Nesting of already nested designs

Lucia Gionfriddo

Dipartimento di Matematica e Informatica, Università di Catania viale A.Doria n.6, 95125 Catania, Italy lucia.gionfriddo@dmi.unict.it

Abstract. A general definition of *nesting* for a G-design of index λ , without conditions on |V(G)| and |E(G)|, is given in [4]. In this paper we consider the nesting of already nested G-designs and construct all possible nestings of nestings in the case that G is a P_v-design of order a prime n.

1. Introduction

Let G=(V(G),E(G)) be a graph and let λK_n be the complete multigraph on n vertices (every edge is repeated λ times). λK_n is said to be G-decomposable, briefly we well write $\lambda K_n \rightarrow G$, if it is union of edge-disjoint subgraphs of K_n , each of them is isomorphic to G. We say, also, that λK_n admits a G-decomposition $\Sigma=(V,B)$, where V is the vertex-set of λK_n and B is the edge-disjoint decomposition of λK_n into copies of G. If $B \in B$, B is called a block of Σ . The pair $\Sigma=(V,B)$ is, also, called a G-design of order n, block-size |V(G)| and index λ .

Lavoro eseguito nell'ambito del GNSAGA (INDAM) e con contributo del MURST

In [8], Milici and Quattrocchi gave the following definition of *nesting* of a G-design, generalizing the usual nesting for cyclesystems.

Definition 1 Milici-Quattrocchi [8]

Let G=(V(G),E(G)) be a graph and let $\Sigma=(V,B)$ be a G-decomposition of λK_n . A nesting of Σ is a triple $N = \{\Sigma,\Pi,F\}$, where $\Pi=(V(K_n),S)$ is a decomposition of λK_n in m-stars S_m and $F: B \rightarrow S$ is a 1-1 mapping such that:

- i) for every $B \in B$, the centre of the m-star F(B) doesn't belong to V(B), all the terminal vertices of F(B) belong to V(B);
- ii) for every pair $B_1, B_2 \in \mathbf{B}$, the graphs $B_1 \cup F(B_1)$, $B_2 \cup F(B_2)$ are isomorphic.

It follows, as a necessary condition, that $|V(G)| \ge |E(G)|$. For |V(G)| = |E(G)|, this definition is equivalent to the usual nesting.

In [4],[5], we gave a new definition a nesting of a G-design in which there are not conditions on |V(G)|, |E(G)|.

Definition 2 [4] [5]

Let G=(V(G),E(G)), H=(V(H),E(H)) be two graphs and let $\Sigma=(V,B)$ be a *G-design of index* λ_I , briefly $\lambda_I H \rightarrow G$. A *nesting* $N(G,H;\lambda_1,\lambda_2)$ of Σ is a triple $N=(\Sigma,\Pi,F)$, where $\Pi=(V(H),S)$ is an *m-star-design of index* λ_2 , briefly $\lambda_2 H \rightarrow S_m$, and $F:B \rightarrow S$ is a bijection such that:

- i) for every $B \in B$, the centre of the m-star F(B) doesn't belong to V(B), and V(F(B))=V(B) [x vertex of F(B) iff $x \in V(B)$];
- ii) for every pair B_1 , $B_2 \in B$ the graphs $B_1 \cup F(B_1)$ and $B_2 \cup F(B_2)$ are isomorphic.

In the case $H \cong K_n$, such a nesting is usually denoted by $N = N(G, n; \lambda_1, \lambda_2)$. Observe that N is a G^* -design of order n, block-size |V(G)| = I, index $\lambda = \lambda_1 + \lambda_2$, where $G^* = G \cup S_{|V(G)|}$.

If $\lambda_1 = \lambda_2 = \lambda$, this definition is the same studied in [1],[6],[7]. Consider an example. Let $[x; x_1,x_2, ..., x_v]$ be the union-graph between the path P_v of vertices $x_1,x_2,...,x_v$ and edges $\{x_i, x_{i+1}\}$, i=1,2,...,v-1, and the star of centre x and terminal vertices $x_1,x_2,...,x_v$, then we can verify that the following design N, defined on Z_5 (the sums are mod 5), having the blocks:

[j; j+1,j+2,j+3,j+4], [j; j+2,j+4,j+1,j+3], for every j=0,1,2,3,4 is a nesting $N(P_4,5;3,4)$.

In this paper we consider nesting designs $N(G_{i,n},v_1,v_2)$ of Σ_i , where Σ_i is a nesting design $N(G_{i-1},n;\mu_1,\mu_2)$ of Σ_{i-1} , for all admissible i, starting from a *G-design of index* λ_I . We study the case that G is a *path* of order a prime.

In what follows, all the sums will be reduced mod n.

2. k-nesting and necessary conditions

We give the following definition.

Definition 3:

Let G=(V(G),E(G)) be a graph; let $\Sigma=(V,B)$ be a *G-design of index* λ_{II} and order n and let $1 \le k \le n$ -|V(G)|, for an integer n. The 1-nesting of Σ is the nesting $N_1=N(G,n;\lambda_{II},\lambda_{I2})=(\Sigma,\Pi,F)$, introduced in Definition 2. Let $G_1=G$, $\Pi_1=\Pi$, $F_1=F$. For $k \ge 2$, the k-nesting $N_k(G)$ of the G-design Σ is a nesting (Σ_k, Π_k, F_k) of $\Sigma_k=N(G_{k-1},n;\lambda_{k-1},\lambda_{k-1,2})$.

In what follows, if $B \in B$ and x is the centre of F(B), we will write $(x)-B=B \cup F(B)$. Now, we see some necessary conditions for the existence of a nested-design $N(G,n;\lambda_1,\lambda_2)$. Some are proved in [4].

Theorem 2.1 [4]: Let G=(V(G),E(G)) be a graph and let $\Sigma=(V,B)$ be a G-design of index λ_1 . A necessary condition for the existence of a $N(G,n;\lambda_1,\lambda_2)$ is that λ_1 . $|V(G)|=\lambda_2$. |E(G)|

Theorem 2.2: Let G_1 =(V(G_1),E(G_1)) be a graph and let Σ_1 =(V,B₁) be a G_1 -design of index λ_{11} .

- i) a necessary condition for the existence of a $N(G_1, n; \lambda_{11}, \lambda_{12})$ is that λ_{11} . $|V(G_1)| = \lambda_{12}$. $|E(G_1)|$
- ii) a necessary condition for the existence of a $N(G_k, n; \lambda_{k1}, \lambda_{k2})$, for k=1,2,...,n. $V(G_1)$ \downarrow is that for every i=1,2,...,k:

$$\lambda_{i1}.(|V(G_1)| + i-1) =$$

$$= \lambda_{i2}.(|E(G_1)| + (i-1)(|V(G_1)| + (i-2)/2)).$$

Proof: i) It is equivalent to Theorem 2.1. ii) For i=1, the statement follows from i) directly. Let i>1. From i):

$$\lambda_{i1}$$
. $V(G_i) = \lambda_{i2}$. $E(G_i)$

Since:

$$V(G_i) \models V(G_{i-1}) \models 1$$

 $E(G_i) \models E(G_{i-1}) \models V(G_{i-1}) \mid$

it is:

$$V(G_i) \models V(G_1) \models_{i-1}$$

 $E(G_i) \models E(G_{i-1}) \models V(G_{i-1}) \models_{i-1}$
 $E(G_1) \models_{i-1} (V(G_1) \models_{i-2})/2).$

From which:

$$\lambda_{i1}.(V(G_1) + i-1) =$$

$$= \lambda_{i2}.(E(G_1) + (i-1)(V(G_1) + (i-2)/2)).$$

Theorem 2.3 [4]: Let $N = (\Sigma, \Pi, F)$ be a nested-design $N(P_v, n; \lambda_1, \lambda_2)$. *Necessarily:*

- i) $\lambda_1 = (v-1).h$, $\lambda_2 = v.h$, for some $h \in N$;
- ii) if n=v+1, then either v or h is an even number.

3. k-nesting of P_v-designs

Now, we prove the following:

Theorem 3.1: Let $v \mid l$ be an integer. Then, for every prime number n, $n \mid v$, there exists a k-nesting design $N(P_v, n; \lambda_{k1}, \lambda_{k2})$, for every k such that $1 \le k \le n$ -|V(G)|.

<u>Proof</u>: In what follows, all the sums must be reduced mod n, being n a prime number. Consider the case k=1.

Necessary conditions give: $\lambda_{11}=(v-1)h$, $\lambda_{12}=vh$. It is sufficient to prove the statement for $\lambda_{11}=v-1$, $\lambda_{12}=v$ (all the other cases can be obtained by a repetition of blocks).

Let Σ =(V,B) be the P v-design of order n and index λ_{11} =v-1, defined on V=Z_n and having the following blocks, for every i=1,2,...,(n-1)/2:

where $\{x_1, x_2, ..., x_v\}$ denote the path P_v having vertices $\{x_1, x_2, ..., x_v\}$ and edges $\{x_1, x_2\}, \{x_2, x_3\}, ..., \{x_{v-1}, x_v\}$. If $G_1=P_v$ and $G_2=(x)-P_v$, we prove that the G_2 -design having

blocks:

$$B_{j,i}{}^{(1)}\colon \quad (vi+j)\text{-}\!<\!j,\, j\!+\!i,\, j\!+\!2i,\dots,\, j\!+\!(v\!-\!1)i>$$

for every i=1,2,...,(n-1)/2, for every j=0,1,2,...,n-1

is a nesting $N_1=(\Sigma,\Pi_1,F_1)$ of Σ . In fact, Σ is a P_v -design in which every pair $\{x,y\}\subseteq V$ is contained in exactly $\lambda_{11}=v-1$ blocks. We can verify that, if $x,y\in V$, $x\leq y$, and y-x=h, then the edge $\{x,y\}$ is exactly contained in the following v-1 blocks:

Further, Π_1 is an S_v -design of index $\lambda_{12}=v$. In fact, if we consider in every block (x)- $\langle x_0, x_1, ..., x_{v-1} \rangle$ of Π_1 the differences $|x-x_u|$, for every u=0,1,...,v-1, we can see that:

in all the blocks
$$B_{j,l}^{(l)}$$
 these differences are: $v, v-1, v-2, \dots, 1$

in all the blocks
$$B_{j,2}^{(1)}$$
 these differences are: $2v, 2(v-1), 2(v-2), \dots, 2$

in all the blocks
$$B_{j,(n-1)/2}^{(1)}$$
 these differences are: $v(n-1)/2, (v-1)(n-1)/2, \dots, (n-1)/2$.

If we consider the matrix $M_1[(n-1)/2, v]$ containg these differences, in the same order:

ν	v-1	v-2	I
2v	2v-2	2v-4	2
v(n-1)/2		($n-1$)/2

we can verify that, since n is a prime number, all the possible differences appear exactly one time in every column. This implies $\lambda_{12}=v$.

Let k=2. The design N₁ has index $\lambda_{21} = \lambda_{11} + \lambda_{12} = 2v-1$. The nesting star-design Π_2 , associated with it, should have index $\lambda_{22} = v+1$. If $G_3 = (x) - G_2$, we prove that the G_3 -design having blocks:

$$B_{j,i}^{(2)}$$
: $((v+1)i+j)-(B_{j,i}^{(1)})$

for every
$$i=1,2,...,(n-1)/2$$
, for every $j=0,1,2,...,n-1$

is a nesting $N_2=(N_1,\Pi_2,F_2)$ of N_1 . We know that N_1 is a G_2 -design in which every pair $\{x,y\}\subseteq V$ is contained in exactly $\lambda_{21}=2v-1$ blocks. Further, Π_2 is an S_v -design of index $\lambda_{22}=v+1$. In fact, if we consider in every block (x)- G_2 of Π_2 the differences $|x-x_u|$, for every $u=0,1,\ldots,v$, between x and the vertices of the blocks of N_1 , we can see that:

in all the blocks
$$B_{J,I}^{(2)}$$
 these differences are: $v+1$, v , $v-1$, $v-2$,, I

in all the blocks
$$B_{j,2}^{(2)}$$
 these differences are: $2v+2$, $2v$, $2(v-1)$, $2(v-2)$,, 2

in all the blocks
$$B_{j,(n-1)/2}^{(2)}$$
, these differences are: $(v+1)(n-1)/2$, $v(n-1)/2$, $v(n-1)/2$, $v(n-1)/2$, $v(n-1)/2$.

If we consider the matrix $M_2[(n-1)/2, v+1]$ containg these differences, in the same order:

we can verify that this matrix is different from M_1 only for the first column, which is:

$$v+1$$
, $2(v+1)$, ..., $(v+1)(n-1)/2$.

Since n is a prime number, this implies that the elements of this column are exactly all the possible differences between (v+1)i+j and the other elements of the P_v -design. This implies $\lambda_{22} = v+1$.

In general, let k be an integer such that $2 \le k \le n-|V(G)|$. The design N_{k-1} has index $\lambda_{k1} = kv+(k^2-3k)/2$. The nesting star-design Π_k , associated with it, should have index $\lambda_{k2} = v+k-1$.

If $G_{k+1}=(x)-G_k$, we prove that the G_{k+1} -design having blocks:

$$B_{j,i}^{(k)}: ((v+k-1)i+j)-(B_{j,i}^{(k-1)})$$

for every i=1,2,...,(n-1)/2, for every j=0,1,2,...,n-1

is a nesting $N_k=(N_{k-1},\Pi_k, F_k)$ of N_{k-1} . We know that N_{k-1} is a G_k -design of index λ_{k+1} .

Further Π_k is an S_ν -design of index λ_{k2} =v+k-1. In fact, if we consider in every block (x)- G_k of Π_k the differences | x-x_u|, for every u=0,1,...,v, between x and the vertices of the blocks of N_{k-1} , we can see that:

in all the blocks
$$B_{j,1}^{(k)}$$
 these differences are: $v+k-1,\ldots,v+1,v,v-1,v-2,\ldots,1$

in all the blocks $B_{j,2}^{(k)}$ these differences are: $2v+2k-2,\ldots,2v,\ 2(v-1),\ 2(v-2),\ \ldots,\ 2$

in all the blocks
$$B_{j,(n-1)/2}^{(k)}$$
 these differences are: $(v+k-1)(n-1)/2$,, $v(n-1)/2$, $(v-1)(n-1)/2$,, $(n-1)/2$.

If we consider the matrix $M_k[(n-1) \ 2, v + k-1]$ containg these differences, in the same order:

$$v+k-1$$
 ... $v+1$ v $v-1$ $v-2$... 1 $2v+2k-2$... $2v+2$ $2v$ $2v-2$ $2v-4$... 2 $2v-4$... $2v+2$ $2v-4$... $2v+2$... $2v+2$ $2v-4$... $2v+2$ $2v-4$... $2v+2$ $2v-4$... $2v+2$... $2v+2$ $2v-4$... $2v+2$.

we can verify that this matrix is different from M_{k-1} only for the first column, which is:

$$v+k-1$$
, $2(v+k-1)$,, $(v+k-1)(n-1)$ 2.

Since n is a prime number, this implies that the elements of this column are exactly all the possible differences between (v+k-1)i+j and the other elements of the P_v -design. This implies λ_{k2} =v+k-1.

The proof is completed.

REFERENCES

- [1] C.J.Colbourn-M.J.Colbourn, *Nested triple systems*, Ars Combinatoria 16 (1983), 27-34.
- [2] C.J.Colbourn-J.H.Dinitz, *The CRC-handbook of Combinatorial Designs*, CRC Press, (1996)
- [3] C.J.Colbourn-A.Rosa, *Triple systems*, Oxford Sc.Publ., (1999).
- [4] L.Gionfriddo, *New nesting for G-designs*, Congressus Numerantium, 145 (2000), 167-176.
- [5] L.Gionfriddo, On the spectrum of nested G-designs, Australasian J. of Combinatorics, 24 (2001), 59-80.
- [6] C.C.Lindner-C.A.Rodger-D.R.Stinson, *Nesting of cycle systems of even lenght*, J.Comb.Math.Comb.Comp. 8 (1990), 147-157.
- [7] S.Kageyama-Y.Miao, *The spectrum of nested designs with block size three or four*, Congressus Numerantium, 114 (1996),73-80.
- [8] S.Milici-G.Quattrocchi, *On nesting of path-designs*, J.Comb. Math. Comb.Comp., to appear.
- [9] S.Milici-G.Quattrocchi, On nesting of G-decomposition of K_v where G has four vertices or less, to appear.

- [10] G.Quattrocchi, G-design: nesting and embedding problems, to appear.
- [11] D.R. Stinson, The spectrum of nested Steiner triple systems, Graphs and Combinatorics, I (1985), 189-191.
- [12] D.R. Stinson, On the spectrum of nested 4-cycle-systems, Utilities Math., 33 (1988), 47-50.