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Abstract 

It is known that if P and Q are posets and * is lexicographic 
product , then (in t he Erdos-Rado partition notation) , P*Q ➔ (P, Q) . 
It is known that if Sand Tare trees of r ank at most w, and " x " is 
Cartesian product , then S x T ➔ (S, T). 

In this article we exhibit pairs of finite posets P and Q such that 
P x Q I+ (P, Q) . In particular , we prove t hat if B n is the poset 
of the power set on n elem ents , t hen for each integer a, > 1, t here 
exists N such t hat n > N implies B n+o f+ (Bn , B 0 ) ; indeed, we can 
choose n such that B n+o f+ (En, B 2). We conclude by looking at a 
few positive results. 

1 Introduction 

Partially ordered sets seem to be natural objects for Ramseyian investiga­
tions. In fact , if one includes the orderings of the real numbers and integers 
as posets, posets were subjects of Ramsey theory before Ramsey: e.g., the 
negative result of F. Bernstein ([1], see, e.g., [9 , §40. 1]) and the later pos­
itive result of B. L. van der Waerden ([15], see, e.g., [7, §2.l]). But ever 
since the seminal paper of Erdos and Szekeres ([4]), most Ramsey theory 
has been on graphs. 

Nevertheless, there are several Ramseyian threads in posets. Perhaps 
the most important arose from the category-theoretic work of J . Nesetfil & 
V. Rodi ([12), see also [13]) , which generalized the finite Ramsey theorem 
to posets of given "dimension." In such papers , the authors took a poset P 
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and a poset H , and colored all the copies of H in P either green or orange, 
and looked for monochromatic subposets of P isomorphic to a poset Q. 

For example, if we just colored vertices of a poset P , looking for mono­
chromatic copies of a poset Q, we might get some poset Ramsey functions 
like those exhibited in [5] and [14] . (Indeed , the negative result in this paper 
will lead to a poset Ramsey function .) Let 's first be clear about what our 
notation and terms mean . 

In this paper, we use to the following notation. 

Convention 1.1 Suppose that ~ is a poset, which we regard as a pair 
(P, <P ): P is the set of vertices and <P is the order relation. 

For simplicity, we will simply refer to the "poset " P directly, taking <P 
for granted, and write p E P for a vertex p of P . A subposet Q of P will 
be identified with a set Q ~ P, where <Q= { (x,y) E Q2 : x <Py}. Where 
there is no ambiguity, we will use "< " instead of "< P. " 

We will need some basic definitions. 

Definition 1.1 Let P and Q be posets. A subposet R ~ P is a copy of Q 
if there exists an isomorphism 1r: Q -+ R. In this case, we say that 1T is an 
embedding of Q into P. 

We may think of a partition P = G U O as a coloring of P , in which 
each element of P is colored Green or Orange. We will then be interested 
in a green copy of a poset Q or an orange copy of a poset R. 

Definition 1.2 Let P , Q, R be any posets . Then "P -+ ( Q, R) " means 
the following. For any partition of the elements of P = GUO, either there 
is a copy of Q in G or there is a copy of R in 0 . 

If we imagine that we can color the vertices of P green and orange, so 
that G is the subposet of green vertices and O is the subposet of orange 
vertices, then "P-+ (0 , R)" means that for any such coloring, either there 
is a green copy of O or an orange copy of R . 

Perhaps the most basic result for this situation is from H. A. Kierstead 
& W. T . Trotter ([8]). If P and Qare posets , then the lexicographic product 
"P * Q" of P and Q is the poset of vertices {(p , q) : p E P & q E Q} with 
the ordering (p , q) < (p' , q') iff p <Pp' , or p = p' and q <Q q'. 

Proposition 1.1 ([8]) Let P and Q be any posets. Let* be lexicographic 
product. Then P * Q -+ ( P, Q) . 

In [10], the less tractible Cartesian product was examined. 
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Definition 1.3 Let P , Q be partial orders. Th en the cartesian product of 
P and Q is the poset P x Q of elem ents (p, q), p E P and q E Q, where 
(p , q) :::; (p' , q') iff p :::; p' & q :::; q'. 

When there is any possibility of confusion, we will use the notations < P , 

<Q, and < P x Q to distinguish the three order· relations. 

The primary result of [10] was: 

Proposition 1.2 ((6] and [10]) Let S , T be trees with no vertices of in­
finit e rank. Th en S x T -+ (S , T ). However, there exist trees S , T with 
vertices of infinite rank such that S x T ft (S, T) . 

This suggested the following not unreasona ble conjecture: 

Conjecture 1. I If P and Q are finite posets, then P x Q -+ (P, Q) . 

But as we shall see, this conjecture is fal se. 

Definition 1.4 Here is some basic notation that we will use. 

• For· any integer a , let (a)0 = 1 and, if n is a positive integer, let 
(a)n = n;,:~(a - k) . 

• For any positive integer n , [n] = {1 , 2, ... , n}. 

• Given sets A andB , letA-E ={x EA:x(/.B}. 

• Given a set A, let P(A) be the power set of A . 

• For any finit e set A , let IAI be the cardinality of A. 

• If A is a set and n is a nonnegative integer, then (:) = { X C 

A: IXI = n} . 

• If f : A-+ Bis a function, and X ~ A , let J[X] = {J( x ): x EX} . 

We will be dealing with boolean algebras as posets. 

Definition 1.5 For each n , let Bn = (P([n)), C) , i.e. , the power set of [n] 
ordered by inclusion. Again, following Convention 1.1, we treat En as the 
set P([n]) and as the partially ordered set (P([n)), C). 

Note that if "~ 11 refers to poset isomorphism, then for any positive 
integers m and n, Bm x En === Em+n · Here are some more poset definitions. 

Definition 1.6 Let P be a poset. 
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• If an elem ent p satisfi es ''for all p' E P , p :S p' ," then p is the bottom 
of P . 

• A subposet Q of a poset P is upwards closed in P if, for any p E P 
and q E Q, q :Sp===> p E Q. 

• The rank of a minimal element p is rank(p) = 0; if p is not minimal, 
rank(p) = sup{rank(p') : p' < p} + l. 

• The height of a poset P is sup{ rank(p): p E P} . 

• A tree is a poset P that has a bottom but no copies of B2 as subposets. 

Notice that in P(A) , the rank of any X ~ A is jXj. 
ow we turn to Conjecture 1.1. Again, observe that B n+i ~ Bn x B 1 . 

Proposition 1.3 For each n, B n+l ➔ (Bn, B 1). 

Proof. Let P([n+ l]) = GUO be a partition of P([n+ l ]) into green and 
orange vertices. Suppose that O is an anti chain in Bn+I; we claim that 
there exists a copy of B n in G. 

We will construct an embedding T of B n into G by a recursion, on the 
cardinality (hence rank) of the sets in P([n]) , as follows. 

First if 0 E 0 , then as O is an antichain , A =I- 0 implies A E G, 
and {XU {n + l}: X ~ [n]} is our green copy of Bn. So, without loss of 
generali ty, we can assume that 0 E G. Let T(0) = 0. 

Construct the function T: P([n]) ➔ G by the following recursion on the 
rank. Suppose that T has been defined on all sets in P([n]) of cardinali ty 
a t most m , so that for each X ~ [n] such that jXj :Sm, we have: 

• either T(X) = X or T(X ) = XU {n + l} , and 

• if jXj < m and T(X) = X, then for any y E [n] - X , T(X U {y}) = 
XU {y} iff XU {y} E G. 

• if jXj < m and T(X) = XU {n + l} , then for any y E [n] - X , 
XU {y ,n + l } E G and T(X U {y}) =XU {y ,n + l} . Furthermore, 
for some Y ~ X , Y E O. 

Let jX I = m + l. There are two cases. 
Case 1. Suppose that for each x EX, T(X - {x}) = X - {x}. In this 

case, two things can happen . 

l. If XE G, set T(X) = X . 

2. If XE 0 , then as the orange vertices form an antichain , XU{n+ l } E 
G , so set T(X) =XU {n + l} . 
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Case 2. Suppose that forsome x EX , T(X-{ x }) = (X - {x}) U{n+l}. 
Then for some Y ~ X - {x}, we have YEO and T(Y) =YU {n + l} . As 
Y ~XU {n + l} , and as O is a n antichain , XU {n + l} E G , and we set 
T(X) =XU {n + l} . 

Repeat until T([n]) is defined . By construction , T is an embedding, and 
we are done. ■ 

The next question is this: if m , n > 1, do we necessari ly have Bm+n ➔ 
(Bm, Bn) ? 

ote that this would be the best we could hope for. If M < m + n, then 
we could take BM and let G = {X ~ [M ]: /XI < m} and O = BM - G, 
and G is too short to accomodate a copy of B m while O is too short to 
accomodate a copy of B11 • Thus BM f+ (Bm , B 11 ). 

The industrious reader can verify that B 4 ➔ (B2 ,B2 ), B5 ➔ (B3,B2 ) , 

and B 6 ➔ (B4 , B 2 ). The question is how far does th is sequence of partition 
relat ions hold? In this paper we will find that B1 1031 f+ (Bno35, B2). 

The main result of this paper wi ll give us: For any a > 1, there exists 
N such that n 2: N implies that B n+o. f+ (B11 , B 0 ) . The next three sections 
present lemmas for the main result , which occupies Section 5. Then Section 
6 will deal with directions for further research , including the advertized new 
poset (actually, boolean algebra) Ramseyian function. 

2 Pre-Images 

We start by looking a t some special homomorphic pre-images of posets. 

Definition 2.1 Let P and Q be posets, and let S be a subposet of P x Q . 
Then S is a canonical pre-image of Q in P x Q if: 

• For each q E Q, there exis ts p E P such that (p, q) E S. 

• For each (p , q) E S and q' E Q, if q < q' , then there exists p' E P , 
p' 2: p , such that (p' , q') E S. 

W e can similarly define a canonical pre-image R of P in P x Q. 

Note that if R is a canonical pre-image of P in P x Q, then the map 
R ➔ P: (p, q) Hp is an onto homomorphism. Now for a critical fact. 

Lemma 2.1 Let P and Q be posets with bottoms, but at least one of P , Q 
has no infinite chains . If a poset R is a canonical pre-image of P in P x Q 
and if S is a canonical pre-image of Q in P x Q, then R n S f= 0 . 

88 



Proof. Towards contradiction, suppose that R is a canonical pre-image of 
P and S is a canonical pre-image of Q, but tha t Rn S = 0. We will prove 
that P x Q admits an infinite chain , with a construction that wi ll produce 
infini te chains in both P and Q. 

We use the following recursion . 
The basi of the recursion uses the bottoms p0 and q0 of P and Q, 

respectively. As (p0 , q0 ) ./.Rn S, either : 

• \Ve have (p0 , q0 ) ./. R , in which case, as R is a canonical pre- image 
of P (and q0 is the bottom of Q) , there exists q1 > q0 such that 
(Po , q1 ) E R ; denote fo = (Po q1 ) E P x Q. As S is a canonical pre­
image of Q, there exists a p1 such t hat (p1 , q1) ES; note that p1 > Po 
and denote ,;:·1 = (p1 ,q1). Note that 17a <P x Q r1 . Or: 

• We have ro = (po , qo) E R , hence (po , qo) ./. S , in which case, as Sis a 
canonical pre-image of Q, there exists p 1 > p0 such that (p1 , q0 ) ES. 
Choosing a minimal such p 1 , let r1 = (p1 , Qo) E P x Q. ote that 
To < P x Q r1. 

The recursion works as follows . Suppo e that we have a n upwards chain 
ro , 7''"1 , r2 , .. . ~) where, for each k < m , r'k E R iff rk+l E 5 (iff Tk -1 E S 
for k > 0). For each k < m, letting rk = (p , q) and r k+ 1 = (p' , q') , we have: 

l. if r'k ER, then p < Pp' and q = q' , and 

2. if rk ES, then q <Q q' and p = p' 

Without loss of generality, suppose tha t ~ - l E S and ~ E R ; we will 
obtain r'.m+ 1 > rm such that 'Gn+ l E S, satisfying (1) above fork = m . Let 
1'm - 1 = (p, q) and~ = (p , q') . As 'Gn- l ES and q <Q q' , by Definition 2.1, 
there exists p' E P , p 5:P p' , such that (p', q' ) E S . As (p, q' ) E R , we cannot 
have p' = p , so we must have p < P p'. Choose a minimal such p' , and let 
f'.m+l = (p' , q' ) ES. The construction if f'.,,, ES (using (2) above) is simila r. 

As the construction continues ad infini tum , P x Q admits an infini te 
upwards chain (skipping every other pair) (po ,Qo) < (P1 , Q1 ) < (P2 , Q2) < 
· · ·, and thus P has an infinite upwards chain Po < p 1 < P2 < · · · while Q 
has an infinite upwards chain qo < q1 < Q2 < · · ·. ■ 

3 Power Sets 

Since we are working on finit e boolean algebras, we want a definition tha t 
will specialize the notion of canonical pre-images to boolean posets. 

D efinition 3.1 A homomorphism 1r: B n ➔ B m is faithfu l if there i a 
one- to-one map r: [n] ➔ [m] siich that f or each a E [n] and each A ~ [n], 
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a EA if! T(a) E 1r(A) , i.e. , T[[n]] n 1r(A) = T[A] . Say that T witnesses the 
faithfuln ess of 1r. 

This notion will a llow us to regard copies of Bn inside of Bm as canonical 
pre-images. To see this, note that for any n-set C ~ [ml, 

Bm ==' (P(C) , C) x (P([m] - C) , C) ==' Bn x Bm- n· 

We will first prove that embeddings are faithful, and then that faithful 
embeddings produce canonical pre-images . 

Lemma 3.1 If 1r: B n ➔ Bm is an embedding, then it is fa ithful . 

Proof. We need a function T: [n] ➔ [m] to witness 1r's faithfulness: we 
claim that any function of the following sort works. As 1r is an embedding, 
for each x E [n], 1r({x}) i 1r([n) - {x}); for each x E [n], let T(x) E 
1r({x}) - 1r([n) - {x}) . 

First , we claim that T is one-to-one. If T(x) = T(y ), then T(x) E 1r( {y} )-
1r([n) - {y}) , so T(y) rf_ 1r([n] - {y}) . As z =J y ===> 1r({z}) ~ 1r([n) - {y}) , 
this means that z =J y ===> T(y) rf_ 1r({z}) . Thus as T(y) = T(x) E 1r({x}) , 
we must have x = y . 

We now verify that T witnesses the faithfulness of 1r. Let a E [n) and 
A ~ [n]. If a E A , then T(a) E 1r( {a}) ~ 1r(A). And if a </.. A, then as 
T(a) rf_ 1r([n] - {a}) 2 1r(A), T(a) rf_ 1r(A). ■ 

Lemma 3.2 Let 1r: Bn -+ Bm be a faithful embedding, as witnessed by 
T: [n)-+ [m) . Let A: Bm ➔ P(T[n]) x P([m] - T[n]) be defined by: 

A(X) = (X n T[n), X n ([m] - T[n))) . 

Then (Ao 1r)[Bn] is a canonical pre-image of P(T[n]). 

Notice that as A is an isomorphism, (Ao 1r)[Bn] is a copy of Bn. 

Proof. First, as A and 1r are one-to-one, so is Ao1r , so as both are isomorphic 
on their domains and images, so is Ao1r. Thus 1r- 1 oA- 1 : (Ao1r)[Bn)-+ Bn 
is an isomorphism, hence a homomorphism. So (Ao 1r)[Bn] is a pre-image 
of a homomorphism onto Bn; we claim that it is a canonical pre-image. 

Before continuing, we show that for each E ~ T[n], E = (1r o T- 1 )[E) n 
T[n]. To see this, note that by faithfulness, a E T- 1 [E) ===> a E (n] ===> 
T(a) E 1r( {a}) , and repeating for each a E T- 1 [E), we have E = T[T - 1 [E]) ~ 
1r(T- 1 [E]) = (1r o T-1)[E]. And by faithfulness again, for any b E T[n), 
b E (1r o T- 1 )(E) implies that b = 1r(T- 1 (e)) for some e E E, which implies 
that b = e as b E T[n] ===> b EE. Thus T[n] n (1r o T- 1 )[E) ~ E . 

Now, we claim that 1r-1 o A- 1 witnesses the fact that (Ao 1r)[Bn] is a 
canonical pre-image of P(T[n]). This requires verifying both conditions of 
Definition 2.1. 
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• If E ~ T[n], then T-1 (E] ~ (n]. Let C = ([m] - T(n]) n 7r(T-1 [El) = 
7r( T - 1 [El) - E. Then 7r( T - 1 [El) = (7r( T - 1 [El) n T(n]) u (7r(T- 1 (El) n 
((m] - T[n])) = EU C. Thus if E ~ T[n], there exists C such that 
(E,C) E (Ao7r)[Enl, and (7r-l OA- 1)(E,C) =T- 1 (E]. 

• If (E, C) E (A o 7r)[Enl, and if E s;; E' ~ T[n], we can let C' = 
([m] - T[n]) n 7r(T- 1 [E']) = 7r(T- 1 (E']) - E', and as 7r and A are 
partial isomorphisms , C ~ C' . Thus (E , C) < (E', C') E (Ao 7r)[B,i]. 

Since both conditions of Definition 2.1 are satisfied, we are done. ■ 

Thus an embedded image of En in Em can be treated as a canonical 
pre-image of E n in Em. So we conclude by translating Definition 2.1 via 
Definition 3.1 into a corresponding definition for these posets of boolean 
algebras . 

Definition 3.2 Let Q ~ E111 be a pre-image of En under a map K-: Q ➔ 
E 11 . Let S ~ (m] have n elements. Then K- is canonical with respect to S 
if: 

• Th ere is a one-to-one map T: S ➔ [n] such that if A ~ S and V ~ 
(m] - S and AU VE Q, then K-(A UV) = T[A]. 

• For every A~ S, there exists V ~ [m] - S such that AU VE Q. 

• If A s;; S and V ~ [n] - S and A U V E Q, then for any A' such 
that A s;; A' ~ S, there exists V' such that V ~ V' ~ [n] - S and 
A ' UV' E Q. 

4 A Matching Lemma 

Before we construct the counterexample, we need a lemma. 

Lemma 4.1 Fix an integer a: ?: 4 and an integer n > 0 such that n > 
8a:!a:3 In a:. There is a fun ction a: (l:l ) ➔ P([n]) such that: 

1. For each SE (l:l), a(S) n S = 0, and 

2. For each S, S' E e:1), S =/:- S' implies that la(S) - a(S')I ?: a!a. 

Proof. By Hall's Matching or Marriage Theorem (see, e.g., [2 , Theorem 
5.1.5]) , it suffices to construct a fami ly :F of subsets of (n] such that the 
following hold : 

l. For each F , F' E :F, IFI = IF'I-
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2. For each F, F ' E F , F =/:- F' ==} IF - F'I 2: a !a. 

3. For each a -set S ~ [n], there a re at least ( : ) sets F E F such tha t 
FnS = 0. 

We construct such a family F . 
Choose the maximal m such that : 

• Firs t , m ::; n , and 

• Second , m is a multiple of a!a (so that m/(a!a) is an in teger), and 

• Third , (m/ (a!a)) - a is even. 

Note that fn ::; n - 2a!a ::; m as a ;:::: 4 (and hence n > 17 ,034). Thus 
m 2: 7a !o 3 ln a. 

For the rest of t his proof, let M = m / (a!/a ) . 
For each j E [M ], let Ai = {(j - l )a!a + 1, . .. ,ja!a}. Then let 

Then: 

l. If F E F , then IFI = ½a!a(M - a) = (m - a !a 2 )/2 . Thus F, F' E 

F==> IFI = IF'I -
2. By construction, if F, F' E F , and F =/:- F', then there exists j such 

that Ai ~ F- F' , and hence IF- F'l 2: a !a. 

3. It remains to prove that for each a-set S ~ [n], there are at least ( : ) 
sets F E F such tha t F n 5 = 0. 

First of all , we observe that any a-set S can intersect a t most a sets 

Ai. Thus each S E ( l';l ) satisfies 

( 
M - a ) (M - a) (M-o)/2 

l{FEF:SnF=0}12: (M-a)/2 = ((M-a)/2)! , 

and hence 

l{F E F: s n F = 0}1 > 2 (M-o)/2 2°. 

The last factor 2° is possible because l ::; a implies that 

1 
2 (M - a)+ l > 4l as M > 7a, 
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and thus in the quotient in Formula (1), the last a factors in the numer­
ator are at least four t imes as large as the corresponding factors in the 
denominator. 

So it suffices to verify that 2(M-c,.)/2 2° 2: (: ) , i.e. , that 2(M-c,.)/ 2 2: 
2-c,. ( : ). We prove this as follows. 

We will need the following inequality: 

m 2a 2a ! 
-- >---
!n m ln 2 

(2) 

To prove this, we let /3 = m/(a!a 3 ln a) , so tha t /3 > 7, and thus ,B in 2 > 4.8. 
It follows that /3- 1 In /3 < 2\ In 2 (note that (In 7)/7 < / 4 In 2, and that 
the function x t---t (In x)/x is decreasing for x > e). T hus In /3 < .f3_4 In 2. 

Note that as a 2: 4, a In a > 5.5. In addition , as ,B > 7, a/3 ln 2 > 19. 
To prove Inequality (2), we star t by bounding In m = In ,B + 3 In a+ In ( a !)+ 
In In a . Noting that a ! < ac,. , we compute: 

In m < In ,B + 3 In a + a In a + In In a 

/3 < 
2

.4 In 2 + 4 ln a + a In a 

/3 a In a a/3 /3 In 2 < -
4

In2-- + 4- ln2ln a+--a ln a 
2. 5.5 19 4.8 

( 2.4 ! 5_5 + 1~ + 4~8 ) /3a in a ln2 

1 
< 2a/3 ln2ln a. 

Now t hat we have this bound , we compute 

m 
!nm 

> 

ln /3 + 3ln a + ln(a !) + In In a 

,Ba3 a ! In a 

½a/3 ln a ln 2 

2a 2 a !/ In 2, 

proving Inequali ty (2) . Thus M In 2 > 2a In m . 
Observe that if a 2: 4, a an integer , then 2c,. :S (a!)2

, and thus a In 2 -
2 ln(a !) :S 0. Putting this together with Inequality (2), we get 

M In 2 2: 2a In m + a In 2 - 2 ln (a!) . 

Thus 
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i.e., 

and hence, 

2(M-cr)/2 2: r cr (:) , 

and we are done. ■ 

5 Constructing the Counterexample 

Having traversed three sections of lemmas, we are now ready for the main 
theorem. 

Theorem 5.1 Fix any positive integer a. For any integer n > 17,034, if 
n > 80!03 ln a , then En+cr f+ (En , B2). 

Proof. We first note that it suffices to assume that a 2: 4; notice 8 • 4! · 
44 

- In 4 < 17,035 . From this we will get , among other things , that En+4 f+ 
(Bn, E 2), from which it follows that En+3 f+ (En, E2), En+2 f+ (En, E 2) 
and En+l f+ (En, E 2 ). Hence we can assume that a 2: 4 without loss of 
generality. 

For each a -subset S <;;; [n + a), we will construct a canonical pre-image 
(in the sense of Definition 3.2) of P(S) in En+cr· The subposet consisting 
of the union of these pre-images will be orange; all the vertices outside 
these pre-images will be green. By Lemma 2.1, this will prevent any green 
canonical pre-image of any P([n + a ] - S) (and hence any green copy of 
E n) from existing. In addition, each pre-image will be a tree, and any 
two vertices from any two of these canonical pre-images will be mutually 
incomparable (if x and y are vertices from two of these pre-images , then 
x -/. y and y </. x): this will prevent any orange copy of E 2 from existing. 

Since the hypotheses of the theorem (together with a 2: 4) satisfy those 

of Lemma 4.1, there exists a function a : (ln!crJ ) --+ P([n]) satisfying: for 

a ll S, S', a(S) n S = 0 and S =I- S' ===} la(S) - a(S')I 2: o!o. 

Let S E ( [ n!cr l ) , and we construct the canonical pre-image of P ( S) as 

follows. 
For each T <;;; S , let Pr be the set of one-to-one functions from [ITI] 

onto T . For each nonnegative integer k :=:: a, let 
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and note that IPkl = (a)k. If T ~ T' and p E Pr and q E Pr,, let "p < q" 
mean that q is an extension of p: x E [ITI] ===> p(x) = q(x). If T ~ T' and 
p E Pr and q E Pr, and yet p </. q, then for some x E [ITI], p(x) =/:- q(x) , so 
p and q have no common extension and are therefore incomparible. Note 
that if a 2: 4, then L~=o IPkl = L~=0(a)k < a!a - a: Z:::!=0 (4)k = 65 < 
92 = 4!4 - 4, and L~=0(a)k < a!o: - a implies that 

o+ l 

L(a+ l)k 
k=O k=I 

0 

1 +(a+ 1) L(o:)k 
k= O 

< 1 +(a+ l)(a!o: - a) 

< (o: + l)!(a + 1) - (a+ 1). 

For each S E ( (n!o)), we will construct the pre-image of P(S) as 

follows. Let S' ~ a-(S) have z:::r=o(a)k elements, and let T S' ➔ u~=O pk 
be one-to-one. Then let the pre-image of P(S) consist of all sets X ~ [n+a] 
satisfying the following condition: if T = X n S , then choosing s E S' such 
that , (s) E Pr , we have 

X = (a-(S) - S') UT U {s' ES': ,(s')::; , (s)} . 

Call ,( s) the ordering of X , and note that each such ,( s) fixes an ordering 
of selecting a subset T ~ S: imagine that 1(s) tells us which elements were 
selected first , and in what order. (Notice that l{s' E S': ,(s') ::; 1 (s)}I = 
ITI + 1.) Let Q s be the poset of these sets X, ordered by inclusion. Observe 
that Q s is defined from S , S', and 1' only. We now verify that Q s is a 
canonical pre-image of B 0 , that it is a tree , and that any two vertices from 
two such pre-images are incomparable. 

Before launching into this verification, we should note that as Snu(S) = 
0 , if X = (a-(S) - S') UT U {s' ES': ,(s')::; ,(s)}, we can unambiguously 
define 11;*(X) = X - a-(S) = T. 

First , this Q s is a canonical pre-image of B 0 . Recalling Definition 3.2, 
notice that: 

• Letting r : [a ] ➔ S be one-to-one, then we have the onto map 11; = 
r - 1 o "'*: Qs ➔ B 0 such that for any (a(S) - S') UT U U E Qs, 
11;((a-(S)-S')UTUU) =r- 1 [T] . 

• For any T ~ S, choose , (s) E Pr and V = (a-(S) - S') U {s' E 
S' : , (s')::; , (s)} gives us TU VE Qs. 
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• If (o-(5)-5') UTU U E Q s , where ITI < o: and U = {s' E 5 ': --y (s ') '.S 
1(s )} for som e s E ,- 1 [Prl, t hen for a ny t E 5 -T, le t s+ E 5' be 
such tha t ,(s+ ) = --y (s ) U {(ITI + 1, t)}. Then (a(S) - S') UT U U <;;; 
(a (5) - S' ) U (TU {t}) U ( { U U {s + }) E Qs . 

As Q s satisfi es Definition 3.2 , it is a canonical pre- image of B 0 . 

Second , each of these canonical pre-images Qs is a tree . Let X 1 

(a(S) - S') U T 1 U U1 and X 2 = (a(5) - 5') U T2 U U2 be incompa ra ble: 
the respective orderings 1 (s 1 ) and --y (s2) admi t x '.S IT1 1, /T2I such that 

1 (s 1)(x) =I- 1 (s2 )(x ). Then the orderings --y (s 1 ) and --y (s2 ) a re incomparable . 
Then for a ny T <;;; S such that T1 , T2 <;;; T , if X = (a(5) - 5') u Tu U E Qs , 
then the ordering--y (s ) ca nnot b e an extension of both --y (s 1 ) and , (s2 ) , and 
hence eit her X 1 <l X or X 2 <l X. Repea ting for a ll incomparable pairs in 
Qs , we see tha t Q s is a tree. 

Third , if SI , S2 E (ln!°'l), where S 1 =I- S2 , then we claim tha t for a ny 

X 1 E Q5 1 and X 2 E Q52 , X 1 is incomparable to X 2. It would suffice to 
prove this for X 1 m aximal in Qs, and X 2 minimal in Q52 . Then X 2 = 
a (S 2 )- S~ , and for some U of cardinality o: + 1, X 1 = (a(S1 ) - Si) US1 uU. 
As /Xii - /X2/ = 2o: + 1, X1 <l X z. And as /X2 - Xii 2: l(a(S2) - S~) -
(a(S1) U S1 )I = l(a(S2) - a(Si)) - (S~ U 5i)I > a!a - [(a!a - a)+ a ] = 0, 
we have X 2 - X 1 -:/- 0 , so X2 <l X 1• ■ 

6 Excelsior 

So there exist finite posets P and Q such tha t P x Q f+ (P, Q) . Where 
does this leave us? There seem to be two ways to go (besides improving on 
the 17,035 or the 8a!o:3 ln o: ). 

First , there is a consolation prize, which we can get by twiddling F . 
Galvin 's [6] proof of the finite version of Proposition 1.2. 

Proposition 6 .1 Let P and Q be finit e posets with bottoms, and let P x 
Q = 0 U G be a partition of P x Q. Then either there is a canonical 
pre-image R <;;; 0 of P , or a canonical pre-image S <;;; G of Q . 

To prove this , we need a little lemma . 

Lemma 6 .1 Let Pi , P2 , and Q be finite po sets with bottoms. Let Pi , P2 
be upwards closed subposets of a poset P . Let R1 be a canonical pre-image 
of P1 in Pi x Q and let R2 be a canonical pre-image of P2 in P2 x Q. Then 
R1 U R 2 is a canonical pre- image of P1 U P2 in (P1 U P2) x Q. 

Proving the lemma is just a matter of checking the criteria for ca nonical 
pre-images in Definition 2.1. f 
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Proof of Proposition 6.1. The proof is by induction on height(P)+ 
height(Q). For the basis, if height(P) + height(Q) = 0, then P and Q 
are both single vertices, and the Proposition is true. In fact, it is true if 
height(P) = 0 or height( Q) = 0, so for the rest of this proof, assume that 
height(P), height(Q) > 0. 

Here is the inductive step. For a positive integer m > 0, suppose that 
for any posets P' and Q' such that height(P')+ height(Q') < m, the Propo­
sition is true for P' and Q'. Suppose that height(P)+ height(Q) = m . Let 
p0 be the bottom of P and let p1 , ... , Pr be the vertices of rank 1 in P, and 
for each i E (r), let 

Pi={pEP:p~pi}. 

Similarly, let q0 be the bottom of Q, let q1 , ... , q8 be the vertices of rank 1 
in Q, and for each j E [s], let 

Qi = { q E Q: q ~ qi} . 

Notice that each Pi is upwards closed in P, and that each Qi is upwards 
closed in Q, thus enabling us to use Lemma 6.1. 

By the induction hypothesis, 

• for each i E (r], if Pi x Q = 0' U G', then either there is a canonical 
pre-image Ri ~ O' of Pi, or a canonical pre-image S ~ G' of Q, and 

• for each j E [s], if P x Qi= 0' U G', then either there is a canonical 
pre-image Si ~ G' of Qj, or a canonical pre-image R ~ O' of P. 

Thus if P x Q = 0 U G, there are three possibilities: 

l. For some i E [r], there is a canonical pre-image S of Qin Gn (Pix Q), 
and hence in G . 

2. For some j E (s], there is a canonical pre-image R of Pin On(P x Qj) , 
and hence in O . 

3. Both (1) and (2) fail. Hence for each i E [r], there is a canonical pre­
image R i of Pi in On(Pi xQ). And for each j E [s], there is a canonical 
pre-image Si of Qi in Gn(PxQj)- Suppose, without loss of generality, 
that (po,qo) E 0. Then by Lemma 6.1 , {(po , Qo)} U LJiE[r] R; is a 
canonical pre-image of Pi in 0 . 

From these three cases, the Proposition follows . ■ 

There is another direction we can take to get positive results. This 
direction is towards a new Ramsey function . 
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Definition 6.1 For each pair of positive integers m and n , let br(m, n) be 
the least integer r such that Br ➔ (Bm , Bn) . 

In this paper we have established that for any integer a > 0, n > 17,034 
such that n > 8a!a3 ln a , br(n, 2) > n + a . However , we can prove: 

Proposition 6.2 For all positive integers m, n , br(m, n) :S mn + m + n . 

In particular, for each n, br(n, 2) ~ 3n + 2. 

Proof. By Proposition 1.1 , if* is lexicographic product, then for any m , n, 
Bm * Bn ➔ (Bm, Bn) - So it suffices to prove that Bm *Bn can be embedded 
in Bmn+m+n · 

We define an embedding r Bm * Bn ➔ Bmn+m+n as follows. Let 
[mn + m + n] = [m) U LJ:=o Ak, where, for each k E {0, 1, ... , m}, Ak = 
{m +kn+ l , . .. , m + (k + l)n}. Then for each C ~ [m) and D ~ [n], let 

We claim that Tis an embedding of Bm * Bn into Bmn+m+n· 
First, if C <;; C' ~ [m) and D, D' ~ [n], then 

T(C, D) Cu (':Q.'A,) U{m+ICln+dcdED} 

C Cu (Q, A,) 

<;: C' U (:Q' A,) U {m+ IC'ln + d', d' ED'} 

= T(C' , D'). 

Second, if D <;; D' ~ [n], then 

r(C,D) ~ Cu ('Q,' A,) u {m + ICln + d, d E DJ 

<;: CU (:Q,' A,) U {m + ICln + d', d' E D') 

T(C, D'). 
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Third, if C and C' are incomparable, then for any D , D' ~ [n], T(C, D) n 
[m] = C and T(C',D) n [m] = C', so T(C,D) and T(C',D') are incom­
parable. Fourth and finally, if D , D' are incomparable, then similarly as 
T(C, D) n A1c1 and T(C, D') n A1c1 are incomparable, so are T(C, D) and 
T(C, D'). 

From the four observation_s, we see that T is an embedding. ■ 

Observe a suggestion of sharpness about this result. The height of 
Bm * Bn is (m + l)(n + 1) = mn + m + n + 1, which is also the height of 
Bmn+m+n: if k < mn + m + n, Bm * Bn cannot be embedded in Bk- So 
if we want to improve on Proposition 6.2 , we will have to try a different 
proof. 

Here are two conjectures about the Ramsey numbers hr. In spite of the 
result of this paper, we conjecture that: 

Conjecture 6.1 For any fixed k, limn-Hoo ¼br(n, k) = l. 

Conjecture 6.2 For any fixed x E (0, 1), limn-Hoo ¼br(xn, (1- x)n) = l. 

It may even be possible that for any fixed x E (0, 1), br(xn, (1-x)n) = n 
for sufficiently large n. 

We conclude with a question arising from Conjecture 1.1: 

Question 6.1 What can be said for minimal R (or maximal P, Q) such 
that R -+ (P, Q)? 
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