

1) If~ ¢. u(mod 8), Pl = P2 = 5(mod 8), and for certain l _::: io .S: k 
we have% = 3(mod 8) and (Pl...) = ( l!1.) = 1 or% = 7(mod 8) and 

q,o q,o 

(1!1...) = (1!1..) = -1 andfior all 1 < i -1- io < k we have (21.1!1.) = -1 
q;o q;o ' - ' - q; ' 

then st= (p1p2) and sf= (-1). 

2) If ~ ¢. u (mod 8), Pl = P2 = 1 (mod 8), and for certain 1 _::: io .S: k 
we have (qPi ) = (qP2 ) = -1, and for all 1 _s: i -1- io _s: k we have 

10 10 

(F~f2
) = -1, then st= (p1p2) and st'= (-1). 

3) If~ = u(mod 8), Pl = p2 = 5(mod 8), and for certain 1 _::: io _s: k 
we have qio = 3 (mod 8) and ( Pqi pz) = 1, and for all 1 _::: i -1- io _s: k we 

'O 

have ( P~f2
) = -1, then st = (p1 p2) and st' = (-1 ). 

Proof By Lemma 1, we have st c (2, Pl, p2) and st' c (-1, 2,qi, 
q2, ... , qk)- Without loss of generality assume that io = I. Let (~) = 
( fi-) = -1, then using condition 4 of this Lemma, we obtain Pl, P2 rt st. 
Next, if q1 = 3(mod 8), then (ii) = -1 and C2(Qq1) = C2p1p2 (Qq1) = 0. 

Consequently st C (2p1, 2p2). However, if q1 = 7(mod 8), then (ii) = 1 

and C2p1 (Qq1) = C2p2 (Qq1) = 0 and consequently st C (2, Pl p2). 
Let ~ ¢. u(mod 8). Then, using condition 11 from Lemma 1, we get 

C2(Q2) = C2p1p2 (Q2) = 0. Additionally, if Pl = p2 = l(mod 8), then we 

have C2p1 (Q2) = C2p2 (Q2) = 0, which means that 2p1, 2p2 ¢ st. 
Thus we obtain: if~ = u(mod 8), q1 = 3(mod 8), p1 = p2 = 5(mod 8) 

or ~ ¢. u(mod 8), q1 = 7(mod 8), Pl = p2 = S(mod 8) or ~ ¢. u(mod 8), 

q1 = 3(mod 4), p1 = p2 = l(mod 8), then st= (p1p2). 

Consider now the group st'. Let ( P~f2
) = -1 for all 2 _s: i _s: k. Since 

(u
2

;
64 ) = -1 ==> (Cd(Qq;) = 0 {=::::::} qi Id), we get st' C (-1,2,qi). 

If ~ ¢. u(mod 8), then ±2 (/. st', because C~2(Q2) = 0. Additionally, if 

q1 = 3(mod 8), then ±q1 rt st' (C±qi (<()h) = 0) and if q1 = 7(mod 8), 

then ±2q1 rt st' (C~2q1 
(Q2) = 0). Hence if q1 = 3(mod 8), then sf c 

(-1,2qi)andifq1 =7(mod 8),thenst' c (-l,q1). 
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By assumptions we have: 

1) PI = P2 = S(mod 8), qI = 3(mod 8), (P1
) = (P2) = 1, 

. ~ ~ 

2) PI = P2 = S(mod 8), qI = 7(mod 8), (~) = (;n = -1, 

3) PI= P2 = l(mod 8),qI =3(mod 4), (~) = (?i) = -1, 

when ~ ¢ u(mod 8). In the first case (;I) = c;n = -1 and (~) = 

C'f;/1) = -1, hence C~2 (Qp1) = C~2q
1 
(Qp1 ) = 0, which means that 

s<I>' = (-1). In the second case since (!ll) = (.=!ll) = -1 then s<I>' = (-1) 
n ' Pl Pl ' · n 

too. In the third case ( ;
1

) = ( ;; ) = 1, consequently ( ~) = (-~;1 
) = -1 

and st' = (-1). If~ = u(mod 8) and q1 = 3(mod 8), then C±qi (Q2) = 
C~2q/Q2) = 0 and st' C (-1, 2). Because in the case ~ = u(mod 8) 

we assume, that PI = p2 = S(mod 8), then (_l_) = (-2
) = -1, 

. Pl Pl 

so C~i(Qp1) = 0 ands{= (-1). D 

Corollary 7. Under the assumptions from Proposition 5 or Proposition 6, 
we have rank (E~/Q) = 0. 

For a positive integer k, let A~ denote the set of even squarefree (positive if 
k is even and negative if k is odd) integers such that gcd(n, u) = gcd(n, u2 + 
64) = 1, and with exactly k prime factors. 

Corollary 8. The set {n E A~ : rank (E~ (Q)) = O} has po~itive density . 
in A~ for all k. In particular, for in.finitely many even squarefree integers the 
quadratic twists of the curve y2 = x 3 + ux2 - l6x (u2 + 64 is a prime or a 
product of two primes) have rank 0. 

Proof Similar to the proof of Propositions 2 and 4. □ 

5. Generalizations 

In this section we consider more general curves Eu : y2 = x 3 + ux2 - l6x, 
with u2 + 64 = PI ... Pl, where l is a positive integer and Pi are primes. 
We focus on rank zero twists E~ only. 

Proposition 7. Suppose that u2 + 64 PI ... Pl, l > 2 and 
n = ±q1 ... qk = l(mod 4), k ::::= l - l, where (for all l ::: i :::: k) 
primes qi = 3(mod 4) and qi l- u. Let VI<i<k(El.) = -l, 31<ii<k(E1..q·2 ) = 

I - - q, - - 'I 

-1, \li,6i1,lsisd:n = 1, 3i2,6i1,lsi2sd~:) = -1, vi,6i2,Isisd ~) = 
1, ... ' 3i1-1,6i1,i2, ... ,i1-2,I:::i1-1:::k(qt~1) = -1, vi,6i1-1,I:::i:::k(~) = 1. Then 

sf= (PI ... p1), st'= (-1). 
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Proof The table below consists of the values of Legendre's symbol ( ~), 
l ::: i ::: k, 1 ::: j ::: /, under assumption, which may be taken without loss of 
generality, that i1 = 1, i2 = 2, ... , i1-I = l - l. 

Pl P2 P3 ... Pl-I Pl 
q1 -1 -1 1 ... 1 1 
q2 -1 1 -1 ... 1 1 

q3 -1 1 1 ... 1 1 

. . 

q1-2 -1 1 1 ... -1 1 

q1-1 -1 1 1 ... 1 -1 
q1 -1 1 1 ... 1 1 

qk -1 1 1 ... 1 1 

In order to calculate the Selmer groups we apply Lemma 1. The starting 
point is the condition 

From the equivalence 2' from Lemma 1, we first get st' c ( -1, q 1 , 

q2, ... , qk). Note (using the same equivalence over (Qp1 ), that no product 
of odd number of factors qi, either multiplied by -1 or not, belongs to 

st'. Next, over QPj' where 2 ::: j ::: /, no product of even number of 

factors qi, including q1-1, either multiplied by -1 or not, belongs to sf 
The remaining products of numbers qi (that is the products where qi, 

i E { 1, ... , l - l} do not appear) are excluded from the group st', applying 

( u
2
;

64
) = -1 ==> ( C~ (Qq;) = 0 {=:::} qi I d). So are the same products 

multiplied by -1. Finally, we get st' = ( -1). 

Consider now the group Sf. The condition Cd (IR) =/:- 0 ==>d > 0 

leads to the inclusion Sf c (p1, p2, ... , Pl, q1, q2, ... , qk)- Next, from 

the implication (u2
;

64
) = -1 ==> (Cd(<Qlq;) = 0 {=:::} qild),taking 

. . ' 
1 = l, l + 1, ... , k, we conclude that Sn C (p1, P2, ... , Pl, q1, q2, ... , q1-1). 

For i = -l, .--.·., l- 1 we get (u2
;

64 ) = 1-;-so Cd((Q)q;) =-0 ·<(=:::} (f)·=/:- l. 

Obviou~ly, no product M of primes qi (l ::: i ::: l - l) belongs to st, as it 
is enough to observe that ( M) = 0 if qio IM, which gives CM(<Qli0) = 0. 

q,o 
The table also shows that no product N of numbers p J, l ::: j ::: /, such that 

P1P2 f N and (p1 IN or P2 IN), belongs to Sf (in particular PI, P2 <t Sf), 
as ( ~) = -1. In tum, the products of numbers p J, such that p 1 p3 f N 
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and (p1 I N or p3 I N) (in particular, such that PI pz I N and p3 f N) do not 

belong to st, as (~) = -1, etc., finally, st does not contain such products 

N of numbers Pj, 1 :::: j ::: l, that PIPl f N and (p1 IN or Pl IN), as 

(q~J = -1. This way we obtain st c (P1P2 ... pz}. D 

Corollary 9. Under the assumptions from Proposition 7, we have 

rank (E! /Q) = 0. 

Now we show that in some cases the assumption k ::: l - l in the 
Proposition 7 is necessary but in some cases is not. 

Proposition 8. Let u2 + 64 = Pl P2P3 where PI = P2 = p3 = 1 (mod 8). 
Letn = ±q or±2q, whereq is an odd prime. Thenrs(E~/Q)::: 1. 

1 # Proof. By Lemma 1, we have Sn C (2, Pl, p2, p3, q} and Sn C (-1, 2, q}. 
Moreover, Cd(JR) =/=- 0 {} d > 0 and c;/JR) =I=- 0 for all d. We have to 
consider many (not necessary disjoint) cases according to residue classes of q 
modulo 8, values of Legendre symbol (-;;), and residue classes of n modulo 4. 

Case I. n = l(mod 4). Then the reduction of E~ is good at 2, hence st c 
(p1, P2, p3, q} and sf C (-1, q}. By Lemma 1, Cd(Qp;) =/=- 0 for all d and 
i = l, 2, 3. Again by Lemma 1, C~ 1 (Qp;) =I=- 0 (i = 1, 2, 3), and if(-;;) = 1 

for i = l, 2, 3 then Cd(<f;J!p;) =I=- 0 ford = ±q but if(-;;) = -1 for some 

i E {1, 2, 3} then ±q (/. sf Now it remains to consider Cd and Cd over Qlq. 

Case I.I. q = 3(mod 4). If ( P1
~

2P3 ) = -1 then Cd(Qq) =I=- 0 and Cd(Qq) =I=- 0 

for all d not dividing by q. Thus (p1, p2, p3} c st and (-1) c st', and 
consequently rs(E~/Q) ::: 2. If ( P1

~
2

P
3

) = 1 then Cd(Qlq) =j=. 0 for all d 

and Cd(Qq) =/=- 0 if (i) = 1. Therefore (p1p2p3, Pi} c st for some i, and 

(-1) c sf Hencers(E~/Ql)::: 1. 

Case 1.2. q = l(mod 4). If ( P1
~

2P3
) = -1 then by Lemma 1, Cd(Qq) =I=- 0 

for all d and Cd(Qq) =I=- 0 if and only if (i) = 1. Thus (p1, p2, p3, q} C st and 

(-1) c st', so rs(E~/Q)::: 3. Assume that ( P1
~

2 P3
) = 1. Then C~ 1 (Qq) =j=. 0, 

hence (-1) c st', For at least one i E {1, 2, 3} we have ( P,j-) = 1. Thus, 

by Lemma 1, we get (Pi, PIP2P3} c st, and rs(E~/Ql)::: 1. 

Case 2. n = 3(mod 4). Then E~ has bad reduction at 2. Besides Qlp; and Qq 
we have also to consider Cd and Cd over Ql2. Considerations over Qlp; and Qq 
are similar (almost the same) to that above. Thus we only regard the field Qz. 
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Note that un = 3(mod 4). Therefore, by Lemma 1, we obtain, C~(Qq) -:/= 0 
for all d and Cd (!Qq) i= 0 if and only if d = 1 (mod 8). Consequently, the 

Selmer groups st and sf in this case are greater than or equal to the groups 

st and st' in case 1, and rs(E~/Q)::: 1. 

Case 3. n = 2(mod 4). Then E~ has bad reduction at 2, too. Now, existence 
of Q2-rational point on Cd and C~ depends on residue class un(mod 16) 
(see Lemma 1) but in all cases Cd(Q2) i= 0 for d E (pr, p2, p3) and 
C~1 (Q2) i= 0. Thus, the group st in case 3 is greater than or equal to st 
in case 1, and sf =:> (-1). Consequently rs(E~/Q) ::: 1 and the assertion 
follows. D 

Proposition"9. Let u2 + 64 = PIP2P3, where PI = l(mod 8) and P2 = 
p3 = 5(mod 8). Let n = q where q = 3(mod 4) is a prime such that (%

1
) = 

(fi) = -(~) = -1, and q f u. Then st = (p1p2p3) and st' = (-1). 
In particular, rs(E~/Q) = 0. . 

Proof Since n = 3(mod 4), the curve E~ has bad reduction at 2, and so st c 
(2, PI, p2, p3, q) and st' c (-1, 2, q). Moreover,(;;) = -1, (~) = -1 

± ~ and (7z) = -1, hence by Lemma 1, Sn C (-1) and C~1(Qp;) =I= 0 for 

i = 1, 2, 3. Since un = 3(mod 4), by Lemma 1, we obtain C~(Q2) i= 0 

and Cd(Q2) i= 0 if and only if d = l(mod 8). Thus st C (pr, p2, p3) and 

P2, P3, PIP2, PIP3 <t sf Now it remains to consider Cd and C~ over /Qq. 
Since ( ~) = 1, we get C~(Qq) i= 0 for all d and Cd(!Qq) =f=. 0 if and 

only if (i) = 1. Thus Cd(!Qq) = 0 ford = PI, P2P3 and Cd(Qq) -:/= 0 

ford= PIP2P3· Hence st= (p1p2p3) and sf= (-1), and we are done. 

□ 
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