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Abstract. Ozaki studied the non-triviality and the existence of non~ 
trivial finite submodules of the Iwasawa module of the cyclotom}c Zµ
extension over totally real fields. In this article, we show analogous results 
for the Z~ -extension over imaginary quadratic fields. 
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1. Introduction 

Let p be an odd prime number and k/Q a finite extension. Let Zp be the ring 
of p-adic integers. Let k00 / k be the cyclotomic Zp-extension and k11 a unique 
intermediate field of k00 / k such that [k11 : k] = p 11 for each non-negative 
integer n. Let L(k00)/ k00 be the maximal unramified abelian pro-p extension. 
By class field theory, the Galois group Gal(L(k00)/k00 ) is identified with the 
projective limit of the p-part of the ideal class groups of k11 for a_n integers 
n :::: 0 with respect to the norm maps; The Galois group Gal(k00 / k) acts on 
Gal(L(k00)/ k00) via the inner automoryhism, and then the complete group 
ring 

II 
I 

acts on Gal (L (k00) / k00). Here the projective limit ·is taken with respect to the 
restriction maps Gal(k11+i/ k) -+ Gal(k11 / k) of Galois groups for each non

.;_; l!_~g~tive integers n. A subject of the theory of Zp-extensions is studying the 
-- Zpl[GaHkoo7kJ]]=moclulestructure0 ofGal(L(koo)/-k._oo)_ .. _:-~-c-· __ 
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Ozaki showed a totally real analogue of Kumrner's criterion (see for 
example section 5 of [13)) of the divisibility of the class number of the p-th 
cyclotomic field. 

Theorem A (Ozaki [111). Suppose that k is totally real and that p splits 
completely in k /Q. Then the following conditions are equivalent: 

(1) Gal(L(k00)/ k00 ) =J. 0. 
(2) P(p(0, k) = 0 mod p. 

Here we denote by (p(s, k) the p-adic zeta function of k. 

As an application of the proof of Theorem A, Ozaki also showed the 
following result. We shall introduce a slightly modified statement. 

Theorem B (Ozaki [11]). Suppose that k is totally real and p splits comp
letely in k/Q. Suppose further that Leopoldt's conjecture holds for p and k. 
Then the following two conditions are equivalent: 

(1) Gal(L(k00)/ k00 ) has a non-trivial finite Zp[[Gal(k00 / k)]]-submodule. 
(2) M (k00 ) =/= L(koo)-

Here we denote by M(k00 ) the maximal abelian pro-p extension of k00 

unramified outside p. 

Note that a Zp[[Gal(k00 / k)]]-module is finite if and only if its annihilator 
ideal contains two elements which are relatively prime (see section 13 of [13]). 
For totally real fields k, it is conjectured by Greenberg that Gal(L(k00)/ k00 ) 

is finite (see [4]), and no counter examples of totally real fields have been 
found yet. It is not known even whether Gal(L(k00)/ k00 ) always has a non-

" trivial finite submodule or not when Gal(L(k00)/ k00 ) =J. 0. So Theorem B 
seems interesting because the existence of non-trivial finite submodules is 
characterized by non-trivial ramifications of primes lying above p. 

In the present article, we will show results analogous to Theorem A and 
Theorem B for Z~-extensions of imaginary quadratic fields. Greenberg's 
conjecture is also studied for imaginary quadratic fields, furthermore, for all 
number fields (see Greenberg [6]). 

2. Results for Z~-extensions over imaginary quadratic fields 

From here, let p be an odd prime number and k an imaginary quadratic field 
in which p splits, write (p) = pp' ink with p =I= p'. By class field theory, 
there is a unique Z~-extension k/ k. Let L(k)/k be the maximal unramified 
pro-p abelian extension. Let x be the Dirichlet character associated to k 
and w the Teichmiiller character of mod p. Let Lp(s, cvx-1) be the p-adic 
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Dirichlet £-function associated to the even character c.v x- 1• It is known that 
LP (s, c.v x- 1) is an analytic function in s E Z p, and hence we can consider the 
derivative L~(s, wx- 1) of Lp(s, wx- 1). At first, we give a result analogous 
to Theorem A. 

Theorem 1. The following two conditions are equivalent. 

(1) Gal(L(k)/k) =I- 0. 
L' (0, wx- 1) 

(2) P = 0 mod p. 
p 

We must mention here that a very similar result had been obtained by Byeon 
(see Proposition 2.3 of [I].) 

Let Mp(k)/k be the maximal pro-p abelian extension unramified outside 
all primes lying above p. Then the complete group ring 

Zp[[Gal(k/ k)]] = I~ Zp[Gal(k' / k)] (k ~ k' ~ k, [k': k] < oo) 
k' 

acts on Gal(L(k)/k) and on Gal(Mp(k)/k), and it is known that these modules 
are finitely generated and torsion (for this, we shall see below for our special 
cases). A finitely generated, torsion Zp[[Gal(k/ k)]]-module is called pseudo
null if the annihilator ideal contains two elements which are relatively prime. 
The second result of this article is an analogue of Theorem B. 

Theorem 2. The following two conditions are equivalent. 

(1) Gal(L(k)/k) has a non-trivial pseudo-null Zp[[Gal(k/ k)]]-submodule. 
(2) Mp(k) =/- L(k). 

It is conjectured by Greenberg [6] that Gal(L(k)/k) is a pseudo-null 
Zp[[Gal(k/ k)]]-module, and no counter examples have been found yet. 
It is also not known whether Gal(L(k)/k) always has a non-trivial pseudo
null Zp[[Gal(k/ k)]]-submodule or not when Gal(L(k)/k) =I- 0. The author 
expects that Theorem A, Theorem B, Theorem 1 and Theorem 2 will play 
crucial roles in the study of Greenberg's conjecture. ' 

At first, we give the proof of Theorem 2, and then we prove Theorem 1. 

3. Proof of Theorem 2 

Let p be an odd prime number and k an imaginary quadratic field in which p 
splits, that is, p = pp' with p =I- p' in k. Recall the cyclotomic Zp-extension 
k00 / k, and let K / k be a Zp-extension such that K n k00 = k. Then we 
have k = k00 K. Let rand a be topological generators of Gal(k/k00) and 
Gal(k/ K) respectively. By putting T = T - 1 and S = a - I, we have that 
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A = Zp[[Gal(k/k)]] = Zp[[S, T]], here denote by Zp[[S, T]] the formal 
power series ring in two variables with coefficients in Zp. For an intermediate 
field F of k/ k (not necessary finite), let Mp(F)/ F and L(F)/ F be the 
maximal pro-p abelian extension unramified outside all primes lying above p 
and the maximal unramified abelian pro-p • extension respectively. Put 
Xp = Gal(Mp(k)/k) and X = Gal(L(k)/k). Then A acts on Xp and on X. For 
a A-module Mand an element f EA, let M[f] be the maximal submodule 
of M which is annihilated by f, namely, M[f] = {m E M I fm = O}. 

Lemma 1. The extension k/ k00 is unramified at all primes. 

Proof Let J be the inertia group of a prime lying above p in the extension 
k / k. Since p splits in k, there is a surjective morphism Z; -+ J by class 
field theory. It follows from z; ~ (Z/(p - l)Z) x Zp that J ~ Zp. 
Because k00 / k is totally ramified at all primes lying above p, one sees 
that J n Gal(k/ k00 ) =:_ l, and hence k/ k00 is unramified at all primes 
lying above p. Since k/ k is unramified outside primes lying above p (see 
Proposition 13.2 of [13]), we can conclude that k/ k 00 is unramified at all 
primes. D 

Lemma 2. Mp(k00 ) = L(k00 ). 

Proof The inclusion L(k00 ) ~ Mp(k00 ) follows from the definitions of 
L(k00 ) and Mp(k00). Let M(k00)/ k00 be the maximal pro-p abelian exten
sion unramified outside all primes lying above p. Let Q 00 be the cyclotomic 
Zp-extension Q. By the maximality of M(k00 ), M(k00)/Q00 is a Galois 
extension, and hence Gal(k00 /Q00) = (]) ~ Z/2Z acts on Gal(M(k00)/ k00) 

via the inner automorphism. 
Here we show that Q00 has no non-trivial abelian p-extensions unramified 

outside all primes lying above p. Suppose that there is a non-trivial abelian 
p-extension Mo/Q00 unramified outside all primes lying above p. By taking 
the Galois ~losure of Mo/IQ, we may assume that Mo/Q is a Galois exten
sion. Let ?41 be the maximal subfield of Mo such that M1 /Q is abelian." 
Note that Q 00 ~ M1. By the topological version of Nakayama's lemma, 
M1/Q00 is a non-trivial extension. By Kronecker-Weber's theorem, M1 is 
contained in the algebraic extension Q(µ p°") of Q obtained by adjoining all 
p-power-th roots of unity. Hence the existence of M1 contradicts to the fact 
that [Q(µ p°") : Q 00] = p - I. Therefore Q 00 has no non-trivial abelian p
extensions unramified outside all primes lying above p. 

The above fact shows that J acts on Gal(M(k00)/ k00 ) as inverse, and 
hence each submodule of Gal(M(k00)/ k00) is a ]-submodule. This implies 
that each subextension of M(k00)/ k00 is a Galois extension over Qoo. 
In particular, Mp (k00 ) /Q00 is a Galois extension. Since the prime lying 
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above p splits in k00 /Q00 , and since Mp(k00 )/ k00 is unramified at all primes 
lying above p', Mp(k00)/Q00 is unramified at all primes lying above p'. 
Because of Mp(k00)/Q00 is a Galois extension, all primes lying above JJ is 
also unramified in Mp(k00)/Q00 . Thus Mp(k00)/k00 is unramified, and hence 
Mp(koo) s; L(k00 ). □ 

Lemma 3. 

(1) The A-modules Xp and X are finitely generated and torsion. 
(2) The T -torsion submodule X [T] of X is a pseudo-null submodule. 

Proof (1) The fixed field L by (r - l)X = TX of L(k) is the maximal 
abelian subfield of L(k)/ k00 • By lemma 2 of [11], we know that L = L(k00 ), 

and further we have the following exact sequence 

0--+ X/TX--+ Gal(L(k00)/k00)--+ Gal(k/k00)--+ 0 

of Zµ[[Gal(k00 / k)]]-modules. By lemma 1 and lemma 2, we also have the 
following exact sequence 

- I 

0--+ Xp/T:tp--+ Gal(L(k00)/ k00 ) --+ Gal(k/ k00)--+ 0 

of Zp[[Gal(k00 / k)]]-modules. It follows from Ferrero-Washington's 
Theorem [2] and Corollary 13.28 of [13] that Gal(L(k00)/ k00 ) is a finitely 
generated free Zµ-module of rank Ap(k), which is the Iwasawa ),-invariant of 
k00 = k. Put r = Ap(k) - 1. From the above exact sequences, we have 

X/TX ~ Xp/T:tp ~ Z~ 

as Zµ-modules. By the topological version of Nakayama's lemma, X and Xp 
are generated by r elements over Zp[[T]], write 

r 

X = L Zp[[T]]xi 
i=l 

and 
r 

Xp = L Zp[[T]]yi 

i=l 

for some elements x1, ... , Xr E X and YI, ... , Yr E Xp. In particular X and 
Xp are finitely generated over A. It follows that there are (r, r )-matrices A 

___ and B with entries in Zp[[T]] such that 

sC) =AC),sC) =BC)· 
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Hence det(S - A) and det(S - B) annihilate X and Xp respectively, and 
therefore X and Xp are torsion over A. 
(2) First, suppose that r = 0. Then X /TX is trivial. By the topological version 
of Nakayama's lemma, X is also trivial, in particular is pseudo-null. Next, 
suppose that r > 0. Then det(S - A) is a non-constant monic polynomial of 
variable S with coefficients in Zp[[T]] of degree r. Since T does not divide 
det(S - A) and since Tis a prime element of A, X[T] is a pseudo-null sub
module of X. □ 

The following proposition is a key stone of the proof of Theorem 2. 

Proposition 1. Xp has no non-trivial pseudo-null A-submodule. 

Proof Proposition 1 is obtained by Perrin-Riou [12]. However, in our case, 
the proof is not difficult, so we prefer to give a proof here. 

Let '.D' be the decomposition group ink/ k of a prime lying above p'. 

Lemma 4. [Gal(k/k): '.D'] < oo. 

Proof This fact is stated in Minardi's thesis [9]. We prefer to prove it here. 
Let h be the idele group of k. Let M(k)/ k be the maximal pro-p abelian 
extension unramified outside all primes lying above p. For primes p and p', 
let uJ1) and u?) be the local principal unit groups with respect top and p'. 

By class field theory, there is a closed subgroup H which contains kx and 
local unit groups at all primes not above p, and an isomorphism 

hf H ~ Gal(M(k)/k), 

via Artin's map. Also, we have an exact sequence 

o ~ uJ1) x u;;) ~ Ik/ H ~ Ch 0 Zp ~ o 
of pro finite abelian groups. Let n' E k x be a prime element of p'. Put 

if q = p' 

otherwise 

and 

/Jq = {

'lr,-p+l if q = p 

1 otherwise 

Then (aq)q and (/Jq)q are in h, and 

(aq)q = (/Jq)q mod H. 

From the facts that n'p-l E uJ1) and (n'P-1) x u;;) has finite index in 

uJ1) x u;,1), we conclude that the decomposition group of p' in M(k)/ k has 

finite index. Therefore, [Gal(k/ k) : '.D'] < oo. D 
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Let k' be the fixed field ofk by '.D'. By Lemma 4, k' / k is finite. Let xp be 
the Galois group of the maximal pro-p abelian extension M(k)/k unramified 
outside all primes lying above p, and Jw be the inertia subgroup of Xp of a 
prime q:J' of k lying above p'. Then we have the following exact sequence 

EB J-:p1 --+ Xp --+ Xp --+ 0 

-:P'IP' 

of A-modules. Note that there are [k' : k] primes ofk lying above p'. Here we 
determine the A-module structure of E9-:P'IP' J-:p1 • Let p~, be a prime of k' lying 
above p'. Since p~, is unramified in k' /Q and has degree I, the completion 
of k' at p~, is isomorphic to Qp, the p-adic number field. By local class field 

theory, there is a unique Z1-extension Qp of Qp. Let l.l}' be the unique prime 
of k lying above p~,. It follows that the localization of k at l.l}' is isomorphic 

to Qp. We need the following. 

Theorem D (From the Theorem of Wintenberger [14]). There is a sur

jective morphism 

/ -
· of Zp[[Gal(k/ k')]]-modules. 

Remark. 

(1) Wintenberger dealt with more general situations for Z%-extensions of 
local fields. 

(2) We can also show Theorem D by using the fact that the Galois group of 
the maximal pro-p extension of Qp is a free pro-p group of rank 2. 

By Theorem D, there is a surjective morphism from E9-:P'IP' Zp[[Gal(k/ k')]] 

to E9-:P'IP' /-:p1 • On the other hand, EBwlP' Zp[[Gal(k/ k')]] is isomorphic to A 
as A-modules. Hence we have the following exact sequence 

A --+ xp --+ Xp --+ 0 

of A-modules. By Greenberg's result [5], we know that Xp has A-rank 1. 
Also, the A-rank of Xp is Oby Lemma 3 (1). This implies that the morphism 
A ➔ xp must be injective. 

Let B be a pseudo-null submodule of Xp, and let C be the inverse image of 
B with respect to the morphi~m_3p __ ➔_X.p• Jh~n Q ~i\_-;-;t C:""' ~Jl_~_O __ is __ ·=-~~

ae-·=··- exact. Now we cfaim th-at the- A-torsion submodule of C is trivial. Indeed, let 
Tor AC be the submodule of C which consists of all A-torsion elements. Then 
Tor AC + A/ A maps to B injectively. Since 

TorAC +A/A:::::: TorAC/TorAC n A:::::: TorAC, 
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we find that Tor AC is a pseudo-null submodule of Xp, However, Greenberg [5] 
also showed that Xp has no non-trivial pseudo-null submodule. Therefore, 
TorAC = 0. 

Since B is pseudo-null, there are two annihilators f and g of B such that f 
and g are relatively prime. Observe the following diagram, 

0 ----+ A ----+C ----+B ----+0 

gx l gxl gx l 

0 ---+A ----+C ----+B ----+0. 

By the Snake lemma, we have an exact sequence 

C[g]---+ B[g] ---+ A/(g) 

of A-modules. From the above claim, we have C[g] = 0, and by the choice 
of g we have B[g] = B. Observe the following commutative diagram 

0----+ B----+ A/(g) 

fxl fxl 
0----+ B----+ A/(g) 

of A-modules. Since A is a UFD and since f and g are relatively prime, 
the right vertical morphism is injective. However, since f annihilates B, the 
above morphism on B is trivial, and hence B must be trivial. This completes 
the proof of Proposition 1. D 

We finish the proof of Theorem 2. First, suppose that Mp(k) = L(k). Then 
Xp = X. By Proposition 1, X = Xp has no non-trivial pseudo-null sub
modules. Next suppose that Mp(k) i= L(k). Put Y = Gal(Mp(k)/ L(k)). 
By the Snake lemma to the following exact-commutative diagram 

0 ----+Y ----+Xp ----+X ----+0 

Txl Txl Txl 
0 ----+Y ----+Xp ----+X ----+ 0 

of A-modules, we have the following exact sequence 

X[T]---+ Y/TY---+ Xp/TXp--+ X/TX--+ 0. 

By Lemma 2, we find that Xp/TXp ::::::: X/TX. Hence X[T] ➔ Y/TY is 
surjective. By the topological version of Nakayama's lemma, Y / TY is not 
trivial. Thus X[T] is also not trivial. Furthermore, from Lemma 3, X[T] 
is a non-trivial pseudo-null submodule of X. This completes the proof of 
Theorem 2. D 
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Remark. Let Mp,(k)/k be the maximal pro-p abelian extension unramified 
outside all primes lying above p'. Since Mp(k) and Mp 1 (k) are conjugate over 
k, Mp(k) =I- L(k) if and only if Mp,(k) =I- L(k). 

4. Proof of Theorem 1 

The notations of this section are the same as before. Let p be an odd prime 
number and k an imaginary quadratic field in which p splits as p = pp'. Let 
x be Dirichlet character associated to k, w the Teichmiiller character of mod 
p and Lp(s, wx- 1) be the p-adic £-function associated to the even charac
ter wx- 1. Denote by ),p(k) the Iwasawa A-invariant of the cyclotomic Zp
extension k00 / k. We introduce some facts. 

Lemma 5 (cf. Theorem 5.11 of [13]). For each positive integer n, it holds 
that 

J 1 I B 1-n -1 
Lp(I - n, WX- ) = -(1 - cvl-n X- (p)pn- ) n,w X • 

n 
Here, denote by B 11 ,w1-n x-1 the generalized Bernoulli number associated ton 

andcvl-nx-1- □ 

Lemma 6 (lwasawa [7]). There exists a power series G(S) E Zp[[S]] such 
that Lp(s, wx-1) = G((l + py - l)for alls E Zp. □ 

By the Weierstrass preparation theorem and Ferrero-Washington's 
theorem [2], there are a distinguished polynomial g(S) in Zp[S], a monic 
polynomial of the form g(S) = sctegg + • --+ a1S + ao with ai E p'lL,p 
for 0 ::::: i ::::: degg - 1, and a unit power series U(S) E Zp[[S]] such that 
G(S) = g(S)U(S). Since p splits ink, it follows that x-1(p) = x(p) = l. 
Then by Lemma 5, one sees that Lp(0, wx-1) = 0. This implies that ao = 0. 
Put f(S) = g(S)/S. By the analytic class number formula (cf. Theorem 7.14 
of [13]), it follows that degg = },p(k). Recall that Gal(L(k00)/k00 ) is a free 

Zp-module of rank Ap(k). Hence X/T X ::: 'lL,~egf as Zp-modules. It follows 
from the topological version of Nakayama's lemma that X =I- 0 if and only 
if X /TX =/- 0. Also, X /TX =/- 0 if arid only if deg f > 0, which is equiva
lent to /(0) = 0 mod p. Now we consider the derivative of Lp(s, wx-1) at 
s = 0. We then have 

L~(0, wx-1
) = logp(l + p) · f(0)U(0). 

Since the normalized p-adic additive valuation of logp(l + p) is 1, 
f (0) ~·o moa· p if and only if 

L' (O, cvx-1) 
P = 0 mod p. 

p 

This completes the proof of Theorem 1. 
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5. Discussion 

If }, p (k) = 2, it is known that X has a non-trivial pseudo-null A-submodule 
if and only if Xis itself a pseudo-null A-module (see for example [3]). So we 
can obtain the following. 

Theorem 3. Suppose ,1, P (k) = 2. Then the following two statements are 
equivalent. 

(1) Xis a pseudo-null A-module. 
(2) Mµ(k) =J L(k). 

To find relationships between arithmetic objects and analytic objects is an 
important theme in number theory. When one looks at the results stated in this 
article, the following questions arise naturally. 

Question. Let p be an odd prime number. 

(1) Let k be a totally real field in which p splits completely. Does 

P(p(0, k) = 0 mod p 

imply M(k00 ) =f L(k00 )? 
(2) Let k be an imaginary quadratic field in which p splits. Does 

L' (0, wx-1) 
P = 0mod p 

p 

imply Mµ(k) =f L(k)? 
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