
STRUCTURAL EQUATION MODELING, 7(4), 534--556 
Copyright © 2000, Lawrence Erlbaum Associates, Inc. 

Type I Error and Power of Latent Mean 
Methods and MANOV A in Factorially 

Invariant and N oninvariant Latent 
Variable Systems 

Gregory R. Hancock 
Department of Measurement, Statistics and Evaluation 

University of Maryland, College Park 

Frank R. Lawrence 
Center for Educational Accountability 
University of Alabama at Birmingham 

Jonathan Nevitt 
Department of Measurement, Statistics and Evaluation 

University of Maryland, College Park 

This article addresses the issue of Type I error rates and relative power of structured 
means, multiple-indicator multiple-cause, and multivariate analysis of variance ap­
proaches for testing construct mean differences within a one-factor, two-group de­
sign. This study crosses 3 dimensions factorially: group sample size (n = 100, 200, 
400, 800), factor loading pattern (8 variations), and factor mean difference (<'.\K = .2, 
.5, .8). Cases addressed include those where all factor loadings in both groups are 
equal, where loadings differ within a factor but are the same across groups, and where 
factor loadings differ across groups. Type I error rates are investigated using Monte 
Carlo simulation methods, while a population analysis approach is used to assess 
power of modeling and multivariate analysis of variance methods. 

Researchers wishing to investigate group differences on a construct, rather than on 
a single measured variable, have a number of methods at their disposal. Tradi­
tionally, the method of choice has been multivariate analysis of variance 
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(MANOV A). MANOV A evaluates group differences on a linear composite of ob­
served variables constructed so as to maximally differentiate the groups in 
multivariate space. Two more recent alternatives to MANOV A are available using 
structural equation modeling (SEM), Sorbom' s ( I 97 4) structured means modeling 
(SMM), and a derivative of multiple-indicator multiple-cause (MIMIC) models 
(Joreskog & Goldberger, 1975; Muthen, 1989). SMM seeks to model variables' 
mean structure along with the covariance structure in a fashion allowing research­
ers to make inferences regarding the groups' underlying construct means. The sec­
ond SEM method, a MlMIC approach, employs group code (dummy) predictors 
within a structural equation model, which in tum is applied to a single set of data 
from all groups of interest combined. This study will first compare the three meth­
ods in terms of Type I error rate control, followed by an assessment of their relative 
power. Each of these methods is next described briefly in the context of a two-group 
comparison, as used in this investigation. 

SMM 

In SMM a construct 11 is explicitly represented as "latent"; that is, the underlying 
construct theoretically exerts a causal influence on the observed Yvariables, thereby 
necessitating the existence of covariance among those variables ( when the variance 
of11 is nonzero). For a set of p observed Yindicators of construct 11, Yvalues in a sin­
gle group may be expressed in ap x I vectoryasfollows:y=v+ All +E, wherevisap 
x I vectorofintercept values, A is ap x I vectoroO .. loadings, and Eis ap x I vectorof 
normal errors. Thus, the first-order moment vector is E[y] = µ = v + AK, where Kis the 
mean offactor11; this reduces to E[y] = A Kin this study as variables will be assumed 
to contain no measurement bias (i .e., v = 0). The second-order moment matrix, as­
suming 11 and the errors to be independent, is E[(y - µ)(y-µ)'] = I:= Aq>A' + 0 , where 
qi is the variance of11 and 0 is the p x p covariance matrix of the errors in E. 

With two groups, SMM offers a test of construct mean equivalence with the 
pertinent null hypothesis being Ho: K 1 = 1C2. This test is optimally conducted under 
the assumption that observed variables have the same degree of bias ( or none) 
across groups (i .e. , v, = v2), as well as the assumption that both groups' measure­
ment models are tau-equivalent (i .e., A1 = J\2) . Note that this second assumption 
does not necessitate that the implied covariance matrices are identical across 
groups; only if factor variances qi, = ct>2 and error covariance matrices 01 = 02 
would I1 = I2. These latter conditions are generally considered overly restrictive 
for establishing factorial invariance (see, e.g. , Byrne, I 994, pp. 160- 161 ). In fact, 
although SMM often proceeds by constraining corresponding intercept and load­
ing parameters to be identical across groups, Byrne, Shavelson, and Muthen 
( 1989) suggested that SMM's loading invariance assumption may be relaxed in 
some cases and still yield a meaningful comparison of latent means. This study 
will include both invariant and noninvariant loading scenarios. 
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MIMIC MODELS1 

Like SMM, MIMIC approaches for testing hypotheses about latent means also start 
by positing a factor measurement model y = v + All + £. However, whereas SMM 
fits the model to the two groups' data separately (but simultaneously), the MIMIC 
approach combines the data from both groups and incorporates a dichotomous pre­
dictor X(reflecting group membership) into the structural model. Specifically, 11 = 
yX + s, where y is the causal impact of the group code variable X on the construct 11 
ands is the construct residual unexplained by X. Given thatX utilizes codes ofO for 
Group 1 and I for Group 2, the yparameter can be shown to represent the difference 
between groups' construct means. For Group I E[ll] = K1 =yE[X] = 0, and for Group 
2 E[11] = K2 = yE[X] = y; thus, y= K2 - K1 = ~JC, where ~JC represents the difference in 
K between groups. Therefore, in MIMIC modeling the hypothesis tested is H0: K1 = 
K2, or more simply H0 : ~IC= y= 0. 

In the MIMIC approach for two groups, data from n 1 + n2 = N cases exist for p + 
I measured variables (,p indicators and one dummy). The data from both groups 
are treated as a single sample and the p + I variables are combined in a partitioned 
(,p + I) x I vector [y' IX]'. As shown in Appendix A, the first-order moment of this 
partitioned vector (again assuming X utilizes codes of 0 for Group I and I for 
Group 2) can be expressed as E[y' IX]'=[µ' I (nz / N)]' = [(nz / N)~KAz' I (nz I N)]' if 
neither group contains measurement bias (i.e., v, = V2 = 0). The second-order mo­
ment matrix of the partitioned vector, assuming X, s , and elements of£ to be inde­
pendent (as well as assuming the earlier coding scheme), is shown in Appendix A 
to be the following partitioned matrix when no measurement bias exists: 

(n, I N)A,~A/ + (n2 I N)A2$iA/ + 

(n,n 2 I N
2 )(~x:)2 A2A/+ 

(n, I N)0, + (n2 I N)02 

Because a MIMIC approach results in only one model for the combined data from 
both groups, it is implicitly assumed that the same measurement model holds in both 
groups. This includes loadings, construct variance, and error variances. In effect, all 
sources of covariation among observed variables are treated as equal across groups, 

'For the case of two groups discussed here, only a single group code (dummy) variable is necessary. 
As this is the sole causal variable impinging on Tl, the name multiple-indicator multiple-cause (i.e., 
MIMIC) is a bit of a misnomer. Nonetheless, the name MIMIC will be used throughout the article as it 
represents a general approach accommodating two or more groups. 
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making the assumption of identical measurement models tantamount to an assump­
tion of equal L matrices. This assumption is clearly more rigorous than that involved 
in the SMM approach; in fact, the SMM approach has the additional flexibility ofbe­
ing able to accommodate (i .e., to model) sources of measurement heterogeneity. On 
the other hand, the assumption of homogeneity on: matrices allows the MIMIC ap­
proach to require estimation offewer parameters, which generally translates into a 
smaller required sample size. The extent to which MIMIC models are robust to het­
erogeneous covariance matrices remains to be investigated. 

MANOVA 

As explained earlier, in SMM and MIMIC modeling methods the construct is ex­
plicitly represented as latent. In MANOV A, on the other hand, the construct is im­
plicitly treated as "emergent." Here the measured variables assume the role of 
causal agents, leaving the construct to emerge as a linear composite of those ob­
served variables on which it is dependent (Bollen & Lennox, 1991 ; Cohen, Cohen, 
Teresi, Marchi , & Velez, 1990; Cole, Maxwell, Arvey, & Salas, 1993). The com­
posite W = y' a, where weights in the p x l vector a are derived to maximally differ­
entiate the groups in p-variate space. The hypothesis formally tested in the 
two-group MANOV A (also known as Hotelling ' s Tl) is H0: µwi = µwi , where µ wis a 
group's population mean on the optimal linear composite W. Note that, although 
SMM and MIMIC methods are able to segregate variables' true score (i.e., con­
struct-related) variance from their error variance, MANOV A creates a composite 
using observed scores (thereby including variables' error variance). Thus, tests in 
MANOV A are not performed on precisely the same "constructs" as in the SEM 
methods (see Cole et al. , 1993, for a nice treatment of SMM versus MANOV A). 

Despite differences in "constructs" involved in testing, one similarity between 
the MIMIC approach and MANOV A is their assumption regarding equality of 
groups' covariance matrices. Although no literature explicitly addresses robust­
ness of the MIMIC approach under covariance heterogeneity, MANOVA models 
have been well investigated under such circumstances. Specifically, work on the 
two-group case (e.g ., Algina & Oshima, 1990; Hakstian, Roed, & Linn, 1979; Hol­
loway & Dunn, 1967; Hopkins & Clay, 1963) as well as the general case (e.g., 
Olson, 1974) may be summarized as follows. In the "positive" condition where 
relatively smaller samples are drawn from populations with relatively smaller gen­
eralized variance (i .e., determinant of 1:), Type I error rate decreases when Ho is 
true and power decreases when Ho is false. Alternatively, in the "negative" condi­
tion where relatively smaller samples are drawn from populations with relatively 
larger generalized variance, Type I error rate increases when Ho is true and power 
increases when Ho is false . As detailed in individual studies, the degree to which 
Type I error and power are affected by covariance heterogeneity depends on a 
number of factors : total sample size, sample size disparities among groups, true 
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differences among population means, magnitude of generalized variance, and gen­
eralized variance disparities among groups. 

THIS STUDY 

Deciding whether an SMM, MIMIC, or MANOV A approach is most appropriate 
for a given situation can be a challenge for researchers. As discussed by Cole et al. 
(1993), the primary decision should involve an appeal to theory, determining 
whether a latent or emergent variable system appears to best define the construct of 
interest. If emergent, a MANOV A approach may be most prudent; if latent, the 
choice between SMM and MIMIC methods hinges on concerns such as sample size 
and degree of model noninvariance across groups. Unfortunately, the default be­
havior has historically been the use ofMANOV A with little regard to the nature of 
the underlying variable system. This article investigates the potential cost of such 
behavior in the single-factor two-group situation, using a Monte Carlo simulation 
to investigate Type I error control and a population analysis to examine relative 
power of the three methods under a variety of conditions. Conditions investigated, 
which are detailed more fully later, are as follows: factorially invariant groups with 
equal loadings, factorially invariant groups with varied loadings, factorially 
noninvariant groups with approximately equivalent generalized variance, and 
factorially noninvariant groups with disparate generalized variance. In addition to 
loading magnitude and configuration, the magnitude of the true factor mean differ­
ence between groups as well as sample size conditions (with equal and unequal 
cases) are manipulated. 

Finally, to clarify, a comparison of latent mean modeling approaches with 
MANOV A may seem like an unfair comparison, particularly within a latent vari­
able system for which MANOV A is not designed. However, the point of this com­
parison stems from the common recommendation to use MANOV A when 
interested in mean differences among multiple dependent variables, without re­
gard to the nature of the variable system at hand. MANOV A is specifically de­
signed for emergent variable systems; thus, regardless of its relative performance, 
this study is not seeking to endorse MANOV A when faced with a latent variable 
system. Rather, this study will show the benefits that may be reaped when choos­
ing from the more appropriate latent variable methods instead of the default 
multivariate approach. 

METHOD 

Model and Conditions 

In this experiment a single-factor model with three measured indicators (i .e., latent 
rather than emergent variable system) was used in each of two groups. The choice 
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of three indicators was made as it is a commonly recommended minimum (e.g., 
Bentler & Chou, 1987). For simplicity, variables were created so as to contain no 
bias in either population (i.e., v 1 = v2 = 0). The value of the factor mean was set to 
zero for Group l 's population (i .e., K1 = 0), whereas for Group 2 ' s population the 
factor mean was varied: K2 = -1K = 0, .2, .5, and .8. The population factor variance <1> 

was set to one. 
The factor loadings in A were varied to create eight population scenarios, four 

factorially invariant across groups (i.e., A1 = A2) and four factorially noninvariant 
(i.e., A1 -:t:- A2). In three of the four factorially invariant scenarios A1' = A2' = [AA 
A]', where A was varied to be .4, .6, and .8; in the fourth factorially invariant sce­
nario A1' = A2' = (.4 .6 .8]'. To create factorially noninvariant scenarios, the first 
condition had A1' = (.6 .6 .6]' and A2' = [.4 .6 .8]'; the second had A1' = [.4 .6 .8]' 
and A2' = [.6 .6 .6]'. In the third condition Ai'= (.4 .4 .4]' and A2' = (.8 .8 .8]', while 
in the fourth Ai'= [.8 .8 .8]' and A2' = [.4 .4 .4]'. As for residual errors, for each 
group 0 was set to 1-diag(AA'), therefore yielding variables with unit variance. 
Thus, for measurement models with A' = [.4 .4 .4]', A'= [.6 .6 .6]', A' = (.8 .8 .8]', 
and A' = [.4 .6 .8]', the generalized population variance detCE) = 0.9314, 0. 7045, 
0.2955 , and 0.6833 , respectively. This means that populations with A1' = [.4 .6 .8]' 
and A2' = [.6 .6 .6]' (or vice versa) have approximately equivalent generalized vari­
ance, whereas groups with A1' = [.4 .4 .4]' and A2' = (.8 .8 .8]' (or vice versa) have 
greatly disparate generalized variance. 

Finally, total sample sizes of N = 200, 400, 800, and 1,600 across both groups 
were investigated in n1 :ni ratios of I : I, 2:3, and I :3. That is, for N = 200 the three 
cases were l 00: I 00, 80: 120, and 50: 150; for N = 400 the three cases were 200:200, 
160:240, and I 00:300; for N = 800 the three cases were 400:400, 320:480, and 
200:600; and for N = 1,600 the three cases were 800:800, 640:960, and 400: 1,200. 
Notice that for populations with A1' = (.4 .4 .4]' and A2' = [.8 .8 .8]', the sample size 
ratios 2:3 and I :3 represent the negative pairing condition (described earlier), 
whereas for populations with A1' = [.8 .8 .8]' and A2' = (.4 .4 .4]', the sample size 
ratios 2:3 and I :3 represent the positive pairing condition. 

Simulation and Type I Error Rate Estimation 

Raw data matrices were generated in GAUSS (Aptech Systems, 1996) to achieve 
the desired sample size and covariance structure. For each group (j = I, 2) an nix 3 
matrix of random normal deviates was premultiplied against the Cholesky 
factorization of that group 's population correlation matrix. The population correla­
tion matrix for each group is Pi = A/\/ + [1- diag(AiA/)], which is also the popula­
tion covariance matrix because variables were created to have unit variance. For 
each of the sample size and loading conditions, 1,000 pairs of data matrices (i .e. , 
one per group) were generated for analysis and Type I error rate evaluation. 
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Each set of simulated raw data was analyzed using MANOV A as well as the 
SEM approaches. All MANOV A analyses were conducted directly within 
GAUSS, tallying the number of null hypothesis rejections (assuming a = .05). 
SEM analyses were conducted using EQS 5. 7 (Bentler, 1998). Specifically, SMM 
was run twice on each data set (once with loading constraints and once without); 
for each the number of times was tallied in which the construct mean of Group 2 
differed statistically significantly (a= .05) from the zero-constrained latent mean 
of Group 1. Finally, for the MIMIC approach, the raw data for the two groups were 
first concatenated into a single data file with an additional dummy column vector 
inserted to designate group membership. The number of times the group code pre­
dictor made a statistically significant (a= .05) contribution to the prediction of the 
latent construct was counted. Again, 1,000 replications were conducted per cell of 
the design; in the event that an SMM or MIMIC analysis yielded an error code or a 
convergence failure, that pair of data matrices was completely discounted and an­
other was generated in its place for analysis using the MANOV A, SMM, and 
MIMIC approaches. 

Population Analysis and Power Estimation 

In this portion of this study no data were simulated; rather, the model-implied popu­
lation variances and covariances were analyzed assuming the various sample size 
combinations listed earlier. Such a population analysis approach, which has been 
implemented in similar SEM investigations ( e.g., Kaplan & George, 1995), can be 
used in place of Monte Carlo simulations when the sampling behavior of the rele­
vant test statistics is not of direct interest. Thus, the population covariance matrices 
were generated for all conditions of interest, submitted to SMM, MIMIC, and 
MANOV A methods for estimation of the relevant distribution's noncentrality pa­
rameter, and power was estimated as detailed following. 

SMM. A population mean vector µ and covariance matrix l: were generated 
for both groups, where for a given groupµ= Ax: and l: =AA'+ 0 (because v = 0 and 
<I> = l, as described previously). A single factor model was fit to both groups, first 
imposing cross-group equality constraints on loadings and intercepts and then with 
loading constraints freed. Mean and covariance structures were estimated using 
maximum likelihood estimation in EQS 5. 7 (Bentler, 1998). Although the factor 
mean for Group 1 was set to zero, each model was run both with the Group 2 mean 
free to vary as well as fixed to zero. The difference between the two model xi values 
represents a noncentrality parameter o for the noncentral xi distribution with one 
degree of freedom. From this o value the power was determined for an a= .05 level 
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test of factor mean equivalence, following from the discussion of Saris and Satorra 
(1993) for power analysis without specific alternatives. Other approaches toe ti­

mating power, such as using a Lagrange Multiplier x2 or Wald test x2, are asymptot­
ically equivalent (see Bollen, 1989; Buse, 1982; Satorra, 1989; Satorra & Saris, 
1983, 1985). 

MIMIC. Because data from both groups are combined in this approach, a sin­
gle covariance matrix is needed that includes the group code (dummy) variable. For 
this study the partitioned matrix presented earlier (and derived in Appendix A) is 

appropriate, with $1 = (j)2 = l. As described previously, a model was fit to the com­
bined group in which a single dummy predictor has a causal influence on the factor 

TJ . Maximum likelihood estimation was used within EQS 5.7 (Bentler, 1998). As 

the path from the dummy Xto TJ captures the expected factor mean difference be­
tween groups, the model was run both with this path free to vary as well as fi xed to 

zero. The difference between the two model x2 values represents a noncentrality pa­
rameter o for the noncentral x2 distribution with l df, from which power was esti­
mated as mentioned previously.2 

MA NOV A. As derived in Appendix B, the pooled within sums-of-squares 

matrix is W = n1(A1A1' + 0 1) + n2(A2Ai' + 0 2) and the total sums-of-squares matrix 

is T = W + (n 1n2 / N)(!:!,,K)2A2 Ai'. Power determination for anFtest at the .05 level 
was made based on a noncentral F distribution with 3 and N - 4 df, where the 

noncentrality parameter o for this scenario reduces too = N[(ITI / IW I)- l] as fol­
lows from Cohen ( 1988; see chapter 10). Power calculations from this noncentral 
distribution were made using the power analysis program STAT-POWER 2.2 
(Bavry, 1993). 

2For both the structured means modeling and multiple-indicator multiple-cause approaches, power 
was originally estimated using the z value associated with the path representing the factor mean differ­
ence. The square of this z value represents an estimate of the same noncentral ity parameter o (for a 
noncentral X,2 distribution with one degree of freedom) as the X,2 value that was ultimately used in this 
study to estimate power. Unfortunately, in the course ofour investigation the standard errors for the rele­
vant path did not appear invariant to, for example, changes in which variable is designated the factor' s 
scale indicator. Any change in the model yields a change in the information matrix, which in turn seems 
to affect standard errors and hence the z value used in power estimation. The X,2 difference value, on the 
other hand, is not affected by such changes, a phenomenon explored recently by Lawrence and Hancock 
( 1998). For this reason, the x.2 difference values were used in power estimation. Methodologists con­
ducting population analyses may wish to take note that z values (and most likely Wald and Lagrange X,2 

values for similar reasons) may not provide for as stable an estimate of power as the X,2 difference. Cer­
tainly further exploration of this issue is needed. 



542 HANCOCK, LA WREN CE, NEVITT 

RESULTS 

Type I Error Rates 

The four scenarios in which both groups had identical measurement models (and 
hence homogeneous covariance matrices) are contained in Table I , where Type I 
error results for SMM, MIMIC, and MANOV A approaches are detailed. The four 
noninvariant scenarios follow in Table 2. In both tables, any error rate falling at or 
beyond Bradley' s (1978) liberal criterionofa± l/2a(i.e., $.025 or~.075) is under­
lined. Note that, although SMM was run with and without loading constraints, only 
the constrained results are presented in the tables. Type I error rates from the two 
conditions never differed by more than .017 (almost always differing by only a few 
thousandths), and showed no systematic tendency to be higher in the constrained or 
unconstrained condition. 

As would be expected in theory, in loading-invariant cases Type I error control 
is maintained at acceptable levels regardless of loading pattern or sample size ra­
tio. Similarly, when loadings are noninvariant but have nearly equivalent general­
ized variances (as in the first two column blocks of Table 2), Type I error rates are 
completely acceptable. In fact, even when loading patterns precipitate disparate 
generalized variances but sample sizes are equal across groups, all three methods 
appear to control Type I error satisfactorily. However, when sample size differ­
ences accompany the disparity in generalized variance, acceptable control over 
Type I error is no longer assured. 

To elaborate, consider the performance of each of the three methods under the 
most disparate loading patterns in the last two column blocks of Table 2. SMM ap­
pears to maintain Type I error control within the limits of Bradley's liberal crite­
rion under all conditions, even with the loadings constrained. The MIMIC 
approach, on the other hand, tends to become conservative when the most extreme 
sample size ratio is negatively paired with generalized variance, and tends to be­
come liberal in similar positive pairing conditions. This behavior is somewhat op­
posed to that typically observed for MANOV A, where extreme negative 
conditions are seen to result in the inflated error rates as expected and extreme pos­
itive pairings result in conservative error rates (though not outside Bradley's inter­
val in this study). 

Power in Invariant Scenarios 

The four scenarios in which both groups had identical measurement models are 
contained in Table 3, where power analysis results for SMM, MIMIC, and 
MANOV A approaches are presented. Note that, although SMM was run with and 
without loading constraints, only the constrained results are presented in Table 3. 



c.n 
~ w 

n1:n1 

100: 100 
80:120 
50:150 
200:200 
160:240 
100:300 
400:400 
320:480 
200:600 
800:800 
640:960 
400: 1200 

Note. 

TABLE 1 
Type I Error Rates of SMM, MIMIC, and MANOVA Under Factorial Invariance 

--
A,'= [.4 .4 .4) A,' = [.6 .6 .6) A,' = [.8 .8 .8) A,' = [.4 .6 .8) 

A,'= [.4 .4 .4} A/= [.6 .6 .6) A/= [.8 .8 .8) A/= [.4 .6 .8) 

SM Ml MA SM Ml MA SM Ml MA SM Ml MA 

.032 .038 .032 .04 1 .043 .037 .064 .064 .055 .037 .039 .044 

.037 .046 .03 1 .042 .047 .050 .026 .028 .047 .045 .045 .048 

.046 .037 .039 .060 .056 .049 .057 .057 .04 1 .039 .047 .050 

.042 .047 .046 .044 .043 .038 .051 .051 .042 .040 .043 .044 

.042 .040 .047 .05 1 .052 .056 .048 .047 .054 .039 .041 .046 

.037 .037 .034 .045 .05 1 .050 .055 .050 .059 .037 .037 .042 

.043 .044 .038 .044 .044 .040 .056 .056 .046 .038 .038 .043 

.037 .038 .037 .049 .048 .045 .045 .046 .05 1 .037 .037 .045 

.055 .052 .052 .045 .046 .044 .034 .036 .053 .058 .057 .043 

.044 .044 .058 .047 .047 .049 .051 .05 1 .057 .05 1 .05 1 .045 

.046 .045 .047 .046 .046 .047 .06 1 .060 .047 .040 .039 .043 

.04 1 .042 .047 .053 .053 .053 .050 .049 .050 .039 .036 .043 

SM = structured means modeling; MJ = multiple-indicator multiple-cause; MA = multivariate analysis of variance. 
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TABLE 2 
Type I Error Rates of SMM, MIMIC, and MANOVA Under Factorial Noninvariance 

A/= {6 .6 .6) A/= [4 .6 .8) A/ = [.4 .4 .4) A/ = [.8 .8 .8) 

A/ = [4 .6 .8) A/= [.6 .6 .6) A/= [.8 .8 .8) A/= [.4 .4 .4) 

n1:n2 SM Ml MA SM Ml MA SM Ml MA SM Ml MA 

100:100 .033 .037 .040 .046 .043 .054 .048 .045 .048 .068 .056 .050 
80:120 .051 .048 .045 .041 .043 .044 - .049 .039 .067 +.058 .081 .051 
50:150 .038 .039 .050 .051 .052 .051 -.052 .023 .l.Q2 +.070 .089 .039 
200:200 .044 .045 .052 .039 .053 .047 .049 .054 .053 .051 .056 .039 
160:240 .055 .052 .048 .059 .061 .063 -.044 .034 .062 +.054 .065 .048 
100:300 .039 .038 .060 .053 .050 .049 -.037 .017 .080 +.050 .079 .038 
400:400 .044 .046 .044 .057 .068 .056 .052 .054 .035 .045 .047 .047 
320:480 .045 .046 .043 .060 .054 .060 - .047 .041 .072 +.049 .059 .045 
200:600 .055 .051 .058 .067 .069 .Q70 - .052 .034 .104 +.047 .074 .034 
800:800 .058 .058 .052 .056 .048 .039 .040 .041 .047 .058 .039 .060 
640:960 .048 .047 .052 .041 .042 .047 -.040 .029 .062 +.048 .059 .046 
400:1200 .049 .048 .051 .045 .048 .046 -.052 .025 .ill +.040 .Qfil! .034 

Note. A minus(-) sign indicates a negative pairing of sample size with generalized variance pertaining to all three 
methods; a plus(+) sign indicates a positive pairing. Any error rate falling at or beyond Bradley's ( 1978) liberal criterion of a 
± l/2a (i.e., :5 .025 or 2'. 075) is underlined. SM = structured means modeling; MI= multiple-indicator multiple-cause; MA = 
multivariate analysis of variance. 



TABLE 3 
Power of SMM, MIMIC, and MANOVA Under Factorial Invariance 

A,' = [.4 .4 .4) A,'= {.6 .6 .6) A/ = [.8 .8 .BJ A,' = [.4 .6 .BJ 

A/= [.4 .4 .4J A/= {.6 .6 .6J A/ = [.8 .8 .BJ A/ = [.4 .6 .BJ 
-

n1:n1 SM Ml MA SM Ml MA SM MI MA SM Ml MA 
--

t.K = .2 
100:100 .136 .136 .096 .200 .20 1 .133 .252 .253 .165 .22 1 .222 .146 

80:1 20 .132 . 132 .094 .193 .194 .129 .243 .244 .160 .214 .215 .141 

50: 150 .113 .114 .083 .160 .162 . 11 0 .199 .201 .1 33 .176 .178 .120 

200:200 .225 .225 .1 48 .352 .352 .232 .447 .448 .303 .392 .393 .26 1 

160:240 .218 .2 18 .144 .340 .341 .224 .432 .434 .292 .379 .380 .252 

100:300 .180 .181 .122 .276 .278 .182 .35 1 .354 .233 .307 .310 .203 

400:400 .398 .399 .266 .608 .609 .440 .735 .735 .569 .665 .666 .496 

320:480 .385 .386 .256 .59 1 .592 .424 .717 .718 .550 .647 .648 .478 

200:600 .313 .314 .206 .489 .49 1 .338 .608 .6 11 .443 .54 1 .544 .382 

800:800 .673 .673 .503 .886 .886 .762 .956 .956 .883 .922 .922 .82 1 

640:960 .655 .656 .486 .873 .873 .743 .948 .948 .868 .9 11 .912 .803 

400: 1200 .549 .551 .388 .78 1 .783 .624 .886 .887 .765 .832 .834 .688 

t.K = .5 
100: 100 .559 .562 .396 .788 .790 .635 .890 .892 .775 .838 .840 .700 

80: 120 .542 .545 .382 .771 .774 .6 15 .876 .879 .757 .822 .825 .680 

50:150 .442 .450 .303 .657 .671 .501 .777 .793 .638 .713 .727 .561 

200:200 .849 .850 .7 11 .975 .975 .927 .995 .995 .980 .987 .987 .956 

160:240 .833 .835 .692 .969 .970 .9 16 .993 .993 .975 .983 .984 .948 

100:300 .731 .738 .572 .919 .925 .829 .972 .976 .928 .947 .953 .879 

400:400 .989 .989 .960 1.000 1.000 .999 1.000 1.000 1.000 1.000 1.000 1.000 

01 
320:480 .986 .986 .952 1.000 1.000 .998 1.000 1.000 1.000 1.000 1.000 1.000 

.i:,. ( continued) 
01 
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TABLE 3 (Continued) 

A/ = (.4 .4 .4) A/ = [.6 .6 .6] A/ = [.8 .8 .8] A,'= [.4 .6 .8} 

A/ = [.4 .4 .4] A/= [.6 .6 .6} A/ = [.8 .8 .8) A/= (.4 .6 .8} 

n1:n1 SM MI MA SM MI MA SM MI MA SM MI MA 

200:600 .954 .957 .886 .997 .998 .990 1.000 1.000 .999 .999 .999 .996 
800:800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
640:960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
400:1200 .999 .999 .996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

L\tc =.8 
100: 100 .9 17 .918 .819 .992 .992 .973 .999 .999 .995 .996 .996 .987 
80:120 .905 .908 .802 .989 .990 .967 .998 .999 .994 .995 .995 .983 
50:150 .815 .830 .687 .958 .967 .9 13 .988 .992 .974 .975 .982 .946 
200:200 .997 .997 .989 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

160:240 .996 .997 .986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
100:300 .982 .985 .951 1.000 1.000 .998 1.000 1.000 1.000 1.000 1.000 1.000 
400:400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
320:480 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
200:600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
800:800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
640:960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
400:1200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Note. SM = structured means modeling; Ml = multiple-indicator multiple-cause; MA = multivariate analysis of variance. 
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This is because all loading constraints were true in the population for these invari­
ant scenarios, thus yielding identical power estimates with and without loading 
constraints. 

As expected, the power of all methods is greater for larger values of N, dK, and 
A. Also, an increased disparity in the n1:n2 ratio leads to decreases in power, again 
as expected. As for differences between the two SEM-based methods, the MIMIC 
approach is unilaterally equivalent or superior (though never by much); the magni­
tude of this superiority appears to vary as a function of the other conditions. For a 
small latent effect size (dK = .2), SMM and MIMIC approaches are almost identi­
cal in power for all sample size and loading configurations; MIMIC's superiority 
never exceeds .003 (i .e., 0.3%) for the case of all-equal loadings as well as for the 
varied loading case. For a medium latent effect size (dK = .5), the MIMIC method 
is better in the all-equal loading cases by a maximum of 1.6%, whereas for the var­
ied loading case that difference is I .4%. For a large latent effect size (dK = .8), the 
MIMIC method's maximum superiority in the all-equal loading cases is 1.5%, 
whereas for the varied loading case it is a mere 0. 7%. 

If a researcher had chosen to use the traditional MANOV A in these invariant 
scenarios, which is actually inconsistent with the latent variable system used in 
this investigation, a loss in power would result in all but those maximum power sit­
uations (i.e., where both power estimates are 1.000). Consider a comparison of 
MANOVA with the MIMIC approach (the more powerful of the two SEM meth­
ods, as presented earlier). For a small latent effect size, MANOV A is always less 
powerful than the MIMIC approach; the power difference is as high as 16.8% in 
the all-equal loading cases and 17.0% in the varied loading case. For a medium la­
tent effect size, MANOV A is still never more powerful; the MIMIC method is 
better in the all-equal loading cases by as much as 17.0%, whereas for the varied 
loading case the maximum difference is 16.6%. Finally, for a large latent effect 
size, the MIMIC method's superiority over MANOVA reaches 14.3% in the 
all-equal loading cases, whereas for the varied loading case it is 3.6%. 

Power in Noninvariant Scenarios 

The four scenarios in which groups had different measurement models are con­
tained in Table 4, where power analysis results for SMM, MIMIC, and MANOV A 
approaches are detailed. The two scenarios with approximately equivalent general­
ized variance will be addressed first (in the first two column blocks in Table 4), fol­
lowed by those two scenarios with disparate generalized variance (in the last two 
column blocks in Table 4). As done previously, only SMM result with constrained 
loadings are presented; the very slight power improvement that occurred on releas­
ing loading constraints is mentioned later. 
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TABLE 4 
Power of SMM, MIMIC, and MANOVA Unde r Factoria l Noninvariance 

A,' = [.6 .6 .6} A,' = [.4 .6 .8} A,' = [.4 .4 .4} A,' = [.8 .8 .8} 

A/ = {.4 .6 .8} A/= {.6 .6 .6} A/ = [.8 .8 .8} A/= [.4 .4 .4} 

n1:n1 SM Ml MA SM Ml MA SM Ml MA SM Ml MA 
--

t.JC = .2 
100:100 .217 .218 .1 48 .193 .195 .134 .305 .306 .200 .112 .11 3 .083 
80:120 .212 .213 .1 43 .188 .191 .130 -.309 .284 .185 +.107 .113 .083 
50:150 .177 .178 .120 .158 .161 .Il l - .269 .220 .144 +.091 .104 .o78 
200:200 .384 .386 .266 .339 .342 .234 .538 .539 .377 . 178 .178 .120 

160:240 .375 .376 .255 .330 .334 .225 - .543 .502 .346 +.166 .180 .121 
100:300 .308 .309 .204 .270 .276 .182 - .479 .388 .258 +.133 .160 .110 

400:400 .655 .656 .505 .590 .594 .444 .829 .829 .683 .308 .308 .202 
320:480 .64 1 .643 .485 .575 .582 .427 - .834 .794 .638 +.285 .312 .205 
200:600 .542 .543 .385 .479 .488 .339 - .771 .659 .489 +.220 .274 .179 
800:800 .916 .9 17 .829 .872 .875 .767 .985 .985 .948 .541 .541 .380 
640:960 .908 .909 .8 10 .861 .866 .747 - .986 .976 .926 +.504 .547 .385 
400:1200 .832 .833 .693 .770 .780 .626 -.969 .9 18 .814 +.389 .484 .332 

t.JC = .5 
100:100 .83 1 .834 .709 .773 .778 .640 .946 .948 .873 .440 .442 .297 
80:120 .8 17 .822 .687 .757 .766 .619 - .949 .929 .837 +.407 .447 .30 1 
50:150 .7 13 .727 .565 .647 .668 .503 -.907 .834 .692 +.309 .393 .260 



200:200 .985 .986 .960 .970 .971 .929 .999 .999 .995 .727 .728 .562 
160:240 .982 .983 .952 .965 .968 .918 -.999 .998 .991 +.686 .734 .568 
100:300 .948 .953 .882 .913 .924 .830 - .997 .986 .954 +.546 .667 .496 
400:400 1.00 1.000 1.000 1.000 1.000 .999 1.00 1.000 1.000 .953 .953 .878 
320:480 1.00 1.000 1.000 1.000 1.000 .998 - 1.000 1.000 1.000 +.934 .955 .883 
200:600 .999 .999 .996 .997 .998 .990 - 1.000 1.000 1.000 +.837 .923 .822 
800:800 1.00 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 .999 .999 .996 
640:960 1.00 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 +.998 .999 .996 
400:1200 1.00 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 +.986 .998 .989 

~I( = .8 
100:1 00 .996 .996 .988 .990 .991 .974 1.00 1.000 .999 .820 .822 .676 
80:120 .995 .995 .985 .987 .989 .968 - 1.000 1.000 .999 +.781 .827 .683 
50:150 .975 .982 .948 .954 .967 .914 -.999 .996 .986 +.636 .766 .606 
200:200 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 .983 .983 .947 
160:240 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 +.973 .984 .950 
100:300 1.000 1.000 1.000 .999 1.000 .998 - 1.000 1.000 1.000 +.907 .967 .910 
400:400 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 1.00 1.000 1.000 
320:480 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 +1.000 1.000 1.000 
200:600 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 +.996 1.000 .998 
800:800 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000 1.000 1.00 1.000 1.000 
640:960 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 +1.000 1.000 1.000 
400:1200 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 + 1.000 1.000 1.000 

Nole. A minus(- ) sign indicates a negative pairing of sample size with generalized variance pertaining to all three methods; a plus(+) sign indicates a 
positive pairing. SM = structured means modeling; MI = multiple-indicator multiple-cause; MA = multivariate analysis of variance. 

0, 
~ 
(0 



550 HANCOCK, LA WREN CE, NEVITT 

Approximately equivalent generalized variance. Again, power of all 
methods is greater for larger values of N, ~K, and A., whereas an increased disparity 
in the n1 :n2 ratio leads to decreases in power. As for differences between the two 
SEM-based methods, the MIMIC approach is still seen to be equivalent or superior 
when loadings in SMM are constrained, although the magnitude of this superiority 
remains quite small. For a small latent effect size (~K = .2), SMM and MIMIC ap­
proaches are almost identical in power for all sample size and loading configura­
tions; MIMIC 's superiority never exceeds 1.0%. For a medium latent effect size 
(~K= .5), the MIMIC method is never more than 2.1 % higher (almost always much 
less), whereas for a large latent effect size (~K= .8) the MIMIC method ' s maximum 
superiority is 1.3%. If the SMM loading constraints are freed in these scenarios, the 
method 's power shows a slight increase; the power gained is enough to make SMM 
generally superior to the MIMIC approach, but never by more than 1.9%. 

IfMANOV A had been used in these first two noninvariant scenarios, a loss in 
power would result in all cases but those with maximum power. A comparison of 
MANOV A with the MIMIC approach shows that, for a small latent effect size, 
MANOV A is always less powerful than the MIMIC approach and by as much as 
15.8%. For a medium latent effect size, MANOV A is still never more powerful 
than the MIMIC approach; using MANOV A can result in as much as a 16.5% loss 
in power. When a large latent effect size is present, the superiority of the MIMIC 
approach reaches a maximum of 5.3%. 

Disparate generalized variance. As before, results follow the expected 
patterns with respect to N, ~K, and A.. However, with respect to the n1 :n2 ratio, some 
curious but consistent phenomena appear in the disparate generalized variance 
cases. Specifically, in the A1' = [.4 .4 .4]' and Ai'= [.8 .8 .8]' scenarios, SMM gener­
ally experiences a very slight power increase moving from n1:n2 = I: 1 to the nega­
tive n1:n2 = 2:3; then, as expected, power for the negative n1:n2 = 1 :3 case drops to 
below that in either preceeding sample size ratio. Both MANOV A and the MIMIC 
approach behave as expected, with consistent decreases in power with increased 
n1:n2 disparity. Conversely, in the A1' = [.8 .8 .8]' and Ai'= [.4 .4 .4]' scenarios, 
MANOV A and MIMIC results exhibit a very slight power increase moving from 
n1 :n2 = I: I to the positive n1 :n2 = 2:3; then, as expected, power for the positive n1 :n2 
= l :3 case drops to below that in either preceeding sample size ratio. Meanwhile, 
SMM exhibits consistent decreases in power with increased n1 :n2 disparity as ex­
pected. To explain these phenomena fully would require a substantial amount of 
space for what is, for current purposes, a tangential curiosity. Suffice it to say, the 
reader can replicate this type of phenomenon with an independent-groups 
pooled-variance t test where population variances ( and hence sample variances) are 
unequal. The important point is that, for large sample size disparities, power tends 
to degrade as expected. 
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In general, the noninvariant scenarios with disparate generalized variance show 
less power for all methods in the positive conditions than in the negative condi­
tions as expected. As for the methods ' relative power, first consider the compari­
son of the two SEM-based methods. When sample sizes are equal, the two 
methods are virtually identical in power; the MIMIC approach tends to have a 
slight edge, but never by more than 0.2%. When sample sizes are unequal, the neg­
ative conditions consistently favor SMM (by as much as 9.1 %). The positive con­
ditions, on the other hand, consistently favor the MIMIC approach (by as much as 
13 .0%). However, all noninvariant power results must also be considered in light 
of the previous Type I error results. Specifically, in negative conditions the inferi­
ority of the MIMIC approach is likely to be the result of a general conservatism as 
evidenced by low Type I error rates, whereas in positive conditions the apparent 
power advantage of the MIMIC method may simply be an artifact of the unaccept­
ably liberal Type I error control. Finally, the release oftoading constraints in SMM 
did not alter its power relative to that of the MIMIC approach in these final scenar­
ios; this is because error variances were not constrained across groups, thereby al­
lowing for equivalent nonstandardized loadings without inflating the model x2 

values. 
If MANOV A had been used in these last noninvariant scenarios, a fairly sub­

stantial loss in power would often result. In the negative pairings with A1' = [.4 .4 
.4]' and A2' = [.8 .8 .8]', where SMM is the better SEM-based method and 
MANOV A is inferior to SMM in power by as much as 28.2% even with 
MANOVA's failure to control Type I error rates to acceptable levels. In the posi­
tive scenarios with A1' = [.8 .8 .8]' and A2' = [.4 .4 .4]', where the MIMIC approach 
is the better SEM method because of a failure to control Type I error, MANOV A is 
inferior to that MIMIC approach in power by as much as 17. I%, and is inferior to 
SMM by as much as 16.5%. 

DISCUSSION AND CONCLUSIONS 

When faced with latent (as opposed to emergent) construct differences, MANOV A 
constitutes the wrong model; this study offers evidence of the potential price of 
choosing that wrong model. Although isolated high-power conditions exist where 
this traditional approach is competitive, under most scenarios examined in this in­
vestigation SEM-based methods were superior and often substantially so. This may 
not be terribly surprising given that the population data in this study were created 
assuming a latent variable system (for which the SMM and MIMTC approaches are 
tailored), thus stacking the deck against MANOV A from the start. But the point of 
such a comparison draws from the common recommendation to use MANOV A 
when interested in mean differences among multiple dependent variables, without 
regard to the nature of the variable system at hand. And seen here, even in negative 
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pairing scenarios when MANOV A has a known power boost (at the expense of 
Type I error control), this traditional multivariate method still falls well short of the 
more powerful SEM approaches. 

Much more interesting is the comparison between the two SEM-based meth­
ods. First, SMM appears to control Type I error acceptably in all scenarios ad­
dressed in this study, whether or not loading constraints are in place. A MIMIC 
approach, on the other hand, controls the error rate when approximately equal gen­
eralized variances and/or equal sample sizes are present, but not with both sample 
size and generalized variance disparities . To elaborate, in the bias-free MIMIC 
models considered in this study (i.e., where v1 = v2 = 0) a group code variable is ex­
plaining variance in observed variables, but only indirectly as mediated by the la­
tent construct (explained variance is systematic in the population power analyses, 
and random in the Monte Carlo Type I error simulations). In general, when there 
are bigger loadings the path from the group code variable to the construct need not 
be as large to explain a given amount of observed variable variance, and when 
there are smaller loadings the relevant path must become larger to accommodate. 
Now when two samples with different loadings are combined and analyzed with a 
single model, the magnitude of the single set of loadings that results will reflect 
contributions of the original samples' loadings relative to their sample sizes. This 
means that if the sample with the smaller loadings is given more weight due to a 
larger sample size, this will yield relatively smaller combined-group loadings and 
hence an inflated path from the group code variable must result; this inflated path 
will reject the null hypothesis more often, leading to more power but also to liberal 
Type I error control. Conversely, if the sample with the smaller loadings is given 
less weight due to a smaller sample size, this will yield relatively larger com­
bined-group loadings and hence a smaller required path from the group code vari­
able; this attenuated path will reject the null hypothesis less often, leading to less 
power as well as conservative Type I error control. With disparate generalized 
variances it is only when two (reasonably large) samples are equal in size that the 
combined result will mirror what would be expected with the combination of two 
theoretically infinite populations, thereby controlling the Type I error rate. 

Regarding power, in the invariant scenarios the MIMIC approach was only 
slightly more powerful than SMM, with a maximum superiority of 1.6%. In 
noninvariant scenarios with approximately equivalent generalized variances the 
MIMIC approach was only slightly more powerful when SMM employed con­
strained loadings; SMM became generally but only slightly more powerful when 
the constraints were released (not tabled). As for disparate generalized variance 
cases, the two SEM methods had virtually identical power with equal sample sizes, 
but not with unequal sample sizes. As mentioned earlier, the MIMIC method's ap­
parent power superiority when large loadings are paired with small samples comes 
at the expense of Type I error control, whereas SMM's superiority when large 
loadings are paired with large samples does not sacrifice Type I error control. 
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Thus, given a latent variable system, the choice between MIMIC and SMM ap­
proaches could be viewed as dependent on sample size. That is, when ample sizes 
are equal , there seems to be little practical difference between methods in terms of 
power or Type I error control. When sample sizes become increasingly disparate, 
however, SMM would seem to be favored. Although slightly less powerful than 
the MIMIC approach in some scenarios, researchers are generally without a priori 
knowledge of potential loading disparities across populations. Thus, whatever 
minute reduction in power that may result by choosing SMM over a MIMIC strat­
egy would seem to be a small acrifice to gain flexibility in accommodating load­
ing invariance and to avoid the MIMIC approach's potential to lose control over 
Type I error. 

Certainly further comparison of the two SEM methods is warranted. This study 
dealt with a limited number of loading and sample size conditions, and only with 
the case of three indicator variables. Also interesting would be the extension of this 
work beyond the two-group case, both in terms of the SEM methods ' relation to 
each other as well as to MANOV A. A full understanding of such scenarios is nec­
essary for the further development of experimental and nonexperimental design at 
the latent variable level. 
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APPENDIX A 

First-order and Second-order Moments for MIMIC Approach 

In general for Group l, y1 =v1 + A111 + £1. In the current studyv1 =v2 = O; therefore, 
E[yi] = µ 1 = A 11C1• Further, because 1C1 was set to 0, E[y1] = µ1 = 0. 

In general for Group 2, y2 = v2 + A211 + £2• In the current study v 1 = V2 = O; therefore, 
E[y2] = µ2 = A2 1C2. Further, as 1C2 = ~lC (because 1C1 = 0), E[y2] = A2~1C. 

When groups are combined, the first moment vector (in partitioned format to in­
clude the group code dummy X with X 1 = 0 and X2 = 1) is as follows: 
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(n i/N)E[y,' IX,]' + (ni/N)E[yi' I Xi ]' 
= [(n i/N)E[yi'J + (ni/N)E[y21 1 (n i/N)E[Xt] + (n2/N)E[X2)]' 
= [(n i/N)E[y,'J + (n2/N)E[y2'] I (n2/N)]' 
= [(n2/N)µi' I (ni!N)]' 
= [(n2/N)t,.KA/ I (ni!N)]'. 

The second moment matrix for the combined groups (in partitioned format) may be de­
rived as follows: 

E[[[y' I XJ' - [µ' I (ni/N)J'J[[y' I XJ' - [ µ' I (ni!N)]1'] 
= E[[[y' I XJ' - [ µ' I (ni/N)J'J[[y' I XJ - [ µ' I (n2IN)JJJ 
= E[[y' - µ' IX - (ni!N)]'[y' - µ' IX - (ni!N)]] 

= [ E[[y-µ][y- µ]'] E[[y- µ][X -(n2 IN)]]] 

E[[X -(n2 I N)][y-µ]'] E[X -(n2 I N)]2 

At this point, it is easier to focus on individual quadrants of Matrix 1. 

Upper left 

E[[y - µJ[y - µ]'] 
= (n i/N)E[[y, - µJ[y, - µ]'] + (n2/N)E[[y2 - µ][y2 - µ)'] 

Matrix 1 

= (ni/N)E[[y, - µ, + µ 1- µ][y, - µ , + µ, - µ]'J +(n2/N)E[[y2- µ 2+µ2- µ][y2- µ 2+ µ2-
µ)'J 

= (n i/N)[E[[y, - µ ,J[y, - µ,]'] +E[[µ, - µ][µ, - µ)']] + (ni/N)[E[[Y2 - µ2][Y2 - µ2]'] + 
E[[µ2 - µ][µ 2 - µ]']] 

= (n i/N)[L, + [O - (ni/N)A2dK][O' - (n2/N)t,.KA/]] 
+ (ni/N)[Li + [A2dK - (ni/N)A2dK][dlCA/ - (n2/N)t,.KA/ ]] 

= (n i/N)[L, + (n2/N)2(dK)2 A2A2'] + (n2IN)[Li + [(n i/N)A2dK][(n i/N)dKA2']] 
= (n i/N)[L.1 + (n2/N)2(dK)2A2A/ ] + (ni/N)[Li + (n i/N) 2(dK)2A2A/ ] 
= (n i/N)L. 1 + (ni/N)Li + (n i/N)(ni/N)2(dK)2A2A/ + (ni/N)(n i/N) 2(dK)2A2A/ 
= (n i/N)L1 + (ni/N)Li + (n,ni/N2)(dK)2 A2A2' 

= (n i/N)A 1q> 1A1'+ (n2/N)A2q>2A/+ (n 1ni/N2)(6.te)2A2Ai' + (n, IN)0, +(ni/N)02 

Lower left (which equals the transpose of the upper right) 

E[[X - (n2/N)][y - µ)'] 
= (n i/N)E[[X, - (n2/N)J[y 1' - µ']] + (ni/N)E[[X2 - (ni/N)][yi' - µ']] 
= (n i/N)E[[O - (n2/N)][y 1' - µ']] + (ni/N)E[[l - (ni/N)][yi' - µ']] 
= (n i!N)(- ni/N)E[y1' - µ'] + (ni!N)(n i/N)E[yi' - µ'] 
= (- n ,n2/N2)E[y 1' - µ'] + (n 1ni/N2)E[yi' - µ'] 
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= (- n1ni/Nl)[O' - (n2IN)~KAi'] + (n1n2/Nl)[~KAi' - (ni/N)~KJ\2'] 
= (n 1nz/N2)(ni/N)~KAi' + (n 1ni/Nl)(n 1/N)~KAi' 
= (n 1nz/N2)~KAi' 

Lower right 
E[X - (n2/N)]2 
= (n / N)E[X1 - (ni/N)]2 + (n2/N)E[X2 - (n2/N)]2 
= (n 1/N)[O - (ni/N)]2 + (ni!N)E[I - (n z/N)]2 
= (n / N)(ni/N)2 + (ni!N)(n 1/N)2 

= n1n2/Nl 

Q.E.D. 

APPENDIX B 

Within and Total Sums-of-Squares Matrices for MANOVA 

The Within Sums-of-Squares matrix W is as follows: 

W = n1I1 + n2:Ei 
= n1(A1A/ + 0 1) + n2(A2Ai' + 0 2) . 

The Between Sums-of-Squares matrix B is as follows : 

B = n1[µ 1 - µ][µ1 - µ]' + n2[µ2 - µ][µ 2 - µ]' 
= n1[O - (ni/N)A2~K][O' - (nz/N)~KA21 + n2[A2~K-(n2/N)A2~K][~KA/- (ni/N)~KA21 
= n1(n2/N)2(~K)2A2Ai' + ni(n 1/N)2(~x:)2A2Ai' 
= (n1ni/N)(~K)2A2Ai' . 

The Total Sums-of-Squares matrix Tis as follows: 

T=W+B 
= W + (n1n2/N)(~K)2A2Ai'. 

Q.E.D. 




