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Suppose G is a gr aph with ver tex-set V and edge-set E . If>. is a one­
to-one ma p from Eu V onto the integers {1 , 2, ... , e + v }, define t he weight 
of vertex x to be 

wt(x) = >. (x) + L >. (xy), 

where t he sum is over all vertices y adjacent to x. We say A is a vertex-magic 
total labeling if t here is a constant h so t hat for every vertex x, wt(x) = h . 
A graph with s uch a labeling is a vertex-magic graph. 

Recent ly Lin and Miller [3] proved t hat all complete graphs of order 
divisible by 4 are vertex-magic. (It had been shown in [4] and [5] t hat all 
other complete graphs are vertex-magic .) Our purpose here is to present a 
simpler proof t hat all complete graphs are vertex-magic. 

In our proof we use t he existence of magic rectangles. A magic rectangle 
A = (aij) of size r x c is an r x c array whose entries are {1 , 2, ... , re}, each 
appearing once, with a ll its row sums, and all its column sums, equal. T he 
sum of all ent ries in t he array is ½rc(rc + 1) ; it follows that 

r 

i= l 
C 

½c(rc + 1), all j, 

½r(rc + 1), all i , 

so r and n must eit her both be even or both be odd. It was shown in [2] 
t hat such a n array exists whenever r and c have t he same parity, except for 
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the impossible cases when one of r or c is 1, or r = c = 2. A very simple 
construction for all m agic rectangles is given in [l ]. 

We also use two n x n matrices, where n is odd. A denotes the ma­
t rix formed from the row 1, 2, . .. , v by back-circulating - ai ,J = ai-l ,J+ l , 
wit h ubscripts reduced modulo v when necessary - so that A is sym­
metric, and its diagonal entries are all different . If S is t he sequence 
so,s1, s2, . .. ,s½(n- l ), then B (S) = (b;,J) is t he m atrix formed by circu­
lating the row 

so,s1,s2 ... ,S½(n-1),S½(n- l), ·· · ,s l 

- in other words, b1 ,1 = so, b1 ,2 = s1, ... , b1 ,n = s1 , and bi,j = bi- l ,j-1, 
with subscripts taken modulo v when necessary. 

Now define a labeling >-s(n) of Kn by >. (xi) = ai,i + bi ,i, >. (xixj) = 
ai,J + bi,J· It is easy to see that under this labeling, every vertex x has t he 
same weight : 

wt(x) = so+ 2(s1 + s2 + ... + s½(n- 1)) + 1 + 2 + ... + n . 

In t he case where S = (0, n, 2n, ... , ½n(n - 1)), every label from 1 to 
½n(n + 1) will occur exactly once, so we have a vertex-magic total labeling 
of Kn. So there is a vertex-magic tot al labeling of Kn whenever n is odd . 

If n = 2( mod 4) , we wri te n = 2v. We find a vertex-magic total labeling 
of t he union of two copies of K v. Suppose this labeling has magic constant 
h . Then we select a magic square m of order v . The edge joining vertex x 
of t he first K v to ver tex y of the second K v receives label v 2 +v +mxy· The 
result is clearly vertex-magic, with magic constant h + ½(3v3 + 2v2 + v). 

To label 2K v we distinguish two subcases. If v = 4m + 1, consider t he 
two sequences 

S1 2mv, 0, 2v, . .. , (2m - 2)v , (2m + 3)v , (2m + 5)v, ... , (4m + l )v, 

S2 (2m + 2)v, v, 3v, ... , (2m + l )v, (2m + 4)v, (2m + 6)v, . .. , 4mv . 

>-s, (v) and >-s2 (v) can each be u ed to label K v. Each has magic constant 
(2m + 1)(4m + 1)2 and between t hem their sets of labels make up all t he 
integers from 1 to 2(v! 1

). If t hese labelings are applied to two disjoint 
copies of K v, t hey m ake u p a VMTL of 2K v as required . 

In t he same way, if v = 4m + 3, the sequences 

S1 2m, 0, 2, .. . , 2m - 2, 2m + 2, 2m + 5, 2m + 7, ... , 4m + 3, 

S2 2m + 4, 1, 3, .. . , 2m + 3, 2m + 6, 2m + , ... , 4m + 2 

43 



can be used to label 2K v. 

If n = O( mod 4), say n = 4m, we trea t K 4m as I<4m.-3 U /(3 with edges 
joining the two vertex-sets. T he copy of K 4m-3 is labeled using -\s(4m - 3) , 
where 

S = 4m, 0 , m - 3, 12m - 6, 16m - 9, ... , ( m - 3) + (m - 3)(4m - 3) , 

m, + (m + 1)(4m - 3) , Sm+ (m + 2) (4m - 3), 

. .. , Sm + (2m - 1)(4m - 3) , 

yielding constant ver tex weight (2m l )(Sm2 - 6m - 3). T he ver tices of 
K3 receive labels 4m - 2, 4m, - 1, 4m,, a nd the edges receive Sm - 2 + (m -
2)(4m - 3),Sm - 1 + (m - 2)(4m - 3) , Sm + (m - 2)(4m - 3), in such a 
way as to give each of t he three vertices weight Sm2 - 2m + 9. Finally, a 
magic rectangle R of size 3 x ( 4m - 3) is chosen, a nd t he cross-edge joining 
vertex i of 1(3 to vertex j of I<4m -3 is labeled Sm+ (m - 2)(4m - 3) + rij · 

The magic rectangle has row and column sums (4m - 3)(6m - 4) and 
3(6m - 4), so the sum on each ver tex of K 4m. _ 3 of the labels on the cross­
edges is 3[(6m - 4) +Sm+ (m - 2)(4m - 3)], a nd for t he vertices of K 3 

it is (4m - 3)[(6m - 4) + 8m + (m - 2)(4m - 3)] . Therefore the combined 
labeling gives constant vertex-weight 16m3 + 8m2 

- 3m + 3. Every integer 
from 1 to 2m( 4m + 1) is used precisely once, so the result is a vertex- magic 
total labeling . 
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A bs t rac t 

A graph G' is a lea t co m mon mult iple of two gra phs H1 a nd H2 

if G is a sma Uest gr aph , in te rm s of num be1· of ed ges , s uch t hat t here 

exists a deco m posit ion of G into ed ge disj oint copies of HI a nd t here 

exists a deco mp osit ion of G in to edge disjoint copies of H2. In t hi s 

p a per we co nstruct a least common mult iple of t h e two cubes Q 0 a nd 

Q b for any two positive in tegers a and b. 

G ra phs in t his paper a re assumed to be simple and to have no iso lated 

vert ices . We denote the vector space Z2 over t he fi eld Z2 by Vn. Let ek 

denote the vector wi th k t h co mponent 1 and other cornpo 11 e11 ts 0. The 

n-cube Q n is t he graph wi th vertex set Vn and edge set { { v, v + ek } : v E 
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V,1 , 1 :S k :Sn}. It is eas ily seen that Qn is n- reg ula r, has 2n vert ices , a nd 

has n2n - I edges . 

A gra ph H is said to divide a graph C if t here ex ists a set of subgraph s of 

C , each isomo rphic to H , whose edge sets part it ion t he ed ge set of C. Such 

a set of subgra phs is called an H -decomposition of C. A spanning subgraph 

of a graph C in which each co mponent is isomorphic to a given graph H 

is called a n H -f aclor. Given graphs H 1 a nd H 2 , a common multiple of H 1 

and H 2 is a nontr ivia l graph C such t hat H 1 d ivides C a nd H 2 d ivides C . 

A graph C is a least common multiple of H 1 and H2 if C is a common 

mu lt iple o f H 1 and H 2 a nd no other common mu lt iple has fewer edges . 

Severa l a ut hors have inves t igated t he problem o f findin g least common 

mu lt iples of pa irs of graphs. T he problem was introd uced by C hart ra nd et 

a l in [l) wh ere t hey showed t hat every pair of nonempty graphs has a least 

common multip le. T he problem has been studied fo r severa l pairs of graphs 

includ ing cycles and stars [l , 8), paths and co mplete grap hs [7) and pa irs 

of cycles [6). Pairs of graphs hav ing a unique least comm on mu lt iple were 

in vest igated in [3) and least common mult iples of d igraphs were consid ered 

in [2). In t his paper we make use of a result of Edmonds a nd Fulkerson [4) 

on independent subsets in matroids to co nstruct a least common mu lt iple 

of any two cubes. The fo ll owing is the vecto r space vers ion of t heir res ul t. 

Theo rem 1. A subset E of a vector space V can be covered by a family of 

linearly in dependent subsets l ;, i = 1, . . . , k , of prescribed sizes n ; :S rank E 

if and only if, f or every A ~ E , 

IA I :S L min{n;, ran k A}. 
i 

If W is a subset of Vn , we denote the complete gra ph with vertices 

labeled with elements of W by K(W) . If Wand X are subsets of Vn with 

0 ft. X, we define G(W, X) to be the subgraph of K(Vn) with edge set 

{ { w , w + x } : w E W, x E X}. The fo llowing two results a llow us to make 

use of the theorem of Edmonds and Fu lkerson [4) to const ruct least common 
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multiples of cubes. The first is the k = 2 case of Lemma 1 in (5]. 

The ore m 2. ff X is a linearly independent subset of Vn with d elements, 

then G(Vn , X) is a Qd-factor of K(Vn )-

The seco nd result that we u e, the k = 2, j = n case of Lemma 3 in (5], 

is proved using the theorem of Edmonds and Fulkerson (4] . 

Le mma 1. Suppose that di , d2 , ... , dt are integers with 1 :S: d; :S: n for 

all i and I:!=i d; = 2n - l. T hen the nonzero elements of Vn can be 

partitioned into linearly ·independent sets X1 , X2 , ... , Xi such that IX; I = d; 

f or l :S: i :S: t . 

We are now ready to construct lea t common multiples of cubes . 

Theore m 3. Let a and b be po itive integers with a :S: b. Th en there exists 

a graph G with lcm(a , b)2b-l edges that is a least common multiple of Q 0 

and Qb. 

Proof. First note t hat if G has m edges and is a common multiple of Q 0 and 

Qb , where a and b are positive integers with a :S: b, t hen m ~ lcm(a, b)2b-i _ 

To see t his , ob erve that if Qb is a subgraph of G t hen G has at least 2b 

vert ices and that t he degree of each vertex of G is divisible by lcm( a, b). 

If folJows that G has at least 2blcm(a, b)/2 =lcm(a , b)2b-l edges. Hence, 

a common mu lt iple of Q 0 and Qb with lcm(a , b)2b-i edges is necessar ily 

a least common multiple . We now con t ru ct such a graph for a lJ posit ive 

integers a and b. 

We can assume a < b, fo r if a= b then we let G be Qb. Thus , lcm(a , b) :S: 

ab :S: b(b - 1) :S: 2b - 1. Let lcm(a , b) = bt. By Lemma 1 wit h n = b, di = 
d2 = .. . = di = b, and the remain ing d;s chosen :S: b so that I: d; = 2b - 1, 

we ca n find t painvi e disjo int linearly independent subsets X 1 , X2 , . . . , X i 

of Vi with IX;I = b, 1 :S: i :S: t . 

Let G = u~=i G(Vb, X ;) . Fo r each i , G(Vb, Xi) i a Qb-factor of K (Vb) 

by Theorem 2, so Qb d ivides G . otice tha t G is regul ar with degree tb , 

and so has 2btb /2 = lcm( a , b) 2b- l edges. 
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Let E = LJ!= 1 X;. We will use T heorem 1 to show that E can be 

part it ioned into s linearly independent sets , each with a elem ents , wh ere 

icm (a, b) = as. It suffices to show that if A ~ E, t hen 

JA i S I::min{a , rank A} . 
i = l 

If ran k A ~ a , t hen t his says jA j S sa = bt , which is clear since jE j = bt. 

Thus we can assume rank A< a . Let A; = A n x; , i = 1, ... , t . Sin ce X; 

is linearly independent , jA; j S rank A , i = 1, ... , t. Thus 

t • 

JAJ = L JA; j S t· ra nk AS s · rank A = L min{ a , rank A}. 
i= l i = l 

ow let E be part it ioned in to s linearly independent sets Y1 , Y2, ... , Y,, 

each wi th a elem ents. Then for each i, G(Vb, Y;) is a Q 0 -facto r of K( Vi ) 

by Theorem 2. Thus Q0 div ides LJ:=1 G(Vi, Y;) . But this graph is also C , 

since both u:=l G(Vb, X; ) and u:=l G(Vi, Y;) consist of a ll edges of K(Vi) 

of the fo rm {v, v + u } where v E Vb and u EE. □ 

We note tha t the sets G(Vi , X; ) and G(Vi, Y; ) used in the proof of The­

orem 3 are Qb-factors and Qa-facto rs, respectively. Thus we have proven 

t hat the I ast commo n mul t iples of Q0 and Qb constructed in Theorem 3 

can be decomposed into Q 0 -facto rs and into Qb-factors. 
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