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Abstract

It is known that if P and @ are posets and # is lexicographic
product, then (in the Erdés-Rado partition notation), PxQ — (P, Q).
It is known that if S and T are trees of rank at most w, and “x” is
Cartesian product, then § x T — (S,T).

In this article we exhibit pairs of finite posets P and @ such that
P x Q 4 (P,Q). In particular, we prove that if B, is the poset
of the power set on n elements, then for each integer @ > 1, there
exists N such that n > N implies Bnyqo 7 (Bn, Ba); indeed, we can
choose n such that Bryq /4 (Bn, B2). We conclude by looking at a
few positive results.

1 Introduction

Partially ordered sets seem to be natural objects for Ramseyian investiga-
tions. In fact, if one includes the orderings of the real numbers and integers
as posets, posets were subjects of Ramsey theory before Ramsey: e.g., the
negative result of F. Bernstein ([1], see, e.g., [9, §40.1]) and the later pos-
itive result of B. L. van der Waerden ([15], see, e.g., [7, §2.1]). But ever
since the seminal paper of Erdds and Szekeres ([4]), most Ramsey theory
has been on graphs.

Nevertheless, there are several Ramseyian threads in posets. Perhaps
the most important arose from the category-theoretic work of J. NeSetfil &
V. Rédl ([12], see also [13]), which generalized the finite Ramsey theorem
to posets of given “dimension.” In such papers, the authors took a poset P
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and a poset H, and colored all the copies of H in P either green or orange,
and looked for monochromatic subposets of P isomorphic to a poset Q.

For example, if we just colored vertices of a poset P, looking for mono-
chromatic copies of a poset (), we might get some poset Ramsey functions
like those exhibited in [5] and [14]. (Indeed, the negative result in this paper
will lead to a poset Ramsey function.) Let’s first be clear about what our
notation and terms mean.

In this paper, we use to the following notation.

Convention 1.1 Suppose that B is a poset, which we regard as a pair
(P,<FP): P is the set of vertices and <¥ is the order relation.

For simplicity, we will simply refer to the “poset” P directly, taking <F
for granted, and write p € P for a vertex p of P. A subposet Q of P will
be identified with a set Q C P, where <9= {(z,y) € Q*: x <F y}. Where
there is no ambiguity, we will use “<” instead of “<P.”

We will need some basic definitions.

Definition 1.1 Let P and Q be posets. A subposet R C P is a copy of Q
if there exists an isomorphism m: Q — R. In this case, we say that ™ is an
embedding of Q into P.

We may think of a partition P = G U O as a coloring of P, in which
each element of P is colored Green or Orange. We will then be interested
in a green copy of a poset @ or an orange copy of a poset R.

Definition 1.2 Let P, Q, R be any posets. Then “P — (Q,R)” means
the following. For any partition of the elements of P = G U O, either there
is a copy of Q in G or there is a copy of R in O.

If we imagine that we can color the vertices of P green and orange, so
that G is the subposet of green vertices and O is the subposet of orange
vertices, then “P — (O, R)” means that for any such coloring, either there
is a green copy of O or an orange copy of R.

Perhaps the most basic result for this situation is from H. A. Kierstead
& W. T. Trotter ([8]). If P and Q are posets, then the lezicographic product
“Px Q" of P and Q@ is the poset of vertices {(p,q): p € P & ¢ € Q} with
the ordering (p,q) < (p',q') iff p<P p',or p=p' and ¢ <9 ¢'.

Proposition 1.1 ([8]) Let P and Q be any posets. Let * be lezicographic
product. Then P * Q — (P, Q).

In [10], the less tractible Cartesian product was examined.
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Definition 1.3 Let P, QQ be partial orders. Then the cartesian product of
P and Q 1is the poset P x Q of elements (p,q), p € P and q € Q, where
(pa) <(.q¢) iff p<p &qg<q.

When there is any possibility of confusion, we will use the notations <",
<% and <> to distinguish the three order relations.

The primary result of [10] was:

Proposition 1.2 ([6] and [10]) Let S, T be trees with no vertices of in-
finite rank. Then S x T — (S,T). However, there exist trees S, T with
vertices of infinite rank such that S x T /A (S,T).

This suggested the following not unreasonable conjecture:
Conjecture 1.1 If P and Q are finite posets, then P x Q — (P,Q).
But as we shall see, this conjecture is false.

Definition 1.4 Here is some basic notation that we will use.

e For any integer a, let (a)g = 1 and, if n is a positive integer, let
~1
(@)n = [TiZo (@ = k).

e For any positive integer n, [n] = {1,2,...,n}.

e Given sets A and B, let A— B = {z € A: z ¢ B}.
o Given a set A, let P(A) be the power set of A.

e For any finite set A, let |A| be the cardinality of A.

o If A is a set and n is a nonnegative integer, then (2) = {X C
A: | X| = n}.
e If f: A— B is a function, and X C A, let f[X]={f(z):z € X}.

We will be dealing with boolean algebras as posets.

Definition 1.5 For each n, let B, = (P([n]), C), i.e., the power set of [n]
ordered by inclusion. Again, following Convention 1.1, we treat B, as the
set P([n]) and as the partially ordered set (P([n]),C).

Note that if “=” refers to poset isomorphism, then for any positive
integers m and n, By, x B,, = B,,,,. Here are some more poset definitions.

Definition 1.6 Let P be a poset.
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e If an element p satisfies “for all p' € P, p < p',” then p is the bottom
of P.

e A subposet Q of a poset P is upwards closed in P if, for any p € P
andq€Q,q<p=p€Q.

e The rank of a minimal element p is rank(p) = 0; if p is not minimal,
rank(p) = sup{rank(p'): p’ < p} + 1.

e The height of a poset P is sup{rank(p): p € P}.
e A tree is a poset P that has a bottom but no copies of B> as subposets.

Notice that in P(A), the rank of any X C A is | X]|.
Now we turn to Conjecture 1.1. Again, observe that B, = B, x B.

Proposition 1.3 For each n, Byt — (Bp, B1).

Proof. Let P([n+ 1]) = GU O be a partition of P([n + 1]) into green and
orange vertices. Suppose that O is an antichain in B,4;; we claim that
there exists a copy of B, in G.

We will construct an embedding 7 of B,, into G by a recursion, on the
cardinality (hence rank) of the sets in P([n]), as follows.

First, if @ € O, then as O is an antichain, A # @ implies A € G,
and {X U {n + 1}: X C [n]} is our green copy of B,. So, without loss of
generality, we can assume that @ € G. Let 7(9) = 2.

Construct the function 7: P([n]) — G by the following recursion on the
rank. Suppose that 7 has been defined on all sets in P([n]) of cardinality
at most m, so that for each X C [n] such that |X| < m, we have:

e either 7(X) =X or 7(X) = X U {n + 1}, and

e if | X| <m and 7(X) = X, then for any y € [n] — X, 7(X U {y}) =
Xu{ytif Xu{y}eq.

e if |X| < m and 7(X) = X U {n + 1}, then for any y € [n] — X,
XU{y,n+1} € G and 7(X U {y}) = X U{y,n + 1}. Furthermore,
forsomeY C X, Y € O.

Let | X| = m + 1. There are two cases.
Case 1. Suppose that for each z € X, 7(X — {z}) = X — {z}. In this
case, two things can happen.

1. f X €G, set 7(X) = X.

2. If X € O, then as the orange vertices form an antichain, XU{n+1} €
G,soset 7(X) =X U{n+1}.
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Case 2. Suppose that for some z € X, 7(X —{z}) = (X —={z})U{n+1}.
Then for some ¥ C X — {z}, we have Y € O and 7(Y) =Y U {n + 1}. As
Y C XU {n+ 1}, and as O is an antichain, X U {n + 1} € G, and we set
7T(X)=XU{n+1}.

Repeat until 7([n]) is defined. By construction, 7 is an embedding, and
we are done. H

The next question is this: if m,n > 1, do we necessarily have B,,, —
(Bnu Bn)?

Note that this would be the best we could hope for. If M < m+n, then
we could take By and let G = {X C [M]: |[X| < m} and O = By — G,
and G is too short to accomodate a copy of B,, while O is too short to
accomodate a copy of B,,. Thus By, 4 (Bm, Bn).

The industrious reader can verify that By — (Bs, By), B; — (B3, B2),
and Bg — (B4, B2). The question is how far does this sequence of partition
relations hold? In this paper we will find that By7037 4 (Bi703s, B2).-

The main result of this paper will give us: For any a > 1, there exists
N such that n > N implies that B, # (Bn, Ba). The next three sections
present lemmas for the main result, which occupies Section 5. Then Section
6 will deal with directions for further research, including the advertized new
poset (actually, boolean algebra) Ramseyian function.

2 Pre-Images
We start by looking at some special homomorphic pre-images of posets.

Definition 2.1 Let P and Q be posets, and let S be a subposet of P x Q.
Then S is a canonical pre-image of Q in P x Q if:

e For each q € Q, there exists p € P such that (p,q) € S.

e For each (p,q) € S and ¢’ € Q, if ¢ < ¢, then there exists p' € P,
p' > p, such that (p',q') € S.

We can similarly define a canonical pre-image R of P in P x Q.

Note that if R is a canonical pre-image of P in P x (), then the map
R — P: (p,q) — pis an onto homomorphism. Now for a critical fact.

Lemma 2.1 Let P and Q be posets with bottoms, but at least one of P, Q
has no infinite chains. If a poset R is a canonical pre-image of P in P x @)
and if S is a canonical pre-image of Q in P x (), then RN S # @.



Proof. Towards contradiction, suppose that R is a canonical pre-image of
P and S is a canonical pre-image of (), but that RN S = @. We will prove
that P x QQ admits an infinite chain, with a construction that will produce
infinite chains in both P and Q.

We use the following recursion.

The basis of the recursion uses the bottoms pg and go of P and @,
respectively. As (po,qo) € RN S, either:

e We have (po,qo0) ¢ R, in which case, as R is a canonical pre-image
of P (and ¢y is the bottom of @), there exists ¢ > ¢o such that
(po,q1) € R; denote 75 = (po,q1) € P x Q. As S is a canonical pre-
image of ), there exists a p;, such that (p;,q1) € S; note that p; > po
and denote 7} = (p1,q1). Note that 7y <*@ 7. Or:

e We have 7y = (po,qo) € R, hence (po,qo) € S, in which case, as S is a
canonical pre-image of @, there exists p; > po such that (p;,qo) € S.
Choosing a minimal such p;, let 7} = (p1,90) € P x Q. Note that
To <PXQ P«

The recursion works as follows. Suppose that we have an upwards chain
T0,T1,72,...Tm, where, for each k < m, 7, € Riff 4, € S (iff 71 € S
for k > 0). For each k < m, letting 7x = (p,q) and 741 = (p',¢'), we have:

1. if 7 € R, then p <P p’ and ¢ = ¢', and
2. if 7. €85, then ¢ <® ¢ and p=1p’

Without loss of generality, suppose that 7, € S and 7, € R; we will
obtain 7,1 > 7, such that 7,41 € S, satisfying (1) above for k = m. Let
Fm—1 = (p,q) and 7, = (p,q'). As 71 € S and ¢ <9 ¢, by Definition 2.1,
there exists p’ € P, p <¥ p/, such that (p',¢') € S. As (p,q') € R, we cannot
have p' = p, so we must have p <¥ p’. Choose a minimal such p’, and let
Tm+1 = (p',q") € S. The construction if 7, € S (using (2) above) is similar.

As the construction continues ad infinitum, P x @ admits an infinite
upwards chain (skipping every other pair) (po,qo) < (p1,q1) < (p2,q2) <
-+, and thus P has an infinite upwards chain pg < p; < p» < --- while @
has an infinite upwards chain gg < ¢y < g2 < ---. 1

3 Power Sets

Since we are working on finite boolean algebras, we want a definition that
will specialize the notion of canonical pre-images to boolean posets.

Definition 3.1 A homomorphism w: B, — B,, is faithful if there is a
one-to-one map 1: [n] = [m] such that for each a € [n] and each A C [n],
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a € Aiff 7(a) € 7(A), i.e., T[[n]]N7(A) = 7[A]. Say that T witnesses the
faithfulness of =.

This notion will allow us to regard copies of B, inside of B,,, as canonical
pre-images. To see this, note that for any n-set C' C [m],

By, = (P(C), C) x (P([m] - C),C) = B, X Bpn.

We will first prove that embeddings are faithful, and then that faithful
embeddings produce canonical pre-images.

Lemma 3.1 If 7: B, = B,, is an embedding, then it is faithful.

Proof. We need a function 7: [n] = [m] to witness 7’s faithfulness: we
claim that any function of the following sort works. As 7 is an embedding,
for each z € [n], 7({z}) € w([n] — {z}); for each z € [n], let 7(z) €
r({z}) - 7([n] - {z}).

First, we claim that 7 is one-to-one. If 7(z) = 7(y), then 7(z) € 7({y})—
#([n] - {y}), s0 7(y) & 7([n] — {y})- As z # y = 7({z}) C 7([n] - {v}),
this means that z # y = 7(y) € 7({z}). Thus as 7(y) = 7(z) € n({z}),
we must have z = y.

We now verify that 7 witnesses the faithfulness of 7. Let a € [n] and
AC [n]. If a € A, then 7(a) € n({a}) C 7(A). And if a € A, then as
r(a) & 7([n] - {a}) 2 7(A), r(a) & 7(A). W

Lemma 3.2 Let w: B, = B,, be a faithful embedding, as witnessed by
7: [n] = [m]. Let X: B,, — P(7[n]) x P([m] — 7[n]) be defined by:

AX) = (X Nn7n], X N ([m] - 7[n])).
Then (X o 7)[By] is a canonical pre-image of P(7[n]).

Notice that as A is an isomorphism, (A o 7)[B,] is a copy of B,.

Proof. First, as A and 7 are one-to-one, so is Ao, so as both are isomorphic
on their domains and images, so is Aow. Thus 7o A~!: (Aom)[B,] = Bn
is an isomorphism, hence a homomorphism. So (A o 7)[B,,] is a pre-image
of a homomorphism onto B,,; we claim that it is a canonical pre-image.

Before continuing, we show that for each E C 7[n], E = (m o7~ })[E] N
7[n]. To see this, note that by faithfulness, a € 77'[E] = a € [n] =
7(a) € n({a}), and repeating for each a € 7~![E], we have E = 7[r~![E]] C
7(r7![E]) = (7 o 77!)[E]. And by faithfulness again, for any b € 7[n],
b€ (m o7 !)[E] implies that b = m(7~!(e)) for some e € E, which implies
that b=e asb € 7[n] => b€ E. Thus r[n]N (ro 7 !)[E] C E.

Now, we claim that 7! o A~! witnesses the fact that (X o 7)[B,] is a
canonical pre-image of P(7[n]). This requires verifying both conditions of
Definition 2.1.
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e If E C 7[n], then 7 ![E] C [n]. Let C = ([m] — r[n]) Nx(r7'[E]) =
n(r7![E]) — E. Then n(r7[E]) = (r(+7}[E]) N7[n]) U (x(r~[E]) N
([m] = 7[n])) = EUC. Thus if E C 7[n], there exists C' such that
(E,C) € (Ao7)[By], and (7' 0 A7Y)(E,C) = 77 [E].

o If (E,C) € (Aom)[By], and if E C E' C 7[n], we can let C' =
([m] = 7[n]) N w(r7[E']) = n(r7'[E']) — E’, and as 7 and X are
partial isomorphisms, C' C C'. Thus (E,C) < (E',C") € (Ao 7)[By].

Since both conditions of Definition 2.1 are satisfied, we are done. B

Thus an embedded image of B, in B,, can be treated as a canonical
pre-image of B, in B,,. So we conclude by translating Definition 2.1 via
Definition 3.1 into a corresponding definition for these posets of boolean
algebras.

Definition 3.2 Let Q C B,, be a pre-image of B, under a map k: QQ —
B,,. Let S C [m] have n elements. Then k is canonical with respect to S

tf:

e There is a one-to-one map 7: S — [n] such that if A C S and V C
[m]—S and AUV € Q, then K(AUV) = 7[A].

e For every A C S, there exists V C [m] — S such that AUV € Q.

e IfAC SandV C [n]—S and AUV € Q, then for any A" such
that A C A" C S, there exists V' such that V C V' C [n] — S and
AUV e Q.

4 A Matching Lemma

Before we construct the counterexample, we need a lemma.

Lemma 4.1 Fiz an integer « > 4 and an integer n > 0 such that n >
8ala®Ina. There is a function o: ([Z]) — P([n]) such that:

1. For each S € ([;]), o(S)NS =9, and
2. For each S,S' € ([Z]), S # S' implies that |o(S) — o(S")| > ala.

Proof. By Hall’'s Matching or Marriage Theorem (see, e.g., [2, Theorem
5.1.5]), it suffices to construct a family F of subsets of [n] such that the
following hold:

1. For each F,F' € F, |F| = |F'|.
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2. For each F,F' € F, F # F' = |F — F'| > ala.

3. For each a-set S C [n], there are at least (') sets F' € F such that
FNS=g2.

We construct such a family F.
Choose the maximal m such that:

e First, m < n, and
e Second, m is a multiple of a!a (so that m/(ala) is an integer), and
e Third, (m/(ala)) — a is even.

Note that %n <n-—2ala <masa >4 (and hence n > 17,034). Thus
m > Tala® In a.
For the rest of this proof, let M = m/(a!/a).

For each j € [M], let A; = {(j — 1)ala +1,...,jala}. Then let

fz{k%A“BeaM@ﬂvJ}‘

Then:

1. If F € F, then |F| = {ala(M —a) = (m — ale®)/2. Thus F,F' €
F = |F| = |F'|

2. By construction, if F,F' € F, and F # F’, then there exists j such
that A; C F — F', and hence |F' — F'| > ala.

3. It remains to prove that for each a-set S C [n], there are at least ()
sets F' € F such that FNS = @.

First of all, we observe that any a-set S can intersect at most a sets
Aj. Thus each S € ({':]) satisfies

= M — .
|{F€f:SnF=Q}|Z< M-a )__( a)(M—a)/Z

(M-a)/2) = (M =a)/2)

and hence
{F € F: SN F = @}| > 2M-)/29a (1)

The last factor 2% is possible because [ < a implies that

%(M—a)+l>4l as M > Ta,
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and thus in the quotient in Formula (1), the last a factors in the numer-
ator are at least four times as large as the corresponding factors in the
denominator.

So it suffices to verify that 2(M-2)/22* > (") je. that 2(M-*)/2 >
272 (™). We prove this as follows.

(&3

We will need the following inequality:

m 202!

) 2
Inm % In 2 )
To prove this, welet 3 = m/(ala® Ina), so that 8 > 7, and thus 31In2 > 4.8.

It follows that 3~'In3 < 3 In2 (note that (In7)/7 < 5;In2, and that

the function z — (Inz)/z is decreasing for x > e). Thus In < % In 2.

Note that as @ > 4, alna > 5.5. In addition, as 8 > 7, af1In2 > 19.
To prove Inequality (2), we start by bounding Inm = In 3+ 3Ina+In(a!)+
Inln @. Noting that a! < a®, we compute:

Inm < Inpg+3lmna+alna+Inlna

B
< ﬁln2+4lna+alna
B alna af Bln2
—1In2 —1In21 —al
< 2.41n 55 +4191n na+ 4.8ana
1 4 1
= (—2.4x5.5+ﬁ+m)ﬂalnaln2

1
< -2-a,6 In2Inc.

Now that we have this bound, we compute

m Balalln a
Inm Inf+3lna+In(a!) +Inlna
> Bata!ln
%a,@lnaan
= 2a%a!/In2,

proving Inequality (2). Thus M In2 > 2alnm.
Observe that if @ > 4, a an integer, then 2* < (a!)?, and thus aln2 —
21In(a!) < 0. Putting this together with Inequality (2), we get

MIn2 > 2alnm + aln2 — 2In(a!).
Thus

2M > m2a2a/(a!)‘2’
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ie.,

o (55 (B8 () (5

and hence,

9(M-a)/2 5 9-a (") ,
(83

and we are done. B

5 Constructing the Counterexample

Having traversed three sections of lemmas, we are now ready for the main
theorem.

Theorem 5.1 Fiz any positive integer a. For any integer n > 17,034, if
n > 8ala®Ina, then Bpyo # (Bn,B2).

Proof. We first note that it suffices to assume that a > 4; notice 8 - 4! -
4%.1n4 < 17,035. From this we will get, among other things, that B, 14 /4
(Bn, B2), from which it follows that B,+3 # (Bn, B2), Bny2 7 (Bn, B2)
and B,4+1 # (Bn,B2). Hence we can assume that a > 4 without loss of
generality.

For each a-subset S C [n + a], we will construct a canonical pre-image
(in the sense of Definition 3.2) of P(S) in Bp4+e- The subposet consisting
of the union of these pre-images will be orange; all the vertices outside
these pre-images will be green. By Lemma 2.1, this will prevent any green
canonical pre-image of any P([n + a] — S) (and hence any green copy of
B,) from existing. In addition, each pre-image will be a tree, and any
two vertices from any two of these canonical pre-images will be mutually
incomparable (if z and y are vertices from two of these pre-images, then
z £y and y £ z): this will prevent any orange copy of Bs from existing.

Since the hypotheses of the theorem (together with a > 4) satisfy those

of Lemma 4.1, there exists a function o: ([":"‘]) — P([n]) satisfying: for
allS, S", o(S) NS =@ and S # S' = |0(S) — o(S’")| > ala.
Let S € ([":"]), and we construct the canonical pre-image of P(S) as

follows.
For each T' C S, let Pr be the set of one-to-one functions from [|T'|]
onto T'. For each nonnegative integer k < a, let

P = U Pr,
Te(3)
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and note that |Pi| = (a)x. T CT'" and p € Pr and q € Pr, let “p < ¢”
mean that ¢ is an extension of p: z € [|T|] = p(z) = ¢(z). I T C T' and
p € Pr and q € Pr» and yet p £ g, then for some z € [|T|], p(z) # q(z), so
p and ¢ have no common extension and are therefore incomparible. Note
that if a > 4, then 3 5_o |Px] = Xpoo(@)k < ala — a: 22=0(4)k =65 <
92 =4!4 -4, and Y ;_,(a)r < ala — a implies that

a+1 a+1
Z(a+1)k = 1+Z(a+1)k
k=0 k=1
= 1+(a+1)) (ak
k=0

< 1+ (a+1)(ala—-a)
< (a+ DY a+1)—(a+1).

For each S € ([":“]), we will construct the pre-image of P(S) as

follows. Let S’ C o(S) have Y p_,(a)x elements, and let v: §' = Jp_o Pk
be one-to-one. Then let the pre-image of P(S) consist of all sets X C [n+a]
satisfying the following condition: if 7= X N S, then choosing s € S’ such
that v(s) € Pr, we have

X =(0(S) =S UTU{s' € §":~v(s") < v(s)}

Call v(s) the ordering of X, and note that each such 7(s) fixes an ordering
of selecting a subset 7' C S: imagine that v(s) tells us which elements were
selected first, and in what order. (Notice that |{s’" € S": v(s') < v(s)}| =
|T|+1.) Let Qs be the poset of these sets X, ordered by inclusion. Observe
that Qg is defined from S, S’, and v only. We now verify that Qg is a
canonical pre-image of B,, that it is a tree, and that any two vertices from
two such pre-images are incomparable.

Before launching into this verification, we should note that as SNo(S) =
@, if X = (0(S) -=S")UT U{s" € §": v(s") < v(s)}, we can unambiguously
define K*(X) =X —0(S)=T.

First, this Qg is a canonical pre-image of B,. Recalling Definition 3.2,
notice that:

e Letting 7: [a] — S be one-to-one, then we have the onto map k =
771 o k*: Qs — B, such that for any (¢(S) = S')UTUU € Qs,
k((o(S) = S"YUTUU) =171 T].

e For any T C S, choose v(s) € Pr and V = (o(S) — S') U {s' €
S':y(s") <v(s)} givesus TUV € Qs.
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o If (6(S)—S")UTUU € Qs, where |T| < aand U = {s' € §": y(s') <

s)} for some s € v ![Pr], then for any t € S — T, let s* € S’ be

such that y(s*) = v(s) U {(|T| + 1,¢)}. Then (¢(S) - S YUTUU C
(0(S) =SHYU(Tu{thu({Uu{s'}) € Qs.

As Qs satisfies Definition 3.2, it is a canonical pre-image of B,,.

Second, each of these canonical pre-images Qs is a tree. Let X; =
(a(S) = S"YUT, UU, and X5 = (0(S) — S") U T» U U, be incomparable:
the respective orderings v(s1) and 7(s2) admit x < |T)|,|T%| such that
v(s1)(z) # v(s2)(x). Then the orderings v(s;) and «(s2) are incomparable.
Then for any T" C S such that 71, T, C T, if X = (o(S) - S YUTUU € Qg,
then the ordering (s) cannot be an extension of both v(s;) and y(s2), and
hence either X; € X or X» € X. Repeating for all incomparable pairs in
Qs, we see that Qs is a tree.

Third, if 51,5, € ([":"]), where S; # S5, then we claim that for any

X, € Qs, and X2 € @s,, X is incomparable to X». It would suffice to
prove this for X; maximal in (s, and X> minimal in @s,. Then X, =
0(S2)— S}, and for some U of cardinality a+1, X; = (0(5;) SI)USl UuuU.
As | Xy — | X2l =22+ 1, Xi € Xy, And as |[Xo — X > |(o( - S}) —
(a(S1)U S1)| = |(0(S2) —a(S1)) — (S5 USy)| > ala — [(ala — a) + a] =0,
we have Xo — X] #9,s0 Xo € X;. &

6 Excelsior

So there exist finite posets P and @ such that P x Q 4 (P,Q). Where
does this leave us? There seem to be two ways to go (besides improving on
the 17,035 or the 8ala® Ina).

First, there is a consolation prize, which we can get by twiddling F.
Galvin’s [6] proof of the finite version of Proposition 1.2.

Proposition 6.1 Let P and Q be finite posets with bottoms, and let P x
Q = OUG be a partition of P x Q. Then either there is a canonical
pre-image R C O of P, or a canonical pre-image S C G of Q.

To prove this, we need a little lemma.

Lemma 6.1 Let Py, P>, and Q be finite posets with bottoms. Let Py, P»
be upwards closed subposets of a poset P. Let R, be a canonical pre-image
of Py in Py x Q and let Ry be a canonical pre-image of P> in P, x Q. Then
Ry U R5 is a canonical pre-image of P, U Py in (Py UP) X Q.

Proving the lemma is just a matter of checking the criteria for canonical
pre-images in Definition 2.1.
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Proof of Proposition 6.1. The proof is by induction on height(P)+
height(Q). For the basis, if height(P) + height(Q) = 0, then P and @
are both single vertices, and the Proposition is true. In fact, it is true if
height(P) = 0 or height(Q) = 0, so for the rest of this proof, assume that
height(P), height(Q) > 0.

Here is the inductive step. For a positive integer mm > 0, suppose that
for any posets P’ and @’ such that height(P’)+ height(Q’) < m, the Propo-
sition is true for P’ and Q’. Suppose that height(P)+ height(Q) = m. Let
po be the bottom of P and let py,...,p, be the vertices of rank 1 in P, and
for each i € [r], let

P;={pe P:p>pi}.

Similarly, let go be the bottom of @, let ¢i,...,gs be the vertices of rank 1
in @Q, and for each j € [s], let

Qi ={g€Q:q>q;}.

Notice that each P; is upwards closed in P, and that each @; is upwards
closed in @, thus enabling us to use Lemma 6.1.
By the induction hypothesis,

e for each i € [r], if P; x Q@ = O' UG’, then either there is a canonical
pre-image R; C O’ of P;, or a canonical pre-image S C G’ of @, and

e for each j € [s], if P x Q; = O’ UG’, then either there is a canonical
pre-image S; C G’ of Q;, or a canonical pre-image R C O’ of P.

Thus if P x Q = O U G, there are three possibilities:

1. For some ¢ € [r], there is a canonical pre-image S of @ in GN(P; x Q),
and hence in G.

2. For some j € [s], there is a canonical pre-image R of P in ON(P x Q;),
and hence in O.

3. Both (1) and (2) fail. Hence for each ¢ € [r], there is a canonical pre-
image R; of P; in ON(P; xQ). And for each j € [s], there is a canonical
pre-image S; of Q; in GN(PxQ;). Suppose, without loss of generality,
that (po,q0) € O. Then by Lemma 6.1, {(po,qo)} U Uie[r] R; is a
canonical pre-image of P; in O.

From these three cases, the Proposition follows. l

There is another direction we can take to get positive results. This
direction is towards a new Ramsey function.
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Definition 6.1 For each pair of positive integers m and n, let br(m,n) be
the least integer r such that B, — (B, By)-

In this paper we have established that for any integer a > 0, n > 17,034
such that n > 8ala® In a, br(n,2) > n + a. However, we can prove:

Proposition 6.2 For all positive integers m, n, br(m,n) < mn +m + n.

In particular, for each n, br(n,2) < 3n + 2.

Proof. By Proposition 1.1, if  is lexicographic product, then for any m, n,
B, * B, = (B, B,). So it suffices to prove that B,, x B,, can be embedded
in an+m+n-

We define an embedding 7: B,, * B, = Bpnt+m+n as follows. Let
[mn + m + n] = [m] U U], Ak, where, for each k € {0,1,...,m}, Ay =
{m+kn+1,...,m+ (k+1)n}. Then for each C C [m] and D C [n], let

icl=1
rc,p)y=cu| |J Ak) U{m+ |C|n +d: d € D}.
k=0

We claim that 7 is an embedding of B,, * B,, into Bntm+n-
First, if C C C' C [m] and D, D’ C [n], then

|Cl-1
7(C,D) = CU ( U Ak) U{m +|C|n +d: d € D}

k=1

IC|
c Cu (U Ak)
k=1
IC’1-1
c C'u ( U Ak) U{m+|C'In+d:d € D'}
k=1

= r{c, D).
Second, if D C D' C [n], then

|ICl—1
7(C,D) = CU ( U Ak) U{m+|C|n+d: d € D}

k=1

N

k=1

Icl-1
cu ( U Ak> U{m+|Cln+d:d € D'}

7(C, D).
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Third, if C and C' are incomparable, then for any D, D’ C [n], 7(C,D) N
[m] = C and 7(C',D) N [m] = C', so 7(C,D) and 7(C’,D") are incom-
parable. Fourth and finally, if D, D’ are incomparable, then similarly as
7(C,D) N A|¢| and 7(C, D') N Aj¢| are incomparable, so are 7(C, D) and
7(C,D").

From the four observations, we see that 7 is an embedding. W

Observe a suggestion of sharpness about this result. The height of
By % By is (m+ 1)(n + 1) = mn +m +n + 1, which is also the height of
Boniman: if kK < mn+m +n, B, * B, cannot be embedded in Bi. So
if we want to improve on Proposition 6.2, we will have to try a different
proof.

Here are two conjectures about the Ramsey numbers br. In spite of the
result of this paper, we conjecture that:

Conjecture 6.1 For any fized k, lim,_, 100 ~br(n, k) = 1.
Conjecture 6.2 For any fized z € (0,1), limp_, 4 2br(zn,(1—z)n) = 1.

It may even be possible that for any fixed z € (0,1), br(zn,(1—z)n) =n
for sufficiently large n.
We conclude with a question arising from Conjecture 1.1:

Question 6.1 What can be said for minimal R (or mazimal P, Q) such
that R — (P,Q)?
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