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Suppose G is a graph with vertex-set V' and edge-set E. If A is a one-
to-one map from EUV onto the integers {1,2,...,e + v}, define the weight
of vertex x to be

wt(z) = A\(z) + Z A(zy),

where the sum is over all vertices y adjacent to x. We say A is a vertez-magic
total labeling if there is a constant h so that for every vertex z, wt(z) = h.
A graph with such a labeling is a vertex-magic graph.

Recently Lin and Miller [3] proved that all complete graphs of order
divisible by 4 are vertex-magic. (It had been shown in [4] and [5] that all
other complete graphs are vertex-magic.) Our purpose here is to present a
simpler proof that all complete graphs are vertex-magic.

In our proof we use the existence of magic rectangles. A magic rectangle
A = (ay;) of size 7 x ¢ is an r X ¢ array whose entries are {1,2,...,7c}, each
appearing once, with all its row sums, and all its column sums, equal. The
sum of all entries in the array is %rc(rc +1); it follows that

Zai]- = jc(re+1), all j,
i=1

c
E a,-j =
j=1

so r and n must either both be even or both be odd. It was shown in [2]
that such an array exists whenever r and ¢ have the same parity, except for

r(re+ 1), all 1,

N
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the impossible cases when one of r or cis 1, or r = ¢ = 2. A very simple
construction for all magic rectangles is given in [1].

We also use two n x n matrices, where n is odd. A denotes the ma-
trix formed from the row 1,2,...,v by back-circulating — a; ; = ai—1 j+1,
with subscripts reduced modulo v when necessary — so that A is sym-
metric, and its diagonal entries are all different. If S is the sequence
50,51,82, -+, 84 (n-1)s then B(S) = (b; ;) is the matrix formed by circu-
lating the row

80951982« vs-%(n—l)vs,}(n—l)v' s iy Sl
—/'in other words, by i = 8g,b015"'= 83,:-.,01.n = 81,700d b ; = bi~1 -1,

with subscripts taken modulo v when necessary.

Now define a labeling As(n) of K, by A(zi) = aii + bii, AMziz;) =
a;; + b; ;. It is easy to see that under this labeling, every vertex x has the
same weight:

wt(x):so+2(sl+52+...+s%(n_1))+1+2+...+n.

In the case where S = (0,n,2n,...,3n(n — 1)), every label from 1 to
%n(n + 1) will occur exactly once, so we have a vertex-magic total labeling
of K,,. So there is a vertex-magic total labeling of K, whenever n is odd.

If n = 2( mod 4), we write n = 2v. We find a vertex-magic total labeling
of the union of two copies of K,. Suppose this labeling has magic constant
h. Then we select a magic square m of order v. The edge joining vertex =
of the first K, to vertex y of the second K, receives label v? +v +m,. The
result is clearly vertex-magic, with magic constant h + §(3v* + 2v% + v).

To label 2K, we distinguish two subcases. If v = 4m + 1, consider the
two sequences
S1 = 2mv,0,2v,...,(2m — 2)v, (2m + 3)v,(2m + 5)v,..., (4m + 1)v,
Sy = (2m+2)v,v,3v,...,2m + 1)v, 2m +4)v, (2m + 6)v,...,dmo.
As, (v) and Ag,(v) can each be used to label K. Each has magic constant
(2m + 1)(4m + 1)? and between them their sets of labels make up all the

integers from 1 to 2(“}'). If these labelings are applied to two disjoint
copies of K,, they make up a VMTL of 2K, as required.

In the same way, if v = 4m + 3, the sequences

ST = 2m,0,2,...,.2m —2,2m+2,2m+5,2m+7,...,4m + 3,
Sy = 2m+4,1,3,....2m+3,2m+6,2m +8,...,4m + 2
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can be used to label 2K,.

If n = 0(mod 4), say n = dm, we treat Ky,, as Ky,,_3 U K3 with edges
joining the two vertex-sets. The copy of Ky,,,_3 is labeled using Ag(4m —3),
where

S =4m,0,8m — 3,12m — 6,16m —9,...,(8m — 3) + (m — 3)(4dm — 3),
8m+ (m+ 1)(4m —3),8m + (m + 2)(4dm — 3),
o, 8m+ (2m — 1)(dm — 3),

vielding constant vertex weight (2m + 1)(8m? — 6m — 3). The vertices of
K3 receive labels 4m — 2,4m — 1,4m, and the edges receive 8m — 2 + (m —
2)(4m — 3),8m — 1 + (m — 2)(dm — 3),8m + (m — 2)(4m — 3), in such a
way as to give each of the three vertices weight 8m? — 2m + 9. Finally, a
magic rectangle R of size 3 x (4m — 3) is chosen, and the cross-edge joining
vertex 1 of K3 to vertex j of Ky, _3 is labeled 8m + (m — 2)(4m — 3) + ;.
The magic rectangle has row and column sums (4m — 3)(6m — 4) and
3(6m — 4), so the sum on each vertex of Ky4,,_3 of the labels on the cross-
edges is 3[(6m — 4) + 8m + (m — 2)(4m — 3)], and for the vertices of K3
it is (4m — 3)[(6m — 4) + 8m + (m — 2)(4m — 3)]. Therefore the combined
labeling gives constant vertex-weight 16m® 4+ 8m? — 3m + 3. Every integer
from 1 to 2m(4m + 1) is used precisely once, so the result is a vertex-magic
total labeling.
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Abstract

A graph G is a least common multiple of two graphs H, and H»
if GG is a smallest graph, in terms of number of edges, such that there
exists a decomposition of G into edge disjoint copies of H; and there
exists a decomposition of (7 into edge disjoint copies of Hz. In this
paper we construct a least common multiple of the two cubes Q, and

Qs for any two positive integers a and b.

Graphs in this paper are assumed to be simple and to have no isolated
vertices. We denote the vector space Z§ over the field Zy by V,,. Let ek
denote the vector with kth component 1 and other components 0. The

n-cube @, 1s the graph with vertex set V,, and edge set {{v,v+ex}:v €
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Vi, 1 < k < n}. It is easily seen that @, is n-regular, has 2" vertices, and
has n2"~1 edges.

A graph H issaid to divide a graph G if there exists a set of subgraphs of
(7, each 1somorphic to H, whose edge sets partition the edge set of G. Such
a set of subgraphs is called an H-decomposition of (G. A spanning subgraph
of a graph (G in which each component is isomorphic to a given graph H
is called an H-factor. Given graphs H; and Hy, a common multiple of H,
and H, 1s a nontrivial graph G such that H, divides G and H, divides G.
A graph G is a least common multiple of Hy and H, if G is a common
multiple of Hy and H, and no other common multiple has fewer edges.

Several authors have investigated the problem of finding least common
multiples of pairs of graphs. The problem was introduced by Chartrand et
al in [1] where they showed that every pair of nonempty graphs has a least
common multiple. The problem has been studied for several pairs of graphs
including cycles and stars [1, 8], paths and complete graphs [7] and pairs
of cycles [6]. Pairs of graphs having a unique least common multiple were
investigated in [3] and least common multiples of digraphs were considered
in [2]. In this paper we make use of a result of Edmonds and Fulkerson [4]
on independent subsets in matroids to construct a least common multiple

of any two cubes. The following is the vector space version of their result.

Theorem 1. A subset E of a vector space V' can be covered by a family of
linearly independent subsets I;,1 = 1,...,k, of prescribed sizes n; < rank E

of and only f, for every A C E,

|A] < Z min{n;, rank A}.

If W is a subset of V,,, we denote the complete graph with vertices
labeled with elements of W by K(W). If W and X are subsets of V,, with
0 ¢ X, we define G(W, X) to be the subgraph of K(V;) with edge set
{{w,w+ =z} :w € W,z € X}. The following two results allow us to make

use of the theorem of Edmonds and Fulkerson [4] to construct least common
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multiples of cubes. The first is the & = 2 case of Lemma 1 in [5].

Theorem 2. If X is a linearly independent subset of V,, with d elements,
then G(V,, X) is a Qq-factor of K(V},).

The second result that we use, the k = 2, j = n case of Lemma 3 in [5],

is proved using the theorem of Edmonds and Fulkerson [4].

Lemma 1. Suppose that dy,ds, ... ,d; are integers with 1 < d; < n for
all © and Z::Id,’ = 2" — 1. Then the nonzero elements of V,, can be
partitioned into linearly independent sets X1, Xo, ..., Xy such that | X;| = d;
forl<i=i.

We are now ready to construct least common multiples of cubes.

Theorem 3. Let a and b be positive integers with a < b. Then there exists
a graph G with lem(a,b)2°~! edges that is a least common multiple of Q,
and Q.

Proof. First note that if G has m edges and is a common multiple of @), and
Qv, where a and b are positive integers with a < b, then m > lem(a, b)2°~1.
To see this, observe that if @ is a subgraph of G then G has at least 2°
vertices and that the degree of each vertex of G is divisible by lem(a,b).
If follows that G has at least 2%lcm(a,b)/2 =lem(a, b)2°~! edges. Hence,
a common multiple of @, and @, with lem(a,b)2°~! edges is necessarily
a least common multiple. We now construct such a graph for all positive
integers a and b.

We can assume a < b, for if @ = b then we let G be Q. Thus, lem(a, b) <
ab < b(b—1) < 2° — 1. Let lem(a,b) = bt. By Lemma 1 with n = b, d; =
dy = ...=d; = b, and the remaining d;s chosen < b so that } d; = L
we can find t pairwise disjoint linearly independent subsets X1, X5, ..., X}
of V, with |X;| =0b,1< i< ¢.

Let G = UE:I G(Vy, Xi). For each i, G(V,, X;) is a Qp-factor of K(V})
by Theorem 2, so @ divides (. Notice that G is regular with degree (b,
and so has 2°tb/2 = lem(a, b)2°~! edges.
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Let E = U:zl Xi. We will use Theorem 1 to show that £ can be
partitioned into s linearly independent sets, each with a elements, where

lem(a, b) = as. It suffices to show that if A C E| then

A

< Zmin{a,rank A}.
f=1

If rank A > a, then this says |A| < sa = bt, which is clear since |E| = bt.
Thus we can assume rank A < a. Let A; = AN X;,i=1,...,t. Since X;
is linearly independent, |A;| <rank A, i =1,...,t. Thus

t s
|A| = Z |A;] <t-rank A <s-rank A = Zmin{a, rank A}.
=1

i=1
Now let E be partitioned into s linearly independent sets Y1, Ys, ..., Y,
each with a elements. Then for each i, G(V},Y;) is a Qu-factor of K(V})
by Theorem 2. Thus Q, divides |J;_, G(V4,Y;). But this graph is also G,
since both |Ji_, G(V4, X;) and |Ji_, G(V4, Y;) consist of all edges of K (V)
of the form {v,v + u} where v € V, and u € E. 0O

We note that the sets G'(V;, X;) and G(V, Y;) used in the proof of The-
orem 3 are @Qp-factors and @,-factors, respectively. Thus we have proven
that the least common multiples of @), and @ constructed in Theorem 3

can be decomposed into @,-factors and into @;-factors.
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