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Abstract 

A defensive alliance in a graph G = (V, E) is a set of vertices 
S ~ V satisfying the condition that for every vertex v E S, the 
nwnber of neighbors v has in S plus one (counting v) is at least as 

large as the number of neighbors it has in V - S. Because of such an 
alliance, the vertices in S, agreeing to mutually support each other, 
have the strength of numbers to be able to defend themselves from 
the vertices in V - S. We prove two conjectures posed by Hedetniemi , 
Hedetniemi , and Kristiansen in their introductory paper on alliances . 

1 Introduction 

Alliances in graphs were introduced by Hedetniemi, Hedetniemi, and Kris
tiansen in (2] . They defined several types of alliances, including the defen
sive alliances that we consider here. In a graph G = (V, E), a non-empty 
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set of vertices S ~ V is called a defensive alliance if for every v E S, 
IN[v] n SJ 2: IN(v) n (V - S)J . In this case, we say that every vertex in S 
is defended from possible attack by vertices in V - S. A defensive alliance 
Sis called strong if for every vertex v ES, IN[v] n S I > IN(v) n V - SI. In 
this case we say that every vertex v E S is strongly defended. 

In this paper , any reference to an alliance will mean a defensive a lliance. 
Any two vertices u , 11 in an (strong) alliance S are called allies ( with respect 
to S); we also say that u and v are allied. An (strong) alliance S is called 
critical if no proper subset of S is an (strong) alliance. The alliance number· 
a ( G) is the minimum cardinality of any critical alliance of G, and the 
strong alliance number ,i(G) is the minimum cardinality of any critical 
strong alliance of G. For other graph theory terminology and notation, we 
follow [l]. 

· The following observation was made in (2]. 

Observation 1 (2] For the complete graph Kn , a(Kn) = fn/21 and &.(Kn)= 
ln/2J + 1. 

This observation suggested the following two conjectures: 

Conjecture 1 (2) For any grnvh G of order n, a( G) ~ I n/21. 

Conjecture 2 (2) For any gmph G of order n , a(G) ~ ln/2J + 1. 

In this note we prove both of these conjectures. 

2 Proofs to Conjectures 

Let an AB-edge be an edge between a vertex in a set A and a vertex in a 
set B. 

Theorem 2 If G is a connected graph, then a( G) ~ I n/21 , and this bound 
is sharp. 

Proof. Let 1r = (A , B) be a balanced bi-partition of V(G) , i.e., !Al= I n/21 
and !Bl= ln/2J, such that the number of AB-edges is a minimum among 
all such bi-partitions. If either (A) or (B) is an alliance, then a(G) ~ 
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rn/2l Hence, assume that neither A nor Bis au alliance. Thus, there exist 
undefended vertices a EA and b E B such that JN[a] n AJ < JN (a)n BJ and 
JN[b] nBJ < JN(b) nAJ . But then 1r' = (A ' , B') , where A' = (A - {a}) U {b} 
and B' = (B - {b}) U {a} , is a balanced bi-partition with fewer A'B'
edges than the number of AB-edges of 1r, contradicting our choice of 1r . 

Observation 1 shows that this bound is obtained by complete graphs. D 

A polynomial algorithm for constructing an alliance of cardinali ty at most 
r¥l follows directly from the proof of Theorem 2. 

Corollary 3 For any connected graph G there exists an O(mn) algorithm 
for finding a defensive alliance of cardinality at most rn l 

Proof. Let 1r = {A , B} be any balanced bi-partition of V(G). 

While neither A nor B is a defensive a lliance do 

endwhile 

let a EA satisfy IN[a) n Al < IN (a) n Bl ; 

let b E B satisfy IN[b] n Bl < JN (b) n AJ; 

let A = (A - {a}) U {b} ; 

let B = (B- {b} )U{a} 

Every iteration of this while-loop decreases the number of edges between 
A and B . Therefore, there can be at most O ( m) such iterations. Each 
such iteration will involve identifying undefended vertice a E A and b E B , 
and looking at every vertex in N[a] and every vertex in N[b] . Thus, each 
iteration takes at most O(n) time. This gives an O(mn) algorithm. D 

Next we prove Conjecture 2. 

Theorem 4 If G is a connected graph, Uten a(G) $ Ln/2J + 1, and Utis 
bound is sharp. 

Proof. Let 1r = (A , B) be a 2-balanced bi-partition of V(G), that is , JAi 2'.: 
IB I and JAJ-JB J :5 2, and let the number of AB-edges be a minimum among 
all 2-balanced bi-partitions. If A is a strong alliance, then a( G) $ L n/2 J + 1, 
so assume that A is not a strong alliance. This means that there exists an 
undefended vertex a E A, where JN(a) n AJ $ JN(a) n Bl , that is, a has 
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strictly more neighbors in B than it has in A. But this means that 1r' = 
{A' , B'}, where A'= A - { a} and B' =BU {a} is a 2-balanced bi-partition 
having fewer A' B'-edges than the number of AB-edges of 1r, contradicting 
om choice of 1r. Thus, A is a strong alliance, and a.(G) :S !Al :S l_n/2J + 1. 
Again Observation 1 illustrates that this bound is sharp. D 

Note that if 1r = (A , B) is a 2-balanced bi-partition of G with the min
imum number of AB edges and IA!= IBI , then both A and B are strong 
alliances. Also if !Al = !Bl+ 1, then A, A - {v }, B , and BU { v} are strong 
alliances. Hence, we have the following corollaries. 

Corollary 5 If G has a bi-partition 1r = (A , B) , where I A I = I BI and 1r has 
a minimum number of AB-edges among all 2-balanced bi- partitions, then 
IV I can be partitioned into two dis_jo ·int strong alliances, namely, A and B. 

Corollary 6 If G has a b·i-partit-ion 1r = (A , B), where IAI = IDI + 1 and 
1r has a minimum number of AB -edges among all 2-bala.nced bi-partit·ions, 
and there exists a vertex v E A such that N ( v) n A = N ( v) n B , then 
a(G) :S Ln/2j. 

We conclude this note with another corollary to Theorem 4. 

Corollary 7 For any connected graph G, there exists an O ( mn ) algorithm 
for finding a strong alliance of cardinality at most l_n/2j + 1. 

Proof. Begin with any 2-balanced bipartition 1r = (A , B) , where !Al = 
l_n/2 j + 1. If A is a strong alliance, we are finished; othenvise, find an 
undefeudt-'Cl vertex a EA, as in the proof of Theorem 4, and move it to B . 
In doing so , the number of edges betw(..>en A and B will decrease by at least 
one (and maybe more) . 

Now if B is a strong alliance, we are finished. If not, fin<l an undefended 
vertex b EB and move it to A . In doing so, the number of edges between 
A and B will again decrease, by at least one. 

Continue in this fashion, alternating between moving a vertex from A 
to B, and then from B to A. This process must terminate, because the 
number of edge.s between A and B decreases with every move. 

Ultimately, either the set A or the set B will be a strong alliance of 
cardfnality at most l_n/2j + l. 
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Since, initially, there can be at most O ( m) edges between A and B, and 
since it takes at most O(n) time to find an undefended vertex, either a EA 
or b E B , each of at most O ( m) iterations can be carried out in at most 
0 ( n) time. Thus, a strong alliance of cardinality at most Ln /2 J + 1 can be 
found in at most O(mn) time. D 

It remains an open problem whether there exists an O (n 2) algorithm 
for finding an alliance of cardinality at most f n/21, or a strong alliance of 
cardinality at most L n/2 J + 1. 
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