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1. Introduction 

The purpose of this note is to prove the following theorem dealing with ratio
nality of algebraic cycles over function field of some exceptional projective 
homogeneous varieties. 

Theorem 1.1. Let G be a linear algebraic group of type F4 or Es over a 
field F and let X be a projective homogeneous G-variety. For any equidimen-

.,.s_tonal variety Y, the change of field homomorphism 
'"', 

wf:iere Ch is the Chow group modulo p, with p = 3 when G is of type F4 and 
p ~ 5 when G is of type Es, is surjective in codimension < p + l. 

[t is also surjective in codiniension p + l for a· given Y provided that 
1 idegCho(XF(())foreachgenericpoint( E Y. 

In this note, a projective homogeneous G-variety is a twisted form of Go/ P, 
where Go is a split linear algebraic group of the same type as G and P is a 
parabolic subgroup. The proof of Theorem 1.1 is given in section 5. 

In previous papers ([3], [4], after the so-called Main Tool Lemma by 
A. Vishik, see [19], [20]), similar issues about rationality of cycles, with 
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quadrics instead of exceptional projective homogeneous varieties, have 
been treated. The above statement is to put in relation with the result 
[11, Theorem 4.3] by N. Karpenko and A .. Merkurjev, where generic splitting 
varieties have been considered. 

In characteristic 0, Theorem 1.1 is contained in [11, Theorem 4.3]. In an 
earlier paper (see [21, Corollary 1 .4]), K. Zainoulline proved the first conclu
sion of Theorem 1.1 (modulo torsion) in characteristic O if G is of type F4. 
Our result is valid in any characteristic. 

The method of proof is basically the method used to prove 
[11, Theorem 4.3] combined with a motivic decomposition result for 
generically split · projective homogeneous varieties due to V. Petrov, 
N.Semenov and K.Zainoulline (see [16, Theorem 5.17]) and involving the 
Rost motive. This is described in section 3. 

In section 4, we present some properties about Chow groups of the Rost 
motive of groups of strongly inner type (e.g F4 and Es) with maximal 
J -invariant. Those properties make the method particularly suitable for 

· groups of type F4 and Eg. 

The method also relies on a linkage between the y -filtration on the 
Grothendieck ring of projective homogeneous varieties and Chow groups, in 
the spirit of [6]. 

In the aftermath of Theorem l. 1, we get the following statement dealing 
with integral Chow groups (see [11, Theorem 4.5]). 

Corollary 1.2. We use notation introduced in Theorem I. I and we write CH 
for the integral Chow group. If p E deg CHo(X), then for any equidimen
sional variety Y, the change of field homomorphism 

CH(Y) -+ CH(Y F(X)) 

is surjective in codimension < p + 1. 

It is also surjective in codimen~ion p + 1 for a given Y provided that 
1 <t-degCho(XF(())foreachgenericpoint( E Y. 

Remark 1.3. Our method of proof for Theorem 1.1 works for groups of type 
G2 as well (with p = 2). However, the case of G2 can be treated in a more 
elementary way if char(F) = 0. 

Indeed, it is known that to each group G of type G2 one can associate 
a 3-fold Pfister quadratic form p such that, denoting by Xp the Pfister 
quadric associated with p, the variety X has a rational point over F(Xp) and 
vice-versa. Thus, for any equidimensional variety Y, one has the commutative 
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diagram 

Ch(Y) --~ Ch(Y F(X)) 

l l 
where the right and the bottom maps are isomorphisms. Furthermore, as 
suggested in [20, Remark on Page 665] (where the assumption char(F) = 0 
is required), the change of field homomorphism Ch(Y) ➔ Ch(Y F(Xp)) is 
surjective in codimension < 3. 

2. Filtrations on Grothendieck ring of projective 
homogeneous varieties 

In this section, we prove two propositions which play a crucial role in the 
proof of Theorem 1.1. 

First of all, we recall that for any smooth variety X over a field F 
(in this paper, an F-variety is a separated scheme of finite type over F), 
one can consider two particular filtrations on the Grothendieck ring K (X) 
(see [6, §1.A]), namely the y-filtration and the topological filtration, whose 
respective terms of codimension i are given by 

and 

ii(X) = ([Oz] I Z "-+ X and codim(Z) ~ i), 

where en is then-th Chem Class with values in K(X) and [Oz] is the class 
in K(X) of the structure sheaf of a closed subvariety Z. For any i, one has 
y i (X) c ii (X) and one even has y i (X) = ii (X) for i ::s 2. We write 
y i/i+l (X) and ii/i+l (X) for the respective quotients. We denote by pri the 

. canonical surjection 

CHi (X) - ii/i+I (X) 

[Z] 1-------+ [Oz]. 

Note that for any prime p, one can also consider the y-filtration Yp and 
the topological filtration ip on the ring K(X)/pK(X) by replacing K(X) by 
K(X)/pK(X) in the previous definitions. 

The method of proof of the following proposition is largely inspired by the 
proof of [10, Theorem 6.4 {2)]. 
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Proposition 2.1. Let Go be a split connected semisimple linear.algebraic 
group over a field F and let B be a Borel subgroup of Go. There exist an 
extension E/ F and a cocycle t; E H 1 (E, Go) such that the topological.filtra
tion and the y -filtration on K (~( Go/ B)) coincide. 

Proof. Let n be an integer such that Go C GLn and let us set S := GLn and 
E := F(S/Go). We denote by.T the £-variety S xs/Go Spec(£) given by 
the generic fiber of the projection S ➔ S / Go. Note that since T is clearly a 
Go-torsor ove~ E, there exists a cocycle t; E H 1 (E, Go) such that the smo~th 
projective variety X := T/ BE is isomorphic to ~(Go/ B). We claim that the 
Chow ring CI;I(X) is generated by Chem classes. 

Indeed, th~ morphism h : X ➔ S / B induced by the canonical Go-equi
variant morp~ism T ➔ S being a localization, the associated pull-back 

h* : CH(S / B) ~ CH(X) 

is surjective. Furthem1ore, the ring CH(S / B) itself is generated by Chern 
classes: by 00, §6,7] there exists a morphism 

§(T*) ~ CH(S/B), (2.2) 

(where §(T*) is the symmetric algebra of the group of characters T* of a split 
maximal totius T c B) with its image generated by Chem classes. Moreover, 

l 

the morphis,n (2.2) :is surjective by [10, Proposition 6.2]. Since h* is surjective 
and Chem Jlasses commute with pull-backs, the claim is.proved. 

We show now that the two filtrations on K (X) coincide by induction on 
codimension. Let i :::: 0 and assume that ,i+1(X) = yi+1(X). Since for any 
j :::: 0, one has y i (X) c r i (X), the induction hypothesis implies that 

yifi+1(X) C ri/i+1(X). 

Thus, the ring.CH(X) being generated by Chem classes, one has y i/i+I (X) = 
,i/i+1(X) by [9, Lemma 2.16]. Therefore one has ,i(X) = yi(X) and the 
proposition is proved. □ 

Note that this result remains true when one consider a special parabolic 
subgroup P instead of B. 

Now, we prove a result which will be used in section 5 to get the second 
conclusion of Theorem 1.1. 

We r~call that for any smooth variety X over a field, for any prime p, and 

for any:i < p + 1, the canonical surjection pr~ : Chi (X) - ,ji+I (X) 
is an isomorphism by the Riemann-Roch Theorem without denominators 
(see [6, § I.A] for example). The following proposition extends this fact to 
i = p + 1 provided that Xis a projective homogeneous variety under a certain 
class of linear algebraic group (containing F4 and Es) and p > 2. 
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Proposition 2.3. Let X be a projective homogeneous variety under a semi
simple adjoint algebraic group G of inner type whose Tits algebras are trivial, 
then for any prime p > 2 the canonical surjection 

ChP+1(X) - i-;+l/p+2 (X), 

is injective. 

That proposition is obtained by combining the two following lemmas. 

Lemma 2.4. Let X be a smooth variety and p > 2 be a prime. If the inclu
sion E!xi-2 (X) C E}-2(X) given by the Brown-Gersten-Quillen spectral 

sequence is an equality, then the epimorphism ChP+I (X) - i-;+l/p+2(x) is 
an isomorphism. 

Proof For any smooth variety X and any i ~ 1, the epimorphism pri coin
cides with the edge homomorphism of the spectral Brown-Gersten-Quillen 
structure E~-i (X) => K (X) (see (17, §7]), that is to say 

pri: CHi(X) '.:::'. E~-\X) - · · · - Ei;/(X) = i-i/i+1(x). 

. th p+I . h . f In particular, for any prime p, e map prp is t e composite o the 
surjections 

. Ep+l,-p-1 (X) 
qr: Ef+l,-p-\X) (mod p) - r Im(<5r) (mod p), 

for r from 2 to p + 1, where <5r is the differential starting from 
Ef+I-r,-p-2+r (X). 

Moreover, by (13, Theorem 3.4], every prime divisor l of the order of <>r is 
such that ·l - l divides r - l. Hence, for r .:s p - 1, the order of <5r is coprime 
top and this implies that qr is an isomorphism. For r = p + I, one has l = 2 
ou l = p + I and in both cases l is coprime to p (since p > 2). 

Therefore, we have shown that pr;+1 is injective if and only if qp is 
an isomorphism. · Let us consider the following inclusions given by the 
BGQ-structure 

Et-2 (X) C · · · C E~•-2(X) C Ei'-2 (X). 

_ By the very definition, one has EJxi-2 (X) = Ei'-2 (X) if and only if for any 

r ~ 2 the differential starting from E;· -2 (X) is zero. In particular, the equality 
Efxi-2 (X) = E}-2 (X) implies that <5p = 0 and the lemma is_proved. D 

Lemma 2.5. Let G be a semisimple adjoint algebraic group of inner 
type whose Tits algebras are trivial. Then for any projective homogeneous 
G-variety X, the inclusion E!xi-2 (X) c . E}-2(X) given by the Brown
Gersten-Quillen spectral sequence is an equality: 
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Proof On the one hand, by the very defintion, the group E~-2(X) is the 

first quotient K}112) (X) of the topological filtration on K 1 (X). On the other 

hand, one has E}-2(X) = H 1 (X, K2) (for any integers p and q, one has 
Ef'q (X) = HP(X, K-q)). 

First, we claim that the natural map 

(2.6) 

is an isomorphism. Indeed, since G has only trivial Tits algebras, 
by [12, Theorem], one has 

H 1(X, K2):::: H 1(Xsep, K2f, 

where r is the absolute Galois group of F. Moreover, since the variety Xsep 
is cellular, by [12, Proposition 1], one has 

H 1(Xsep, K2):::: K1Fsep ® CH1(Xsep)-

Note that since X is smooth, the Picard group Pic(Xsep) is identified with 
CH1 (Xsep). Furthermore, any projective homogeneous variety under a semi
simple adjoint group of inner type whose Tits algebras are trivial has a 
rational Picard group (see [14]). Therefore one has CH1(X) :::: CH1(Xsep) 
and since (K1Fsepf = K1F = H 0 (X, K1),.onehas H 0 (X, K1)®CH1(X):::: 
H 1(X, K2) and the claim is·proved. · 

Now, it is known that CH1 (Xsep) is a free abelian group of finite rank 
(see [18, §2] for example) and it follows that there exists an integer k ::'.: 0 
such that CH 1 ( X) = 'll/J,k. Let us denote by (f) the isomorphism 

(Fx)f!Jk--► Hl(X, K2) 

such that for any a E (Fx)ffik the element (f)(a) corresponds by (2.6) to 
L}=o 11:i(a) ® ei in H 0(X, K1) ® CH1(X), where (ei)I:5i:5k is the canonical 
basis of Zffik and 11:i : (Fx)f!Jk--+ px is the standard projection. 

Then it suffices to find a homomorphism 1/f : (Fx)ffik--+ K}1 12)(X) such 
that the diagram (see [8, §4]) 

K}112)(X)~----- H 1(X, K2) 

~ /. 
is commutative to get the conclusion. The homomorphism 1/f defined as follo~ 
is suitable (and 1/f is necessarily defined this way). For every i = 0, ... , k, 
let ji : Zi c X be a subvariety of codimension 1 such that [Z;] = ei in 
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CH1 (X) and let p; be the structure morphism Z; ➔ Spec(F). Then we set 

'fl = Lti 'f/i, with 

Remark 2.7. Assume that Go is of strongly inner type (e.g F4 and Es, 
see [ 6, § 3] for instance) and consider an extension E / F and a cocycle 
i; E H 1(E, Go). By the result [15, Theorem 2.2.(2)] ofI.Panin, the change 
of field homomorphism 

with E an algebraic closure of E, is an isomorphism. Therefore, since the 
y -filtration is defined in terms of Chern classes and the latter commute with 
pull-backs, the quotients of the y -filtration on K (¢ ( Go/ B) E) do not depend 
nor on the extension E / F neither on the choice of i; E H 1 (E, Go). 

3. Generically split projective homogeneous varieties 

In this section, we introduce in a more general context the basis of the method 
we will use in section 5 to prove Theorem 1.1. 

The method of proof largely relies on the following proposition, which is 
a version of the result [2, Lemma 88.5] slightly altered to fit our situation 
(see also the proof of [11, Proposition 2.8]). 

Proposition 3.1 (Karpenko, Merkurjev). Let X be a smooth variety over 
afield F and Yan equidimensional F-variety. Given an integer k such that for 
any i and any pointy E Y of codimension i the change of field homomorphism 

is surjective, the change of field homomorphism 

is also surjective. 

Note that this_ staternt:nt remains true for any prime p when one considers 
the group Ch with Z / p Z-~oefficients -instead ·of CH.: - --- - - -- ---- . . ______ _ 

Now let X be a projective homogeneous variety under a semisimple linear 
algebraic group G of inner type. Assume furthermore that the F -variety X is 
generically split, i.e the group G splits over the generic point of X (e.g any 
projective homogeneous variety X under a group G of type F4 or Es admit
ting a splitting field of degree 3 or 5 respectively). Then one can apply the 



126 Raphael Fino 

motivic decomposition result [16, Theorem 5.17] to X and get that for any 
prime p, the Chow motive M(X, Z/ pZ) decomposes as a sum of twists of an 
indecomposable motive Rp(G) (in the same way as (4.3)), called Rost motive. 
Note that the quantity and the value of those twists do not depend on the 
base field. In particular, we get that for any extension L/ F and any integer k, 
·the group Chk(XL) is isomorphic to a direct sum of groups Chk-i (Rp(G)L) 

with O ::: i ::::: k. 
Conse._quentl y, combining this with Proposition 3 .1, one get the following 

statement. 

Proposition 3.2. Let G be a semis imp le linear algebraic group of inner type 
over a.field F. Let p be a prime and Rp(G) the associated Rost motive ofG. 
Iffor·any extension L/ F, the change of field 

is surjective in codimension < k then for any equidimensional variety Y and 
for any generically split projective homogeneous G-variety X, the change of 
field 

Ch(Y) ~ Ch(Y F(X)) 

is surjective in codimension < k. 

4. Maximal J -invariant 

In this section~ G is a simple linear algebraic group of strongly inner type. 
Let Go be a split connected linear algebraic group of the same type as the 
type of G and let , E H 1 (F, Go) be a cocycle such that G is isomorphic 
to the twisted form ,Go. We write ~ for the Borel variety of G (one has 
~ '.::::'. ,(Go/ B), where B is a Borel subgroup of Go). 

For any torsion prime p of G, we write lp(G) = (h, ... , jr) for the 
]-invariant modulo p of G and we say that lp(G) is maximal if for every 
i = 1, ... , r, one has ji = ki, where ki is the p-primary power of the ith 
p-exceptional degree of Go (see [16, §4]). Note that for any extension L/ F, 
one has J p(G L) ::: Jp(G) by [16, Example 4.7]. 

In this section, we present some properties about Chow groups of the Rost 
motive of simple linear algebraic groups of strongly inner type (e.g F4 and 
Es) with maximal I-invariant modulo some torsion prime. In the next section, 
we will combine those ,properties with the method described in §3 to prove 
Theorem 1. 1. · ··c ·. 

Lemma 4.1. Let G be a simple linear algebraic group of strongly inner type 
such that its J -invariant J p ( G) is maximal. Then one has 

(i) p = 3 or 5; 

(ii) Ch2 (Rp(G)) = Z/pZ and Ch3(Rp(G)) = 0. 
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Proof Since lp(G) is maximal, by [7, Example 5.3], the cocycle 
<; E H 1 (F, Go) corresponds to a generic Go-torsor in the sense of [7]. Thus, 
by [6, Proposition 3.2] and [5, pp. 31, 133], one has TorspCH2 (23) =/= 0 
(we need the assumption strongly inner to use material from [6, § 3]). The 
conclusion is given by [6, Proposition 5.4]. D 

Lemma 4.2. Let G be a simple linear algebraic group of strongly inner type 
such that its J -invariant JP ( G) is maximal and let L / F be an extension such 
that lp(GL) = lp(G). Then one has 

(i) Ch2(Rp(G)L) = 'lL/p'lL and Ch3(Rp(G)L) = 0; 

(ii) the change of field Ch2(23)-+ Ch2 (23i) is an isomorphism. 

Proof Since J!,(GL) is maximal then byLemma4.l one has Ch2(Rp(Gi)) = 
'lL/p'lL and Ch (Rp(Gi)) = 0. Moreover, since lp(Gi) = lp(G), one has 
Rp(Gi) '.:::'. Rp(G)L (see [16, Proposition 5.18 (i)]) and (i) is proved. 

We show now that the change of field Ch2 (23) -+ Ch2 (23i) is an 
isomorphism. We use material and notation introduced in section 2. 
Since lp(G) = lp(Gi) is maximal, the cocycles <; and <;L correspond 
to generic Go-torsors and one consequently has y 3 (23) = r 3 (23) and 
y 3 (23L) = r 3 (23L) (see [6, Theorem 3.l(ii)]). In particular, it follows that 

2;3 c=) 2;3 c=) 213 c= ) 213 c= Yp ;v = rp '.Q and Yp :vi = rp ;vL)-

Therefore, since 2 < p + 1, the homomorphism Ch2 (23) -+ Ch2 (23i) 
coincides with 

and the center arrow is an isomorphism by Remark 2.7. □ 

Recall that by [16, Theorem 5.13], one has the motivic decomposition 

M(23, 'lL/ p'lL) '.:::'. EB Rp(G)(i)ffia;, 
i::::O 

(4.3) 

where Li2:_0aiti = P(CH(23), t)/ P(CH(Rp(G)), t), with P(-, t) the 
Poincare polynomial. Thus, for any integer k and any extension L / F, we get 
the following decomposition concerning Chow groups 

Chk(23i) '.:::'. E9chk-_i(Rp(G)i)ffia;_ 

i::>:0 

(4.4) 

Lemma 4.5. In this statement, one has p = 5. Let G be a simple linear alge
braic group of strongly inner type such that its I-invariant ls(G) is maximal 
and let L/ F be an extension such that ls(Gi) = ls(G). Then one has 

Ch\Rs(G)i) = 0 and Ch5 (Rs(G)i) = 0. 
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P-roof. Since Js(G L) = Js(G) one has Rs(G)L = Rs(G L) and it suffices to 
prove that Ch4(Rs(G)) = Ch5(Rs(G)) = 0 .. 

By Proposition 2.1 there exist an extension E / F and a cocycle 
t E H 1(E, Go) such that the topological filtration and they-filtration on 
K (~'), with Q3' = ?;' ( Go/ B), coincide. Let us set G' = ?;' Go. 

We claim that Js(G') i= (0, ... , 0). Indeed, assume that Js(G') = 
(0, ... , 0). In that case, one has Rs(G') = Z/5Z (Tate motive) 
by [16, Corollary 6.7] and the isomorphism (4.4) gives that Ch2 (Q3') = 
Z/5Z$02

• Since 2 < p + l, it implies that y 5
213 (Q3') = Z/5Z(fJ02

, and consec

utively yf13 (Q3) = Z/5Z(fJa2 by Remark 2.7. However, we have y;f3(Q3) = 
rJl\23) (because y 3(Q3) = ,3(Q3) since i; E H 1(F, Go) is generic). Thus, 
we have Ch2 (Q3) = Z/5Z(fJ02 which contradicts Ch2 (Rs(G)) = Z/5Z 
and the claim is proved (we recall that for any i < 6 = p + 1, one has 
,ii+1(X) '.:::'. Chi (X)). 

We now cqmpute the groups y~/i+l (Q3') for i = 3, 4, 5. Note that since 
G is of strongly inner type one has K(Q3') ::::: K(Go/B) by Remark 2.7. 
Furthermore, the description of the free group K (Go/ B) in terms of 
generators does not depend on the characteristic of the base field (see [l, 

Lemma 13.3(4)]). Thus, in order to conipute the groups y/i+1(23') for 
i = 3, 4, 5, since J5(G') i= (0, ... , 0), one can use the following theorem 
(adapted from [11, Theorem RM.IO] to our situation) 

Theorem 4.6 (Karpenko, Merkurjev). Let H be a semisimple linear alge
braic group of inner type over a field of characteristic O and let p be a torsion 
prime of H. If J p(H) i= (0, ... , 0) then 

Chj(Rp(H))~{Z/pZ ifj=0_ or j=k(p+1)-p+l, 1::::k:'.5:p-1 
0 .. otherwise, 

which combined with (4.4) gives t:l)at 

y/i+l (Q3') ::::: Chi (Q3') = Z/5Z(fJ(a;-2+a;) for i = 3, 4, 5 

(where the isomorphism is due to i < p + 1). Therefore, we get 

y/i+l (~) = 'll,/5Z(fJ(a;-2+a;) for i = 3, 4, 5. 

Thus, since r;f4
(~) ::::: Ch\~). the isomorphism (4.4) fork = 3 gives that 

,J14 (Q3) ::::: y:,'4 (Q3). Since they-filtration is contained in the topological 
one, we get 
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which implies the existence of an exact sequence 

0 ➔ (r§(s.B)/y{(s.B)) ➔ Yi15 (P,) ➔ ,;1\s.B) ➔ 0. 

Thus, since ,t5 (P,) :::::: Ch4 (P,), by applying the isomorphism (4.4) fork = 4, 
we get a surjection 

Z/5ZEB(a2+a4) - Ch4('Rs(G)) EB Z/5ZEB(a2+a4)' 

which implies that Ch4(Rs(G)) = 0. 
We prove that Ch5(Rs(G)) = 0 by proceeding in exactly the same way. 

5. Proof of Theorem 1.1 

In this section, we prove Theorem 1.1. 

D 

Remark 5.1. Let G be a semisimple linear algebraic group over a field F 
and let X be a projective homogeneous G-variety. The F-variety X is 
A-trivial in the sense of [11, Definition 2.3] (see [11, Example 2.5]), 
i.e for any extension L / F with X (L) =I=- 0, the degree homomorphism 
deg: CHo(XL) ➔ Z is an isomorphism. 

Since by [11, Lemma 2.9], any A-trivial variety X with 1 E degCho(X) 
is such that for any equidimensional variety Y the change of field homo
morphism Ch(Y) ➔ Ch(Y F(X)) is an isomorphism (in any codimension, 
with Ch the Chow group modulo p, for any prime p), one can assume that 
1 (/. deg Cho(X) in order to prove Theorem 1.1. 

Now, we know from [16, Table 4.13] that if G is of type F4 or Es then the 
J -invariant JP ( G) of G is equal to (O) or (1) (in the latter case, the J -invariant 
modulo p is maximal), with p = 3 if G is of type F4 and p = 5 if G is of 
type Es. However, the assumption Jp(G) = (0) is equivalent to the existence 
of a splitting field K / F of G of degree coprime top (see [16, Corollary 6.7]). 
In that case one has Cho(X) :::::: Cho(XK) and consequently 1. E deg Cho(X). 
Thus, under the assumption 1 (/. degCho(X), one necessarly has Jp(G) = (1) 
and that is why we can assume J p(G) maximal in the sequel. 

We have seen in the previous remark that if Jp(G) is maximal 
~ _ ~hen p must divide the degree of any splitting field of G. Consequently, 

-- by Y:16-:ExampTe -3~6])~-every-projective-homogen~Q!l_S variety under a group 
of type F4 or Es with maximal Ip( G) (p = 3 for the ty~:tan<rp-=~5-;'or
the type Es) is generically split. Then, by Proposition 3.2, the first conclusion 
of Theorem 1.1 is a direct consequence of the following proposition. 

Proposition 5.2. Let G be a linear algebraic grol}p of type F4 or Es over a 
field F such that Jp(G) is nontrivial, with p =.3 ifG is of type F4 and p = 5 
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if G is of type Es. Then,for any extension L / F, the change of field 

(5.3) 

where Rp(G) is the associated Rost motive, is surjective in codimension 
< p+ 1. 

Proof. First of all, the homomorphism (5.3) is clearly surjective in codimen
sion O since one has Ch0('Rp(G)L) = 'll.,/p'll., for any extension L/F. Then, 
Ch1 (Q3) is identified with the Picard group Pie(~) and is rational since G is of 
type F4 or Es (see [18, Example 4.1.1]). Furthermore, thanks to the Solomon 
Theorem for example (see [18, § 2.5]), one can compute the coefficients ai 'sin 
the decomposition (4.4): we get ao = l and a1 = rank(G) = rank(CH1 (~)). 

Thus, the isomorphism (4.4) implies that Ch1(Rp(G)L) = 0 for any exten
sion L/ F. Therefore, we have already shown that the homomorphism (5.3) is 
surjective in codimension O and 1. 

Now we show that it is surjective in codimension 2 and 3 (which proves 
the proposition for G of type F4). Since lp(G) is maximal, one has 
Ch2('Rp(G)) = Z/p'll., and Ch3(Rp(G)) = 0 by Lemma 4.1. Moreover, 

· since lp(GL) :::: lp(G) for any extension L/F, one has lp(GL) = (0) or 
lp(GL) = lp(G) (i.e is maximal). 

. If lµ(GL) = lp(G) then one has Ch2 ('Rp(G)L) = Z/pZ and 
Ch3(Rp(G)L) = 0 by Lemma 4.2 (i) and the homomorphism (5.3) is 
clearly surjective in codimension 3. Thanks to the decomposition (4.4) and 
Lemma 4.2 (ii), we see that it is also surjective in codimension 2. 

If lp(GL) = (O) then on the one hand one has Rp(GL) = Z/p'll., and on 
the other hand the motivic decomposition given in [16, Proposition 5.18 (i)] 
tmplies the following decomposition on Chow groups for any integer k 

p-1 

Chk(Rp(G)L)::: EBchk-i(p+l)(Rp(GL)). (5.4) 
i=O 

In particular, one has Chk(Rp(G)L) = 0 fork = 2 or 3 and the conclusion 
follows. 

For G of type Es, we now prove that Ch(Rs(G)) --+ Ch('Rs(G)L) 
is surjective in codimension 4 and 5 by showing that one has 
Ch4 (Rs(G)L) = Ch5(Rs(G)L) = 0 for any extension L/ F. By Lemma 4.5, 
this is true when lp(GL) = lp(G). Moreover, if lp(GL) = 0 then one has 
Rs(GL) = 'll.,/5Z and the isomorphism (5.4) implies that Ch4 (Rs(G)L) = 
Ch5(Rs(G)L) = 0. That completes the proof of Proposition 5.2. D 

Finally, using the same notation as in the statement of Theorem 1.1, we 
want to prove the second conclusion of Theorem 1.1. Since for any generic 
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point t; of Y, one has 

by Proposition 3.1 and in view of what has already been done, it is sufficient 
to prove the following lemma to get the second conclusion. 

Lemma 5.5. Let G be a linear algebraic group of type F4 or Es over afield 
F such that lp(G) is nontrivial, with p = 3 ifG is of type F4 and p = 5 ifG 
is of type Eg. Then one has -

Proof Thanks to Proposition 2.3, one can prove the lemma by proceeding in 
exactly the same way Lemma 4.5 has been proved. □ 

This concludes the proof of Theorem 1.1. 
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