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Structural equation modeling techniques can use different correlation coefficients 
and different estimation methods in confirmatory factor analysis (CF A) . The ratio­
nale for examining correlation types and estimation methods is related to their effect 
on the weight matrix (W-1) in the CF A formu la for determining the fit funct ion sta­
tistics. The results of this study help us to understand that the type of correlation ma­
trix and estimation method effects factor loadings and fit functions. Some suggested 
alternatives are to use either a limited information estimator for categorical variable 
analysis or multinomial full information estimators based on modem item response 
theory. 

Recent work in the item response theory (IRT) method of test construction has 
sparked a renewed interest in the use of confirmatory factor analysis (CFA) with di­
chotomous data (Takane, Yoshio, & de Leeuw, 1987; Wise & Tatsuoka, 1986). In 
the past, underlying constructs or latent variables were determined using factor-an-
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alytic techniques that often overlooked the variable scale of measurement 
(Gorsuch, I 983 ). The controversy over scales of measurement is not new; for ex­
ample, Stevens ( 1968) argued that psychological tests yielded scores that were or­
dinal not interval in nature, hence violating assumptions of parametric statistics. 
Today, there is a realization that data of the true-false, correct- incorrect, and satis­
fied-dissatisfied type are prevalent and need to be appropriately analyzed. Factor 
analysis, which was typically conducted under the premise that interval level ( con­
tinuous) measurement of variables occurred, is being questioned when using di­
chotomously scored test data. No longer is the Pearson correlation matrix the only 
type of matrix used in factor analysis (Ji:ireskog & Sorbom, 1993). 

PROBLEMS WITH CORRELATION COEFFICIENTS 

Mislevy ( 1986) contended that the use of the phi coefficient with dichotomous data 
in factor analysis is problematic on several counts. First, the values of the phi coef­
ficient are dependent not only on the strength of the relation between the variables, 
but also on the means of the individual variables. If two dichotomous variables are 
perfectly ordered on the Guttman scale, the Pearson r attains a value of I only if the 
means of the two variables are equal. Second, because of the bounded nature of the 
dichotomous variable, the standard linear factor analysis model is misspecified 
from the onset. In other words, regressing a dichotomous variable on any continu­
ous latent variable that is unbounded cannot be linear. Third, a factor model for un­
derlying continuous variables and functions of observed discrete variables depends 
on the skewness of the discrete variables, that is, their mean values. Finally, the 
choice of cutoff values for binary variables affects the values of the expected phi 
coefficients. According to Mislevy ( 1986), the factor analysis of phi coefficients on 
binary variables produced by the same underlying correlation structure, but 
dichotomized at different points, can conform to factor models with different struc­
tures and possibly different numbers of factors . 

The Pearson correlation coefficient computed with dichotomous data has also 
been unfavorably reviewed. Ethington ( 1987), in reviewing the literature on the 
use of observed dichotomous variables in LISREL analyses, determined that the 
Pearson correlation coefficient underestimates the factor loadings of the categori­
cal variables and overestimates the chi-square goodness-of-fit values, and there­
fore is not recommended for use with dichotomous data. Joreskog and Si:irbom 
( 1988), in two different Monte Carlo studies, investigated the various types of cor­
relation coefficients to determine which one is the "best." The Phi, Spearman rank, 
and Kendall tau-b correlations performed poorly, whereas the tetrachoric correla­
tions with ordinal data produced robust parameter estimates and better fitting mod­
els. For these reasons, they recommended the use of the tetrachoric correlation 
with dichotomous data. 

Muthen (1984) examined the advantages and disadvantages oftetrachoric cor­
relations in the context of the assumption of symmetric normal distributions for 
underlying latent variables when using dichotomous variables. One problem asso-
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ciated with their use was that tetrachoric correlation matrices are not ensured posi­
tive definiteness as are Pearson correlation matrices. A matrix is nonpositive 
definite when at least one eigenvalue is negative. This could be caused by sam­
pling, outliers, or variable collinearity. One approach to correcting this problem is 
to smooth the matrix using ridge or principal component methods (W othke, 1992). 

A nonpositive definite tetrachoric correlation matrix may indicate violation 
of the assumption of underlying normality, or it may arise from sampling vari­
ability. In addition, tetrachoric correlation matrices generally provide ex­
tremely inflated chi-square values and underestimated standard errors of 
estimates due to larger variability than Pearson correlations. One solution is to 
specify a factor model that assumes the observed variables are related to a set 
of latent variables through a nonlinear model, thereby avoiding the problems 
generated by using dichotomous variables with the linear factor analysis model 
(nonlinear models are specified for use with logit and probit regression as well 
as IRT modeling). One can also assess the differences in the methods and 
choose what appears to be the best, given the nature of the particular data and 
research goals. 

It should be noted that factor analysis and principal component methods are dif­
ferent (Joreskog & Sorbom, 1979). Factor analysis is a correlation-oriented ap­
proach that aims to reproduce the intercorrelation among the variables, whereas 
principal components is a variance-oriented technique that aims to reproduce the 
total variable variance with all components required to always reproduce the cor­
relations exactly. This study implemented CF A, hypothesized factors that were 
less than the number of variables, and examined how well the intercorrelations 
were reproduced. In general, the number of hypothesized factors in CF A will not 
account for as much variance as the same number of principal components. 

PROBLEMS WITH ESTIMATION METHODS 

According to Ethington 's (1987) review, various studies indicated that several esti­
mation procedures perform equally well in factor analysis models containing cate­
gorical data when they did not deviate from normality. These were maximum like­
lihood (ML), generalized least squares (GLS), categorical variable methodology 
(CVM), and asymptotically distribution free (ADF) procedures. However, where 
extreme skewness existed, ML and GLS chi-square values tended to be inflated, 
and standard errors tended to be underestimated. Distortions were not evident when 
sample size was at least 400. The results suggested that the choice of estimation 
procedure may not be as important as the choice of correlation type when the con­
cern is with the robustness of parameter estimates. However, estimation procedures 
impact hypothesis testing and assessment of fit. 

Mislevy ( 1986) examined the ULS, GLS, and ML estimation procedures for 
factor models utilizing dichotomous responses. He characterized ULS and GLS as 
" limited information" solutions, and the marginal ML estimation procedure as a 
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full infonnation solution. The advantages of unweighted least squares (ULS) for 
factor models with dichotomous data included a superiority over the use of phi co­
efficients and relative economy. The disadvantages included a loss of information, 
lack of standard error, goodness-of-fit indexes, and problems in estimating S (the 
correlation matrix among the latent 17s when extreme values are present). 

Both GLS and ML provided better estimates of standard errors of estimation 
and statistical tests of model fit. Because of constraints in their respective algo­
rithms, Mislevy ( 1986) suggested using ML for long tests with few factors and 
GLS for short tests with many factors. Both appeared acceptable for short tests and 
few factors, but at present, neither was very good for long tests and many factors. 
In summary, the estimation methods provide different results in the presence of 
variable measurement scale, variance-covariance, and normality assumptions, 
leaving one to sort out when to use which estimation method. 

METHOD AND PROCEDURE 

Participants and Instrument 

Two sections of an undergraduate class at the University of North Texas partici­
pated in the study. A total of 100 students in the two sections of the course were 
given a 35-item multiple choice test over a single content domain. Each item had 
four choices and was scored I for a correct answer and O for an incorrect an­
swer. The Cronbach alpha internal consistency reliability for the item responses 
was .63. It should be noted that reliability does not imply that items measure 
only one factor (Nunnally & Bernstein, 1994). A factor analysis using the princi­
pal axis extraction method yielded a single factor. Factor loadings ranged from 
.35 to .57. 

Design 

The 35 dichotomous item responses for the I 00 students were converted into two 
types of correlation matrices: Pearson and tetrachoric. A CF A with a single 
unidimensional factor was hypothesized. The UL, GLS, and ML estimation meth­
ods were then computed using the PREUS and LISREL procedures available in 
LISREL8 (Joreskog & Sorbom, 1996a) and PRELIS2 (Joreskog & Sorbom, 
1996b ). The factor loadings and fit functions were compared given these two types 
of matrices and three estimation methods. 

The generally weighted least squares (WLS) method was not employed in this 
study due to the large sample size requirement. Similarly, the diagonally weighted 
least squares (OWLS) method was not included because it doesn't lead to asymp­
totically efficient estimates of model parameters ( factor loadings), and it only uses 
the asymptotic variances rather than the covariance of the estimated coefficients in 
the weight matrix (W- 1). 
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RESULTS 

Several types of correlations can be computed depending on the scale of measure­
ment; for example, tetrachoric, phi, Spearman, Pearson, point-biserial, and biserial. 
However, only the Pearson, tetrachoric, and biserial correlations can be used in cur­
rent computer programs to conduct CF A. In this study, only Pearson and tetrachoric 
were compared under ULS, GLS, and ML estimation methods. The factor loadings 
and fit functions were compared to examine the impact of using these different cor­
relation matrices with dichotomous data under different estimation methods. 

The LISREL8 and PRELIS2 computer programs that generated the factor load­
ings and fit functions for both types of correlation matrices read in a raw data file 
that contained an identification number followed by 35 item responses dichoto­
mously coded for 100 students. The programs created either a Pearson or 
tetrachoric correlation matrix. The /OU or output statement included either the 
ULS, GL, or ML command option to produce the factor loading comparisons in 
Table I and the fit function comparisons in Table 2. 

The factor loadings varied depending on the correlation type and estimation 
method. The fit functions differed significantly depending on the type of correla­
tion matrix and estimation method. The tetrachoric matrix produced a nonpositive 
definite matrix in the ULS and GLS estimation methods. The maximum likelihood 
method did not yield a nonpositive definite matrix, but did contain larger average 
standard errors (root mean squared residual). These results are consistent with ex­
pectations given prior research and concerns over the correlation type and estima­
tion method used. 

SUMMARY 

The results of this heuristic example indicated that the type of correlation coeffi­
cient and estimation method yielded different factor loadings and fit functions . 
Prior research indicated that the tetrachoric correlation using the ML estimation 
method was a consistent estimator with small variances not being a problem if a 
sufficiently large sample size was used. However, the normal-theory chi-square fit 
function and the standard errors are not robust (Muthen & Kaplan, 1985), plus the 
problem of non positive definite matrices plaques the use of polychoric correlations 
in factor analysis. 

The use of dichotomous data in CF A presents a unique set of problems. The 
problems are compounded when considering a mixed correlation matrix where the 
variables are measured on different scales. In this case, the researcher is warned 
against conducting the analysis. A. guideline to follow is one in which the corre­
lated variables are measured on the same scale of measurement. PRELIS2 itself 
provides a restriction in that only the Pearson, tetrachoric, and biserial correlation 
types are permitted. The Pearson correlation matrix with interval data is preferred 
because of the CFA requirement of variance/covariance among variables and nor­
mality assumption. 
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TABLE 1 
Comparison of Factor Loadings by Correlation Type and Estimation Method 

Pearson Tetrachoric 

Variable UlS GlS Ml UlS GlS Ml 

VI 0.241 0.216 0.235 0.535 0.061 0.523 
V2 0.173 0.208 0.177 0.379 0.050 0.372 
V3 --0.583 -0.426 -0.614 --0.665 0.004 -0.675 
V4 0.016 -0.033 0.034 0.074 0.061 0.052 
VS 0.173 0.157 0.149 0.115 0.071 0.084 
V6 --0.297 -0.169 --0.332 --0.376 0.084 -0.395 
V7 0.119 0.132 0.106 --0.017 0.073 -0.042 
vs 0.404 0.436 0.355 0.339 -0.030 0.336 
V9 -0.067 -0.014 --0.106 --0.192 -0.083 -0.187 
VIO 0.004 0.078 --0.01 I --0.009 -0.013 0.002 
Vil -0.274 -0.160 --0.288 -0.247 -0.005 -0.246 
Vl2 --0.105 -0.002 --0.122 -0.191 -0.075 --0.172 
V13 --0.603 -0.471 -0.636 -0.696 0.016 -0.703 
Vl4 --0.136 -0.008 -0.167 -0.016 0.067 --0.021 
VIS 0.154 0.250 0.113 0.233 0.066 0.220 
Vl6 --0.024 0.093 -0.066 0.081 0.060 0.068 
Vl7 0.307 0.459 0.282 0.368 -0.020 0.380 
VIS 0.134 0.250 0.111 0.260 0.066 0.254 
V19 --0.293 -0.184 -0.341 --0.419 -0.025 -0.433 
V20 0.273 0.411 0.215 0.265 -0.028 0.268 
V21 --0.201 -0.138 -0.238 --0.424 0.077 -0.445 
V22 0 .148 0.167 0.106 0.121 0.055 0.086 
V23 -0.305 -0.188 -0.317 --0.336 -0.020 -0.333 
V24 -0.458 -0.322 -0.494 --0.606 0.006 -0.613 
V25 0 . 135 0.235 0.090 0.037 -0.041 0.030 
V26 0.178 0.366 0.119 0.251 0.053 0.242 
V27 --0.252 --0.101 --0.286 -0.275 -0.010 -0.269 
V28 0.088 0.050 0.090 0.181 0.072 0.169 
V29 0.086 0.266 0.041 0.239 0.058 0.233 
V30 -0.087 -0.o75 --0.077 --0.691 - 11.369 -0.647 
V31 0.424 0.708 0.402 1.109 0.064 1.149 
V32 0.567 0.616 0.512 0.880 0.048 0.860 
V33 0.283 0.299 0.259 0.428 0.060 0.424 
V34 0.311 0.483 0.269 0.537 0.048 0.535 
V35 --0.265 -0.117 --0.311 -0.662 -0.026 -0.665 

Note. ULS = unweighted least squares; GLS = generalized least squares; ML= maximum likelihood. 

DISCUSSION 

The rationale for examining correlation types and estimation methods is related to 
their effect on the weight matrix (W-1) in the CFA formula for determining the fit 
function statistics (Browne, 1984). The fit function formula is F(8) = (s -cr)' W-1 (s 
- cr), wheres is the diagonal and lower half elements of the correlation/covariance 
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TABLE 2 
Comparison of Fit Functions by Correlation Type and Estimation Method 

Pearson Tetrachoric 

Fit Function ULS GLS ML ULS" GLSa.b ML 

Chi-square' 827.07 618.60 863.22 0.00 34.40 39.92 
Coefficient R .777 .925 .78 1 .292 .387 
GFI .745 .643 .679 .43 8 .980 .977 
AGFI .7 13 .598 .638 .368 .978 .974 
RMSR . 107 .175 .107 .319 .276 

'Theta delta matrix (error variance) not positive definite. bRidge option invoked because matrix not 
positive definite. ' Assumes multivariate normality. 

matrix S used to fit the model to the data, and cr is a vector of corresponding ele­
ments ofl:(0) reproduced from the model parameters 0 . Elements of the W-1 matrix 
are supposed to be nonpositive definite of the orderp x p, wherep= k(k+ 1)/2 or the 
number of elements in the matrix. The elements of the matrix W, before inverting, 
are chosen by the ULS, GLS, or ML methods to be consistent estimators of the as­
ymptotic covariance between elements of the Sand I: matrices. The basic assump­
tion is that if the model holds in the population and the variance-covariance in S 
converge in probability to the corresponding elements in I:, as the sample size in­
creases, the fit function gives a consistent estimate of0. In practice, there is not just 
one fit function that satisfies this condition; hence other factor models may be plau­
sible. Here is the basic problem of determining the best model, the parameter esti­
mates themselves, and the statistical test of fit. 

RECOMMENDATIONS 

The CF A of dichotomous data based on Pearson correlation or covariance often 
produces biased estimates. Several authors therefore introduced the alternate 
method of tetrachoric and biserial correlations for analyzing dichotomous data, 
which are less biased estimates of the population correlations (Christoffersson, 
1975; Muthen, 1984). The latest commercially available program Mplus (Muthen 
& Muthen, 1998) incorporates newer dichotomous data handling routines in a 
user-friendly environment. 

Although dichotomous data analysis in PRELIS2 is possible, it is now 
known that the non-Pearson matrices are often nonpositive definite, even 
with large sample sizes, and model estimation using GLS or ML estimation 
methods. Joreskog (1990) recently developed a limited information estimator 
for CVM based on Browne's (1984) ADF estimator. It is one recommended 
alternative. 

An alternative to CVM is the multinomial full information estimators based on 
modem IRT (Bock, Gibbons, & Muraki, 1988). Because solutions generated by 
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this method are estimated directly from the multivariate response patterns, the item 
correlation matrix is not needed except for possibly determining an approximate 
start value. Such an IRT implementation of factor analysis for dichotomous data is 
available in the TESTF ACT program (Wilson, Wood, & Gibbons, 1984), although 
limited at this time to four-factor models. 
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