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This article addresses the issue of Type I error rates and relative power of structured
means, multiple-indicator multiple-cause, and multivariate analysis of variance ap-
proaches for testing construct mean differences within a one-factor, two-group de-
sign. This study crosses 3 dimensions factorially: group sample size (» = 100, 200,
400, 800), factor loading pattern (8 variations), and factor mean difference (Ak = .2,
.5, .8). Cases addressed include those where all factor loadings in both groups are
equal, where loadings differ within a factor but are the same across groups, and where
factor loadings differ across groups. Type I error rates are investigated using Monte
Carlo simulation methods, while a population analysis approach is used to assess
power of modeling and multivariate analysis of variance methods.

Researchers wishing to investigate group differences on a construct, rather than on
a single measured variable, have a number of methods at their disposal. Tradi-
tionally, the method of choice has been multivariate analysis of variance
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(MANOVA). MANOV A evaluates group differences on a linear composite of ob-
served variables constructed so as to maximally differentiate the groups in
multivariate space. Two more recent alternatives to MANOVA are available using
structural equation modeling (SEM), S6rbom’s (1974) structured means modeling
(SMM), and a derivative of multiple-indicator multiple-cause (MIMIC) models
(Joreskog & Goldberger, 1975; Muthén, 1989). SMM seeks to model variables’
mean structure along with the covariance structure in a fashion allowing research-
ers to make inferences regarding the groups’ underlying construct means. The sec-
ond SEM method, a MIMIC approach, employs group code (dummy) predictors
within a structural equation model, which in turn is applied to a single set of data
from all groups of interest combined. This study will first compare the three meth-
ods in terms of Type I error rate control, followed by an assessment of their relative
power. Each of these methods is next described briefly in the context of a two-group
comparison, as used in this investigation.

SMM

In SMM a construct 1 is explicitly represented as “latent”; that is, the underlying
construct theoretically exerts a causal influence on the observed Y variables, thereby
necessitating the existence of covariance among those variables (when the variance
ofm is nonzero). For a set of p observed Yindicators of construct 1, Y valuesin a sin-
gle group may beexpressedinap x 1 vectory as follows: y=v+ An +¢&,wherevisap
x 1 vector of intercept values, Aisap x 1 vectorof A loadings,and€isap x 1 vector of
normal errors. Thus, the first-order moment vectoris E[y]=p=v+ Ak, where x is the
mean of factor 1; this reduces to E[y] = Ak in this study as variables will be assumed
to contain no measurement bias (i.e., v = 0). The second-order moment matrix, as-
suming 1 and the errors to be independent, is E[(y —pL)(y— 1) ] =Z=A¢A’+ O, where
¢ is the variance of 1} and © is the p x p covariance matrix of the errors in €.

With two groups, SMM offers a test of construct mean equivalence with the
pertinent null hypothesis being Hy: k1 = k2. This test is optimally conducted under
the assumption that observed variables have the same degree of bias (or none)
across groups (i.e., Vi = Vv2), as well as the assumption that both groups’ measure-
ment models are tau-equivalent (i.e., A = A;). Note that this second assumption
does not necessitate that the implied covariance matrices are identical across
groups; only if factor variances ¢, = ¢, and error covariance matrices © = O
would X; = X,. These latter conditions are generally considered overly restrictive
for establishing factorial invariance (see, e.g., Byrne, 1994, pp. 160-161). In fact,
although SMM often proceeds by constraining corresponding intercept and load-
ing parameters to be identical across groups, Byrne, Shavelson, and Muthén
(1989) suggested that SMM’s loading invariance assumption may be relaxed in
some cases and still yield a meaningful comparison of latent means. This study
will include both invariant and noninvariant loading scenarios.
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MIMIC MODELS!

Like SMM, MIMIC approaches for testing hypotheses about latent means also start
by positing a factor measurement model y = v + An + €. However, whereas SMM
fits the model to the two groups’ data separately (but simultaneously), the MIMIC
approach combines the data from both groups and incorporates a dichotomous pre-
dictor X (reflecting group membership) into the structural model. Specifically, =
¥X + {, where yis the causal impact of the group code variable X on the construct 1
and  is the construct residual unexplained by X. Given that X utilizes codes of 0 for
Group 1 and 1 for Group 2, the y parameter can be shown to represent the difference
between groups’ construct means. For Group 1 E[n] =, =YE[X]=0, and for Group
2E[n]=x,=YE[X] =Y; thus, Y= K, — k; = AK, where Ak represents the difference in
K between groups. Therefore, in MIMIC modeling the hypothesis tested is Hy: x; =
K, or more simply Ho: Ak =y=0.

In the MIMIC approach for two groups, data from n; + n = N cases exist for p +
1 measured variables (p indicators and one dummy). The data from both groups
are treated as a single sample and the p + 1 variables are combined in a partitioned
(p+1)x1vector [y’ | X]". As shown in Appendix A, the first-order moment of this
partitioned vector (again assuming X utilizes codes of O for Group 1 and 1 for
Group 2) can be expressed as E[y” | X]"= [ | (n2/ N)]' = [(n2/ N)AxAL | (n2/ N)Y if
neither group contains measurement bias (i.e., v = v2 = 0). The second-order mo-
ment matrix of the partitioned vector, assuming X, {, and elements of € to be inde-
pendent (as well as assuming the earlier coding scheme), is shown in Appendix A
to be the following partitioned matrix when no measurement bias exists:

[(m I N)AGA, +(n, | N)A B A, + ]
s (mn,/ N*)AK) A, A, + (mn,/ N*)A,(AK)
YT (,/ NY©, +(n, / N)O,
(nn, / N*)(AK)A,’ | (mn,/N?)

Becausea MIMIC approach results in only one model for the combined data from
both groups, it is implicitly assumed that the same measurement model holds in both
groups. This includes loadings, construct variance, and error variances. In effect, all
sources of covariation among observed variables are treated as equal across groups,

'For the case of two groups discussed here, only a single group code (dummy) variable is necessary.
As this is the sole causal variable impinging on 1, the name multiple-indicator multiple-cause (i.e.,
MIMIC) is a bit of a misnomer. Nonetheless, the name MIMIC will be used throughout the article as it
represents a general approach accommodating two or more groups.
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making the assumption of identical measurement models tantamount to an assump-
tion of equal X matrices. This assumption is clearly more rigorous than that involved
inthe SMM approach; in fact, the SMM approach has the additional flexibility of be-
ing able to accommodate (i.e., to model) sources of measurement heterogeneity. On
the other hand, the assumption of homogeneity of  matrices allows the MIMIC ap-
proach to require estimation of fewer parameters, which generally translates into a
smaller required sample size. The extent to which MIMIC models are robust to het-
erogeneous covariance matrices remains to be investigated.

MANOVA

As explained earlier, in SMM and MIMIC modeling methods the construct is ex-
plicitly represented as latent. In MANOVA, on the other hand, the construct is im-
plicitly treated as “emergent.” Here the measured variables assume the role of
causal agents, leaving the construct to emerge as a linear composite of those ob-
served variables on which it is dependent (Bollen & Lennox, 1991; Cohen, Cohen,
Teresi, Marchi, & Velez, 1990; Cole, Maxwell, Arvey, & Salas, 1993). The com-
posite W=y a, where weights in the p x 1 vector a are derived to maximally differ-
entiate the groups in p-variate space. The hypothesis formally tested in the
two-group MANOV A (also known as Hotelling’s 72) is Hy: lly1 = [y, Where pyis a
group’s population mean on the optimal linear composite W. Note that, although
SMM and MIMIC methods are able to segregate variables’ true score (i.e., con-
struct-related) variance from their error variance, MANOV A creates a composite
using observed scores (thereby including variables’ error variance). Thus, tests in
MANOVA are not performed on precisely the same “constructs” as in the SEM
methods (see Cole et al., 1993, for a nice treatment of SMM versus MANOVA).
Despite differences in “constructs” involved in testing, one similarity between
the MIMIC approach and MANOVA is their assumption regarding equality of
groups’ covariance matrices. Although no literature explicitly addresses robust-
ness of the MIMIC approach under covariance heterogeneity, MANOVA models
have been well investigated under such circumstances. Specifically, work on the
two-group case (e.g., Algina & Oshima, 1990; Hakstian, Roed, & Linn, 1979; Hol-
loway & Dunn, 1967; Hopkins & Clay, 1963) as well as the general case (e.g.,
Olson, 1974) may be summarized as follows. In the “positive” condition where
relatively smaller samples are drawn from populations with relatively smaller gen-
eralized variance (i.e., determinant of X), Type I error rate decreases when Hp is
true and power decreases when Hy is false. Alternatively, in the “negative” condi-
tion where relatively smaller samples are drawn from populations with relatively
larger generalized variance, Type I error rate increases when Hy is true and power
increases when Hj is false. As detailed in individual studies, the degree to which
Type I error and power are affected by covariance heterogeneity depends on a
number of factors: total sample size, sample size disparities among groups, true
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differences among population means, magnitude of generalized variance, and gen-
eralized variance disparities among groups.

THIS STUDY

Deciding whether an SMM, MIMIC, or MANOV A approach is most appropriate
for a given situation can be a challenge for researchers. As discussed by Cole et al.
(1993), the primary decision should involve an appeal to theory, determining
whether a latent or emergent variable system appears to best define the construct of
interest. If emergent, a MANOVA approach may be most prudent; if latent, the
choice between SMM and MIMIC methods hinges on concerns such as sample size
and degree of model noninvariance across groups. Unfortunately, the default be-
havior has historically been the use of MANOV A with little regard to the nature of
the underlying variable system. This article investigates the potential cost of such
behavior in the single-factor two-group situation, using a Monte Carlo simulation
to investigate Type I error control and a population analysis to examine relative
power of the three methods under a variety of conditions. Conditions investigated,
which are detailed more fully later, are as follows: factorially invariant groups with
equal loadings, factorially invariant groups with varied loadings, factorially
noninvariant groups with approximately equivalent generalized variance, and
factorially noninvariant groups with disparate generalized variance. In addition to
loading magnitude and configuration, the magnitude of the true factor mean differ-
ence between groups as well as sample size conditions (with equal and unequal
cases) are manipulated.

Finally, to clarify, a comparison of latent mean modeling approaches with
MANOVA may seem like an unfair comparison, particularly within a latent vari-
able system for which MANOVA is not designed. However, the point of this com-
parison stems from the common recommendation to use MANOVA when
interested in mean differences among multiple dependent variables, without re-
gard to the nature of the variable system at hand. MANOVA is specifically de-
signed for emergent variable systems; thus, regardless of its relative performance,
this study is not seeking to endorse MANOVA when faced with a latent variable
system. Rather, this study will show the benefits that may be reaped when choos-
ing from the more appropriate latent variable methods instead of the default
multivariate approach.

METHOD
Model and Conditions

In this experiment a single-factor model with three measured indicators (i.e., latent
rather than emergent variable system) was used in each of two groups. The choice
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of three indicators was made as it is a commonly recommended minimum (e.g.,
Bentler & Chou, 1987). For simplicity, variables were created so as to contain no
bias in either population (i.e., v, = v, = 0). The value of the factor mean was set to
zero for Group 1’s population (i.e., k; = 0), whereas for Group 2’s population the
factor mean was varied: K, = Ak =0, .2, .5, and .8. The population factor variance ¢
was set to one.

The factor loadings in A were varied to create eight population scenarios, four
factorially invariant across groups (i.e., A = A;) and four factorially noninvariant
(i.e., A1 # A2). In three of the four factorially invariant scenarios A, = A2’ = [A A
A)’, where A was varied to be .4, .6, and .8; in the fourth factorially invariant sce-
nario A" = Ay" = [.4 .6 .8]". To create factorially noninvariant scenarios, the first
condition had A" =[.6 .6 .6]" and A»" = [.4 .6 .8]"; the second had A, =[.4 .6 .8]
and Ay"=[.6 .6 .6]". In the third condition A, =[.4 .4 .4]" and A,"=[.8 .8 .8]", while
in the fourth A" =[.8 .8 .8]" and Ay’ = [.4 .4 .4]". As for residual errors, for each
group © was set to I-diag(AA’), therefore yielding variables with unit variance.
Thus, for measurement models with A’=[.4 .4 4], A"’=[.6 .6 .6]", A"=[.8 .8 .8]’,
and A" =[.4 .6 .8]’, the generalized population variance det(Z) = 0.9314, 0.7045,
0.2955, and 0.6833, respectively. This means that populations with A;"=[.4 .6 .8]’
and A" =[.6 .6 .6]’ (or vice versa) have approximately equivalent generalized vari-
ance, whereas groups with A" =[.4 .4 .4]" and A," =[.8 .8 .8] (or vice versa) have
greatly disparate generalized variance.

Finally, total sample sizes of N = 200, 400, 800, and 1,600 across both groups
were investigated in nj:n; ratios of 1:1, 2:3, and 1:3. That is, for N = 200 the three
cases were 100:100, 80:120, and 50:150; for N= 400 the three cases were 200:200,
160:240, and 100:300; for N = 800 the three cases were 400:400, 320:480, and
200:600; and for N = 1,600 the three cases were 800:800, 640:960, and 400:1,200.
Notice that for populations with A;"=[.4 .4 .4]" and A" =[.8 .8 .8]’, the sample size
ratios 2:3 and 1:3 represent the negative pairing condition (described earlier),
whereas for populations with A;”=[.8 .8 .8]" and Ay" = [.4 .4 4], the sample size
ratios 2:3 and 1:3 represent the positive pairing condition.

Simulation and Type | Error Rate Estimation

Raw data matrices were generated in GAUSS (Aptech Systems, 1996) to achieve
the desired sample size and covariance structure. For each group (= 1,2) ann; % 3
matrix of random normal deviates was premultiplied against the Cholesky
factorization of that group’s population correlation matrix. The population correla-
tion matrix for each group is P,= A/A/ + [I- diag(A;A/)], which is also the popula-
tion covariance matrix because variables were created to have unit variance. For
each of the sample size and loading conditions, 1,000 pairs of data matrices (i.e.,
one per group) were generated for analysis and Type I error rate evaluation.
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Each set of simulated raw data was analyzed using MANOVA as well as the
SEM approaches. All MANOVA analyses were conducted directly within
GAUSS, tallying the number of null hypothesis rejections (assuming o = .05).
SEM analyses were conducted using EQS 5.7 (Bentler, 1998). Specifically, SMM
was run twice on each data set (once with loading constraints and once without);
for each the number of times was tallied in which the construct mean of Group 2
differed statistically significantly (o = .05) from the zero-constrained latent mean
of Group 1. Finally, for the MIMIC approach, the raw data for the two groups were
first concatenated into a single data file with an additional dummy column vector
inserted to designate group membership. The number of times the group code pre-
dictor made a statistically significant (o. = .05) contribution to the prediction of the
latent construct was counted. Again, 1,000 replications were conducted per cell of
the design; in the event that an SMM or MIMIC analysis yielded an error code or a
convergence failure, that pair of data matrices was completely discounted and an-
other was generated in its place for analysis using the MANOVA, SMM, and
MIMIC approaches.

Population Analysis and Power Estimation

In this portion of this study no data were simulated; rather, the model-implied popu-
lation variances and covariances were analyzed assuming the various sample size
combinations listed earlier. Such a population analysis approach, which has been
implemented in similar SEM investigations (e.g., Kaplan & George, 1995), can be
used in place of Monte Carlo simulations when the sampling behavior of the rele-
vant test statistics is not of direct interest. Thus, the population covariance matrices
were generated for all conditions of interest, submitted to SMM, MIMIC, and
MANOV A methods for estimation of the relevant distribution’s noncentrality pa-
rameter, and power was estimated as detailed following.

SMM. A population mean vector M and covariance matrix £ were generated
for both groups, where for a given group p= Ak and L= AA’+ © (because v=0 and
¢ = 1, as described previously). A single factor model was fit to both groups, first
imposing cross-group equality constraints on loadings and intercepts and then with
loading constraints freed. Mean and covariance structures were estimated using
maximum likelihood estimation in EQS 5.7 (Bentler, 1998). Although the factor
mean for Group 1 was set to zero, each model was run both with the Group 2 mean
free to vary as well as fixed to zero. The difference between the two model y2 values
represents a noncentrality parameter 8 for the noncentral 2 distribution with one
degree of freedom. From this 3 value the power was determined for an o.= .05 level
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test of factor mean equivalence, following from the discussion of Saris and Satorra
(1993) for power analysis without specific alternatives. Other approaches to esti-
mating power, such as using a Lagrange Multiplier 2 or Wald test 2, are asymptot-
ically equivalent (see Bollen, 1989; Buse, 1982; Satorra, 1989; Satorra & Saris,
1983, 1985).

MIMIC. Because data from both groups are combined in this approach, a sin-
gle covariance matrix is needed that includes the group code (dummy) variable. For
this study the partitioned matrix presented earlier (and derived in Appendix A) is
appropriate, with ¢, = ¢, = 1. As described previously, a model was fit to the com-
bined group in which a single dummy predictor has a causal influence on the factor
M. Maximum likelihood estimation was used within EQS 5.7 (Bentler, 1998). As
the path from the dummy X to 1 captures the expected factor mean difference be-
tween groups, the model was run both with this path free to vary as well as fixed to
zero. The difference between the two model 2 values represents a noncentrality pa-
rameter § for the noncentral ¥2 distribution with 1 df; from which power was esti-
mated as mentioned previously.?

MANOVA. As derived in Appendix B, the pooled within sums-of-squares
matrix is W =n(A;A," + ©)) + ny(A,A;” + ©,) and the total sums-of-squares matrix
is T=W + (mn,/ N)(AK)?A; A;’. Power determination for an F test at the .05 level
was made based on a noncentral F distribution with 3 and N — 4 df, where the
noncentrality parameter  for this scenario reduces to & = N[(|T| / [W|) — 1] as fol-
lows from Cohen (1988; see chapter 10). Power calculations from this noncentral

distribution were made using the power analysis program STAT-POWER 2.2
(Bavry, 1993).

?For both the structured means modeling and multiple-indicator multiple-cause approaches, power
was originally estimated using the z value associated with the path representing the factor mean differ-
ence. The square of this z value represents an estimate of the same noncentrality parameter & (for a
noncentral ¢? distribution with one degree of freedom) as the ¥? value that was ultimately used in this
study to estimate power. Unfortunately, in the course of our investigation the standard errors for the rele-
vant path did not appear invariant to, for example, changes in which variable is designated the factor’s
scale indicator. Any change in the model yields a change in the information matrix, which in turn seems
to affect standard errors and hence the z value used in power estimation. The y? difference value, on the
other hand, is not affected by such changes, a phenomenon explored recently by Lawrence and Hancock
(1998). For this reason, the %? difference values were used in power estimation. Methodologists con-
ducting population analyses may wish to take note that z values (and most likely Wald and Lagrange ¥?
values for similar reasons) may not provide for as stable an estimate of power as the x? difference. Cer-
tainly further exploration of this issue is needed.
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RESULTS
Type | Error Rates

The four scenarios in which both groups had identical measurement models (and
hence homogeneous covariance matrices) are contained in Table 1, where Type I
error results for SMM, MIMIC, and MANOV A approaches are detailed. The four
noninvariant scenarios follow in Table 2. In both tables, any error rate falling at or
beyond Bradley’s (1978) liberal criterion of ot + 1/20. (i.e., £.025 or2.075) is under-
lined. Note that, although SMM was run with and without loading constraints, only
the constrained results are presented in the tables. Type I error rates from the two
conditions never differed by more than .017 (almost always differing by only a few
thousandths), and showed no systematic tendency to be higher in the constrained or
unconstrained condition.

As would be expected in theory, in loading-invariant cases Type I error control
is maintained at acceptable levels regardless of loading pattern or sample size ra-
tio. Similarly, when loadings are noninvariant but have nearly equivalent general-
ized variances (as in the first two column blocks of Table 2), Type I error rates are
completely acceptable. In fact, even when loading patterns precipitate disparate
generalized variances but sample sizes are equal across groups, all three methods
appear to control Type I error satisfactorily. However, when sample size differ-
ences accompany the disparity in generalized variance, acceptable control over
Type I error is no longer assured.

To elaborate, consider the performance of each of the three methods under the
most disparate loading patterns in the last two column blocks of Table 2. SMM ap-
pears to maintain Type I error control within the limits of Bradley’s liberal crite-
rion under all conditions, even with the loadings constrained. The MIMIC
approach, on the other hand, tends to become conservative when the most extreme
sample size ratio is negatively paired with generalized variance, and tends to be-
come liberal in similar positive pairing conditions. This behavior is somewhat op-
posed to that typically observed for MANOVA, where extreme negative
conditions are seen to result in the inflated error rates as expected and extreme pos-
itive pairings result in conservative error rates (though not outside Bradley’s inter-
val in this study).

Power in Invariant Scenarios

The four scenarios in which both groups had identical measurement models are
contained in Table 3, where power analysis results for SMM, MIMIC, and
MANOVA approaches are presented. Note that, although SMM was run with and
without loading constraints, only the constrained results are presented in Table 3.
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TABLE 1
Type | Error Rates of SMM, MIMIC, and MANOVA Under Factorial Invariance

A =[4.4.4] A =[6.6.6] A/ =[8.8.8] A =[4.6.8]

A =[4.44] A =[6.6.6] A =[8.8.8] A/ =[4.6.8]
e SM Ml MA SM Ml MA SM MI MA M Ml MA
100:100 032 038 032 041 043 037 064 064 055 037 039 044
80:120 037 046 031 042 047 050 026 028 047 045 045 048
50:150 046 037 039 060 056 049 057 057 041 039 047 050
200:200 042 047 046 044 043 038 051 051 042 040 043 044
160:240 042 040 047 051 052 056 048 047 054 039 041 046
100:300 037 037 034 045 051 050 055 050 059 037 037 042
400:400 043 044 038 044 044 040 056 .06 046 038 038 043
320:480 037 038 037 049 048 045 045 046 051 037 037 045
200:600 055 052 052 045 046 044 034 036 053 058 057 043
800:800 044 044 058 047 047 049 051 051 057 051 051 045
640:960 046 045 047 046 046 047 061 060 047 040 039 043
400:1200 041 042 047 053 053 053 050 .049 050 039 036 043

Note. SM = structured means modeling; MI = multiple-indicator multiple-cause; MA = multivariate analysis of variance.
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TABLE 2
Type | Error Rates of SMM, MIMIC, and MANOVA Under Factorial Noninvariance

A/ =[6.6.6] A =[4.6.8] A =[4.4.4] A =[8.8.8]

A =[4.6.8] A =[.6.6.6] Af =[8.8.8] A =[4.4.4]
nin; SM Mi MA SM MI MA SM Ml MA SM MI MA
100:100 .033 .037 .040 .046 .043 .054 .048 .045 .048 .068 .056 .050
80:120 .051 .048 .045 .041 .043 .044 -.049 .039 .067 +.058 .081 .051
50:150 .038 .039 .050 .051 .052 .051 -.052 023 109 +.070 .089 .039

200:200 044 045 .052 .039 .053 .047 .049 .054  .053 051 056  .039
160:240 .055 .052 .048 .059 .061 .063 -.044 .034  .062 +.054 .065 .048
100:300 039  .038 .060  .053 .050 .049  -.037 017 080  +.050 079  .038
400:400 044 046 044 057 .068 .056 .052 .054  .035 .045 .047 .047
320:480 .045 046  .043 .060 .054 060  -.047 .041 .072 +.049 .059 .045
200:600 .055 051 .058 067 069 070 -.052 034 104 +.047 .074  .034
800:800 .058 .058 .052 056  .048 .039 .040 041 .047 .058 .039  .060
640:960 .048 .047 .052 .041 .042 .047  -.040 .029 .062 +.048 059  .046
400:1200 049 .048 .051 .045 048 .046  -.052 025 112 +.040 .080 .034

Note. A minus (-) sign indicates a negative pairing of sample size with generalized variance pertaining to all three
methods; a plus (+) sign indicates a positive pairing. Any error rate falling at or beyond Bradley’s (1978) liberal criterion of o
+ 120 (i.e., £.025 or 2 075) is underlined. SM = structured means modeling; MI = multiple-indicator multiple-cause; MA =
multivariate analysis of variance.
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TABLE 3

Power of SMM, MIMIC, and MANOVA Under Factorial Invariance

A =[4.44] A/ =[6.6.6] A =[8.8.8] A/ =[4.6.8]

A =[4.4.4)] A, =[6.6.6] A =[.8.8.8] A =[4.6.8]
npin; SM Mi MA SM Ml MA SM MI MA SM Mi MA
Ax=.2

100:100 136 136 .096 .200 .201 133 252 253 165 221 222 .146
80:120 132 132 .094 193 194 129 243 244 .160 214 215 141
50:150 113 114 .083 .160 162 110 .199 201 133 176 178 120
200:200 225 225 .148 352 352 232 447 448 303 392 393 261
160:240 218 218 144 .340 341 224 432 434 292 379 380 252
100:300 180 181 122 276 278 .182 351 354 233 307 310 203
400:400 .398 .399 266 .608 .609 440 735 I35 .569 665 .666 496
320:480 385 386 256 591 592 424 17 718 .550 .647 .648 478
200:600 313 314 206 489 491 338 .608 611 443 541 .544 382
800:800 673 673 503 .886 .886 762 956 956 .883 922 922 821
640:960 .655 656 486 873 873 743 948 .948 .868 911 912 .803
400:1200 .549 551 388 781 .783 .624 886 .887 765 832 834 .688
Ax=.5
100:100 559 .562 .396 .788 .790 .635 .890 .892 AT 838 .840 .700
80:120 542 545 382 771 774 615 876 .879 157 .822 .825 .680
50:150 442 450 303 657 671 .501 A7 .793 .638 713 727 .561
200:200 .849 .850 711 975 975 927 995 .995 980 987 .987 956
160:240 .833 835 692 969 970 916 .993 .993 975 983 984 .948
100:300 731 738 572 919 925 .829 972 976 928 947 953 .879
400:400 989 989 .960 1.000 1.000 999 1.000 1.000 1.000 1.000 1.000 1.000
320:480 986 .986 .952 1.000 1.000 998 1.000 1.000 1.000 1.000 1.000 1.000
(continued)
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TABLE 3 (Continued)
A =[4.44] A =[6.6.6] A =[8.8.8] A =[4.6.8]
A =[4.4.4] A =[6.6.6] A =[8.8.8] A =[4.6.8]
npn; SM M MA SM M MA SM MI MA SM M MA
200:600 954 957 886 997 998 990  1.000  1.000 999 999 999 996
800:800  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000  1.000
640:960  1.000  1.000  1.000 1000  1.000  1.000  1.000  1.000 1.000  1.000  1.000  1.000
400:1200 .99 999 996  1.000  1.000  1.000  1.000 1000  1.000 1.000  1.000  1.000
Ak=.8
100:100 917 918 819 992 992 973 999 999 995 1996 996 987
80:120 905 908 802 989 990 967 998 999 994 995 995 983
50:150 815 830 687 958 967 913 988 992 974 975 982 946
200:200 997 997 989  1.000 1000  1.000  1.000  1.000 1.000  1.000  1.000  1.000
160:240 996 997 98  1.000  1.000 1000 1000 1000  1.000 1.000  1.000  1.000
100:300 982 985 951 1.000  1.000 998 1.000 1.000  1.000  1.000  1.000  1.000
400:400  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000
320:480  1.000  1.000  1.000  1.000  1.000 1000  1.000  1.000  1.000  1.000  1.000  1.000
200:600  1.000  1.000  1.000  1.000  1.000 1000  1.000 1.000 1000 1000 1000  1.000
800:800  1.000  1.000  1.000  1.000  1.000 1000  1.000  1.000  1.000 1000 1000  1.000
640:960  1.000  1.000  1.000  1.000  1.000 1000  1.000  1.000  1.000  1.000 1000  1.000
400:1200 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000

Note. SM = structured means modeling; MI = multiple-indicator multiple-cause; MA = multivariate analysis of variance.
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This is because all loading constraints were true in the population for these invari-
ant scenarios, thus yielding identical power estimates with and without loading
constraints.

As expected, the power of all methods is greater for larger values of N, Ak, and
A. Also, an increased disparity in the n;:n; ratio leads to decreases in power, again
as expected. As for differences between the two SEM-based methods, the MIMIC
approach is unilaterally equivalent or superior (though never by much); the magni-
tude of this superiority appears to vary as a function of the other conditions. For a
small latent effect size (Akx = .2), SMM and MIMIC approaches are almost identi-
cal in power for all sample size and loading configurations; MIMIC’s superiority
never exceeds .003 (i.e., 0.3%) for the case of all-equal loadings as well as for the
varied loading case. For a medium latent effect size (Ax = .5), the MIMIC method
is better in the all-equal loading cases by a maximum of 1.6%, whereas for the var-
ied loading case that difference is 1.4%. For a large latent effect size (Ax = .8), the
MIMIC method’s maximum superiority in the all-equal loading cases is 1.5%,
whereas for the varied loading case it is a mere 0.7%.

If a researcher had chosen to use the traditional MANOVA in these invariant
scenarios, which is actually inconsistent with the latent variable system used in
this investigation, a loss in power would result in all but those maximum power sit-
uations (i.e., where both power estimates are 1.000). Consider a comparison of
MANOVA with the MIMIC approach (the more powerful of the two SEM meth-
ods, as presented earlier). For a small latent effect size, MANOVA is always less
powerful than the MIMIC approach; the power difference is as high as 16.8% in
the all-equal loading cases and 17.0% in the varied loading case. For a medium la-
tent effect size, MANOVA is still never more powerful; the MIMIC method is
better in the all-equal loading cases by as much as 17.0%, whereas for the varied
loading case the maximum difference is 16.6%. Finally, for a large latent effect
size, the MIMIC method’s superiority over MANOVA reaches 14.3% in the
all-equal loading cases, whereas for the varied loading case it is 3.6%.

Power in Noninvariant Scenarios

The four scenarios in which groups had different measurement models are con-
tained in Table 4, where power analysis results for SMM, MIMIC, and MANOVA
approaches are detailed. The two scenarios with approximately equivalent general-
ized variance will be addressed first (in the first two column blocks in Table 4), fol-
lowed by those two scenarios with disparate generalized variance (in the last two
column blocks in Table 4). As done previously, only SMM results with constrained
loadings are presented; the very slight power improvement that occurred on releas-
ing loading constraints is mentioned later.
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TABLE 4

Power of SMM, MIMIC, and MANOVA Under Factorial Noninvariance

A/ =[6.6.6] A =[4.6.8] A =[44.4] A =[8.8.8]
A =[4.6.8] A =[.6.6.6] A =[8.8.8] AN =[4.44]
nyn; SM MI MA SM M MA SM Mi MA SM Mi MA
Ax=.2
100:100 217 218 .148 193 195 134 .305 306 .200 112 113 .083
80:120 212 213 .143 .188 191 130 -.309 284 .185 +.107 113 .083
50:150 177 178 120 .158 161 11 -.269 220 144 +.091 104 .078
200:200 384 386 .266 339 342 234 538 539 377 178 178 120
160:240 375 376 255 .330 334 225 -.543 502 346 +.166 180 w21
100:300 .308 309 204 270 276 182 -479 .388 258 +.133 .160 110
400:400 .655 .656 .505 590 .594 444 .829 .829 .683 308 308 202
320:480 .641 .643 485 575 .582 427 -.834 794 .638 +.285 312 205
200:600 542 .543 385 479 488 339 =771 .659 489 +.220 274 179
800:800 916 917 .829 .872 875 767 985 985 948 541 541 380
640:960 .908 909 810 861 .866 747 -.986 976 926 +.504 .547 .385
400:1200 .832 .833 .693 770 .780 .626 -.969 918 814 +.389 484 332
Ak =.5
100:100 .831 834 709 773 778 .640 .946 948 .873 440 442 297
80:120 817 .822 .687 157 .766 619 —-.949 929 .837 +.407 447 301
50:150 713 727 .565 .647 .668 .503 -.907 .834 .692 +.309 393 .260
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200:200 .985 .986 960 970 971 929 .999 .999 .995 727 728 562

160:240 982 983 952 965 968 918 -999 .998 991 +.686 734 .568
100:300 .948 953 .882 913 924 .830 -997 986 954 +.546 .667 496
400:400 1.00 1.000 1.000 1.000 1.000 999 1.00 1.000 1.000 953 953 878
320:480 1.00 1.000 1.000 1.000 1.000 .998 -1.000 1.000 1.000 +.934 955 .883
200:600 .999 999 .996 .997 .998 .990 -1.000 1.000 1.000 +.837 923 .822
800:800 1.00 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 .999 .999 .996
640:960 1.00 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +.998 .999 996
400:1200 1.00 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +.986 .998 .989
Ak =8
100:100 .996 .996 .988 .990 991 974 1.00 1.000 .999 .820 822 676
80:120 995 995 985 987 .989 968 -1.000 1.000 .999 +.781 827 .683
50:150 975 .982 948 954 967 914 -.999 996 986 +.636 .766 .606
200:200 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 983 .983 947
160:240 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +.973 .984 950
100:300 1.000 1.000 1.000 .999 1.000 .998 -1.000 1.000 1.000 +.907 967 910
400:400 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 1.00 1.000 1.000
320:480 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +1.000 1.000 1.000
200:600 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +.996 1.000 998
800:800 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 1.00 1.000 1.000
640:960 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +1.000 1.000 1.000
400:1200 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +1.000 1.000 1.000

Note. A minus (-) sign indicates a negative pairing of sample size with generalized variance pertaining to all three methods; a plus (+) sign indicates a
positive pairing. SM = structured means modeling; MI = multiple-indicator multiple-cause; MA = multivariate analysis of variance.
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Approximately equivalent generalized variance. Again, power of all
methods is greater for larger values of N, Ak, and A, whereas an increased disparity
in the n,:n, ratio leads to decreases in power. As for differences between the two
SEM-based methods, the MIMIC approach is still seen to be equivalent or superior
when loadings in SMM are constrained, although the magnitude of this superiority
remains quite small. For a small latent effect size (Ax = .2), SMM and MIMIC ap-
proaches are almost identical in power for all sample size and loading configura-
tions; MIMIC’s superiority never exceeds 1.0%. For a medium latent effect size
(Ax=.5),the MIMIC method is never more than 2.1% higher (almost always much
less), whereas for a large latent effect size (Ax=.8) the MIMIC method’s maximum
superiority is 1.3%. If the SMM loading constraints are freed in these scenarios, the
method’s power shows a slight increase; the power gained is enough to make SMM
generally superior to the MIMIC approach, but never by more than 1.9%.

If MANOV A had been used in these first two noninvariant scenarios, a loss in
power would result in all cases but those with maximum power. A comparison of
MANOVA with the MIMIC approach shows that, for a small latent effect size,
MANOVA is always less powerful than the MIMIC approach and by as much as
15.8%. For a medium latent effect size, MANOVA is still never more powerful
than the MIMIC approach; using MANOVA can result in as much as a 16.5% loss
in power. When a large latent effect size is present, the superiority of the MIMIC
approach reaches a maximum of 5.3%.

Disparate generalized variance. As before, results follow the expected
patterns with respect to N, Ak, and A. However, with respect to the n,:n; ratio, some
curious but consistent phenomena appear in the disparate generalized variance
cases. Specifically, inthe A,"=[.4 .4 .4]" and A,"=[.8 .8 .8]’ scenarios, SMM gener-
ally experiences a very slight power increase moving from n,:n, = 1:1 to the nega-
tive n :n, = 2:3; then, as expected, power for the negative n,:n, = 1:3 case drops to
below that in either preceeding sample size ratio. Both MANOVA and the MIMIC
approach behave as expected, with consistent decreases in power with increased
ny:n, disparity. Conversely, in the A,” = [.8 .8 .8]" and A,” = [.4 .4 .4]’ scenarios,
MANOVA and MIMIC results exhibit a very slight power increase moving from
ny:n, = 1:1 to the positive n,:n, = 2:3; then, as expected, power for the positive n,:n,
= 1:3 case drops to below that in either preceeding sample size ratio. Meanwhile,
SMM exhibits consistent decreases in power with increased n,:n, disparity as ex-
pected. To explain these phenomena fully would require a substantial amount of
space for what is, for current purposes, a tangential curiosity. Suffice it to say, the
reader can replicate this type of phenomenon with an independent-groups
pooled-variance ¢ test where population variances (and hence sample variances) are
unequal. The important point is that, for large sample size disparities, power tends
to degrade as expected.
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In general, the noninvariant scenarios with disparate generalized variance show
less power for all methods in the positive conditions than in the negative condi-
tions as expected. As for the methods’ relative power, first consider the compari-
son of the two SEM-based methods. When sample sizes are equal, the two
methods are virtually identical in power; the MIMIC approach tends to have a
slight edge, but never by more than 0.2%. When sample sizes are unequal, the neg-
ative conditions consistently favor SMM (by as much as 9.1%). The positive con-
ditions, on the other hand, consistently favor the MIMIC approach (by as much as
13.0%). However, all noninvariant power results must also be considered in light
of the previous Type I error results. Specifically, in negative conditions the inferi-
ority of the MIMIC approach is likely to be the result of a general conservatism as
evidenced by low Type I error rates, whereas in positive conditions the apparent
power advantage of the MIMIC method may simply be an artifact of the unaccept-
ably liberal Type I error control. Finally, the release of loading constraints in SMM
did not alter its power relative to that of the MIMIC approach in these final scenar-
ios; this is because error variances were not constrained across groups, thereby al-
lowing for equivalent nonstandardized loadings without inflating the model %2
values.

If MANOVA had been used in these last noninvariant scenarios, a fairly sub-
stantial loss in power would often result. In the negative pairings with A;"=[.4 .4
4] and Ay’ = [.8 .8 .8], where SMM is the better SEM-based method and
MANOVA is inferior to SMM in power by as much as 28.2% even with
MANOVA'’s failure to control Type I error rates to acceptable levels. In the posi-
tive scenarios with A;"=[.8 .8 .8]" and Ay" =[.4 .4 .4]’, where the MIMIC approach
is the better SEM method because of a failure to control Type I error, MANOVA is
inferior to that MIMIC approach in power by as much as 17.1%, and is inferior to
SMM by as much as 16.5%.

DISCUSSION AND CONCLUSIONS

When faced with latent (as opposed to emergent) construct differences, MANOV A
constitutes the wrong model; this study offers evidence of the potential price of
choosing that wrong model. Although isolated high-power conditions exist where
this traditional approach is competitive, under most scenarios examined in this in-
vestigation SEM-based methods were superior and often substantially so. This may
not be terribly surprising given that the population data in this study were created
assuming a latent variable system (for which the SMM and MIMIC approaches are
tailored), thus stacking the deck against MANOVA from the start. But the point of
such a comparison draws from the common recommendation to use MANOVA
when interested in mean differences among multiple dependent variables, without
regard to the nature of the variable system at hand. And seen here, even in negative
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pairing scenarios when MANOV A has a known power boost (at the expense of
Type I error control), this traditional multivariate method still falls well short of the
more powerful SEM approaches.

Much more interesting is the comparison between the two SEM-based meth-
ods. First, SMM appears to control Type I error acceptably in all scenarios ad-
dressed in this study, whether or not loading constraints are in place. A MIMIC
approach, on the other hand, controls the error rate when approximately equal gen-
eralized variances and/or equal sample sizes are present, but not with both sample
size and generalized variance disparities. To elaborate, in the bias-free MIMIC
models considered in this study (i.e., where v; = v, =0) a group code variable is ex-
plaining variance in observed variables, but only indirectly as mediated by the la-
tent construct (explained variance is systematic in the population power analyses,
and random in the Monte Carlo Type I error simulations). In general, when there
are bigger loadings the path from the group code variable to the construct need not
be as large to explain a given amount of observed variable variance, and when
there are smaller loadings the relevant path must become larger to accommodate.
Now when two samples with different loadings are combined and analyzed with a
single model, the magnitude of the single set of loadings that results will reflect
contributions of the original samples’ loadings relative to their sample sizes. This
means that if the sample with the smaller loadings is given more weight due to a
larger sample size, this will yield relatively smaller combined-group loadings and
hence an inflated path from the group code variable must result; this inflated path
will reject the null hypothesis more often, leading to more power but also to liberal
Type I error control. Conversely, if the sample with the smaller loadings is given
less weight due to a smaller sample size, this will yield relatively larger com-
bined-group loadings and hence a smaller required path from the group code vari-
able; this attenuated path will reject the null hypothesis less often, leading to less
power as well as conservative Type I error control. With disparate generalized
variances it is only when two (reasonably large) samples are equal in size that the
combined result will mirror what would be expected with the combination of two
theoretically infinite populations, thereby controlling the Type I error rate.

Regarding power, in the invariant scenarios the MIMIC approach was only
slightly more powerful than SMM, with a maximum superiority of 1.6%. In
noninvariant scenarios with approximately equivalent generalized variances the
MIMIC approach was only slightly more powerful when SMM employed con-
strained loadings; SMM became generally but only slightly more powerful when
the constraints were released (not tabled). As for disparate generalized variance
cases, the two SEM methods had virtually identical power with equal sample sizes,
but not with unequal sample sizes. As mentioned earlier, the MIMIC method’s ap-
parent power superiority when large loadings are paired with small samples comes
at the expense of Type I error control, whereas SMM’s superiority when large
loadings are paired with large samples does not sacrifice Type I error control.
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Thus, given a latent variable system, the choice between MIMIC and SMM ap-
proaches could be viewed as dependent on sample size. That is, when sample sizes
are equal, there seems to be little practical difference between methods in terms of
power or Type I error control. When sample sizes become increasingly disparate,
however, SMM would seem to be favored. Although slightly less powerful than
the MIMIC approach in some scenarios, researchers are generally without a priori
knowledge of potential loading disparities across populations. Thus, whatever
minute reduction in power that may result by choosing SMM over a MIMIC strat-
egy would seem to be a small sacrifice to gain flexibility in accommodating load-
ing invariance and to avoid the MIMIC approach’s potential to lose control over
Type I error.

Certainly further comparison of the two SEM methods is warranted. This study
dealt with a limited number of loading and sample size conditions, and only with
the case of three indicator variables. Also interesting would be the extension of this
work beyond the two-group case, both in terms of the SEM methods’ relation to
each other as well as to MANOVA. A full understanding of such scenarios is nec-
essary for the further development of experimental and nonexperimental design at
the latent variable level.
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APPENDIX A
First-order and Second-order Moments for MIMIC Approach

In general for Group 1, y, =V, + Ajn +&;. In the current study v, = v, = 0; therefore,
E[yi] = 11 = A x,. Further, because k; was set to 0, E[y;] = p, =0.

In general for Group 2, y, =V, + A,1 + &,. In the current study v, = v, =0; therefore,
E[y2] = L2 = AX,. Further, as k, = Ak (because x; =0), E[y.] = A2AK.

When groups are combined, the first moment vector (in partitioned format to in-
clude the group code dummy X with X; = 0 and X, = 1) is as follows:
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(n/NE[y) | Xi]" + (n/N)E[y,’ | X2

= [(m/N)E[y\'] + (no/N)E[y.] | (n//N)E[X,] + (n/ N)E[X:]])
= [(n/N)E[y:'] + (n/ N)E[y>"] | (n/N))

= [(n/N)Ws" | (n/ N)Y

= [(n/N)AKA,’ | (n/N)Y..

The second moment matrix for the combined groups (in partitioned format) may be de-
rived as follows:

E[[[y | X]" = [W | /MLy’ | X) = [ W | (n/N)]'T]
=E[[[y | X]" - [0 | (e N)YNLY" | X] - [ 1" | (n2/N)]]]
=E[[y - | X- (/NI -1 | X— (n/N)]]

_[__Elly-miy-n]1 | Elly = p]IX — (2, / N)]]
E[[X —(n,/ N)ly—-p]'1|  E[X—(n,/N)J

] Matrix 1

At this point, it is easier to focus on individual quadrants of Matrix 1.

Upper left

E[ly — ully - u]]

= (n/N)E[[y: - ully: — 111 + (no/NE[[y2 — u][y2 - 1]']

- (’ll/N)fi[[)’l i+ —p]lys - = T+ (/NE[[y2 — po + o — ][y — PaH o —
ny’

= (m/N)E[[y: - pully: — ] THE[[i = pl[i = 111 + (n/ N)E[[y2 — pa]ly2 — 2] T +
E[[W2 - u][p2 —p]1]

= (M/N)[Z1 + [0 - (n/ N)AAK][O — (n/N)AKAL]]
+ (m/N)[E2 + [AAK — (n/ N)AAK][AKAS — (n/N)AKA,']]

= (M/N)[E, + (n/NAAKPAAS] + (n/N)[Es + [(m/N)AAK][(1/N)AKA,]]

= (M/N)[E: + (n/NAAKPAAY] + (n/N)[Es + (m/N) AAKPAA]

= (m/N)Z, + (n/N)Z, + (mi/N)(no/ NP(AKYRAAS + (no/ N)(n/N) HAKP AN

= (m/N)Z, + (n/N)Z, + (mno/ N )AKP A A

= (nl/N)A|¢|A|'+ (Hz/N)A2¢2A2'+ (nlnz/M)(AK)zAzAz' + (’l]/N)G)) +(n2/N)62

Lower left (which equals the transpose of the upper right)

E[[X — (n/N)][y — 1]]

= (n/N)E[[X) = (no/N)][y)" = 0] + (n/ N)E[[Xz - (n/ N)][y2" - 1]
= (m/N)E[[0 = (no/N)][y)" = 1] + (no/ NE[[1 = (no/N)][y2" — 1T}
= (m/N)(= no/N)E[y\" — 0] + (no/N)(n//N)E[y>" — ']

= (= mn/N?)E[y," — p'] + (mno/ N)E[y:" — ']
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= (— mna/N2)[0" — (n2/ N)AKA,] + (nino/ N2)[AKA, — (no/ N)AKA,']
= (min/ N2)(no/ NYAKA, + (nyn/ N2)(n,/N)AKA,
= (n.nz/NZ)AKAZ'
Lower right
E[X — (no/N)]?
= (m/N)E[X) — (no/N))? + (no/N)E[X; — (n2/N)]?
= (m/N)[0 = (n/N)]? + (n/ N)E[1 — (n/ N)J?
= (m/N)(n;/N)* + (no/N)(m//N)y?
= n|n2/N7

Q.ED.

APPENDIX B
Within and Total Sums-of-Squares Matrices for MANOVA
The Within Sums-of-Squares matrix W is as follows:

W=nZ +ni,
= nI(AlAI’ + 91) + nz(AzAz’ * 02) .

The Between Sums-of-Squares matrix B is as follows:

B =nmi[p — ][ — ]+ mafpe — p][pa — Y

=M [0 — (nz/ N)AzAK] [0’ - (nz/ N)AKAZ'] +n [AzAK— (n2/ N)AzAK] [AKAz' — (nz/ N)AKAz']
— nl(nz/N)z(AK)zAzAz' + nz(nl/N)Z(AK)ZAzAz'

. (nlnz/N)(AK)zAzAz' %

The Total Sums-of-Squares matrix T is as follows:

T=W+B
=W+ (n|n2/N)(AK)2A2A2’ .

Q.E.D.





