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1. Introduction. Planar functions were introduced by Dembowski and 
Ostrom in 1968. Prior to 1997 the only examples of planar functions were 
Dembowski-Ostrom polynomials. In that year Coulter and Matthews an­
nounced the discovery of a planar monomial which was not a Dembowski­
Ostrom polynomial. At present these are the only known types of planar 
polynomials. 

Planar functions define affine planes in the Lenz-Barlotti Class 11.1 or 
higher. Since Dembowski-Ostrom polynomials have distributive multiplica­
tion, Dembowski-Ostrom planar polynomials define translation planes. We 
show that the converse is also true; if U(f, q) is a translation plane defined 
by a planar polynomial f , then J is a Dembowski-Ostrom polynomial. This 
answers a question in [l] . Multiplication is also commutative. Therefore if 
J is a Dembowski-Ostrom polynomial, U(f , q) is in Lenz-Barlotti Class V.1. 
We show that there are no affine planes described by planar polynomials 
between LB Il.l and LB V.l. Thus the Coulter-Matthews polynomials are 
in LB IL 1. We give examples of Dembowski-Ostrom polynomials which de­
scribe non-Desarguesian and Desarguesian planes, answering another ques­
tion raised in [l] . 

We then consider planar monomials. When f( x) = xn we show that 
U(f , q) is a Desarguesian plane if and only if n = 2. The Coulter-Matthews 
polynomials are monomials of the form x <3"'+ 1)/2 . This result cannot be 
generalized to other primes, i.e., the monomial x<P

0

+1)/2 is not planar if 
p i= 3, 

Since the difference function of a planar polynomial is a permutation 
polynomial , number t heoretic results for permutat ion polynomials have 
been used to discover necessary condit ions for a polynomial to be planar. 
In 1987 Johnson [6] proved that xn is not planar over GF(p) for n i= 2. 
Johnson 's result can equivalently be stated: for 1 ~ n ~ p - 1, n i= 2, the 
monomial xn is not planar over GF(p). We extend this result to GF(pe) 
be showing that if n i= 2 then a necessary condition for n to be plana r is 
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that n > p. 

Section 1: Background 

1.1 Planar Functions Let K = (GF(q) , +) , where q = pe with pan 
odd prime and e 2': 1, and let f( x) be a function from K into K . Define a 
binary operation on K by 

x • m = f (x + m) - f (x) - f (m). 

Note that 

x • m = m • x. 

An incidence structure I= I (K ; J) is defined as follows: 
points : elements of K x K 
lines: i. For each pair m , b of elements of K the set { ( a, a • m + b) lat:K 

ii . For each element et:K the set {(c,a) lat:K}. 

The first type of line is represented by the equation 

y = x • m + b, 

and the second by the equation 

X = C 

Definition 1.1 Let K = (GF(q), + ). A fun ction f : K ➔ K is called 
a planar fun ction if for every non-zero at:K, the function J(J, a) : x H 

f(x + a) - f( x) is a bijec tion . 

Note that without loss of generality, we can let f (O) = 0. For if f is 
planar and if f (0) = b, b-/ 0, then define a new function g as 

g(x) = f (x) - b 

For a-/ 0, at:K, we have 

g(x + a) - g(x) = f((x + a) - b - f( x) + b 
= f (x + a) - f (x) 

This implies that g(x) is planar and g(0) = 0. 
The important relat ionship between planar functions and affine planes 

is given in the following theorem. 
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Theorem 1.1 . A function f : K -+ K, where K = (GF(q), +), is a 
planar function if and only if I ( K; !) is an affine plane. 

Proof. See Dembowski and Ostrom [3}, Lemma 12, pg 252. 
We denote this affine plane by U(f; q). The lines y = x • m + b for a 

given mf.K form a parallel class with slope (m) in U(J ; q). The lines x = c 
form a parallel class in both the Desarguesian plane and in U(f ; q) 

If f is a planar function over K = (GF(q), +) then q is odd (see (3], 
Lemma 9). 

The study of planar functions is closely related to the study of permuta­
tion polynomials . In exploring this relationship, we begin with a definition. 

Definition 1.2. A polynomial g£.GF(q)[x] is a permutation polynomial 
over GF(q) if it induces a permutation of GF(q). 

Let K = (GF(q), +) and f be a function from K -+ K . For each 
af.GF(q) , a-:/- 0, we define the difference operator 8(/, a)(x) = f(x + a) -
f(x). Then by Definition 1.1, if 8(1, a) is a permutation polynomial f is a 
planar polynomial. 

Any polynomial f £.GF(q)[x] may be reduced mod xq - x to yield a 
polynomial of degree S q - 1 which induces on GF(q) the same function 
as f. We call this the reduced form off. (See Lemma 7.2 of Lid! and 
Niederreiter (7].) Then a planar polynomial over GF(q) can be written as 
q-1 

L aixi with certain restriction on the a/s. For example, by Definition 1.1, 
i=O 

a quadratic polynomial f (x) = a2x2 + a1 x + ao, a2 -:/- 0, is planar since 
8(!, m)(x) = 2a2 xm + (a2m 2 + a 1 m) is a permutation polynomial for all 
a1,a2€K. 

Classification of planar functions over fields of prime order was settled 
in 1989 and 1990 when three papers (Gluck (4], Hiramine (5], R6nyai and 
Szonyi (9]) appeared . They showed that every planar polynomial over a 
prime field GF(p) must reduce to a quadratic polynomial. If q = pe with 
e > 1, it had been conjectured that every planar polynomial with j(O) = 0 

e -1 

has the form L aij xP'+pi with %€GF(q). Coulter and Matthews (1] 
i ,j=O 

proved that this conjecture is untrue with their discovery of the planar 
monomial xC3 a +1)/ 2 . 

One question that has been investigated is: 
How can a planar function be transformed or combined with other func­

tions and still maintain its planarity? 
Coulter and Matthews discussed this question in the fini te case (see 

Theorem 1.3 and Corollary 1.4 below) . For the infinite case see Polster(8] . 
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Definition 1.3. If K = (GF(q), + ) then an additive polynomial (in re­
duced form) is a polynomial of the f orm 

e-1 

L (x) = L aixP; , aitGF(q) , q = pe. 
i= O 

e- 1 

Theorem 1.2 Let L t GF(q )[x] be defin ed by L (x) = L aixP' . The poly-
i=O 

nomial L is a permutation polynomial over GF(q ) if L has no roots in 
GF(q ) other than zero . 

Proof. See Theorem 7.9 of L idl and Niederreiter /7}. 

Theorem 1.3 Let f tGF(q)[x] and let L t GF(q)[x] be an additive polyno­
mial. The following statements are equivalent: 

1. The polynomial f(L) is a planar polynomial. 
2. The polynomial L(f) is a planar polynomial. 
3. The polynomial f is a planar and L is a permutation polynomial. 

Proof. See Theorem 2.3 of Coulter and Matthews /1}. 

Corollary 1.4. If L tGF(q)[x] is an invertible linear transformation over 
GF(q)[x] and f tGF(q)[x], f a planar polynomial, then L(f ) and f (L) are 
planar. 

Proof. The polynomial L is an additive permutation polynomial. By The­
orem 1.3, L(f ) and f (L) are planar. 

Planarity is a lso preserved under a translation x ...+ x + a. For example, 
if f (x) is a planar polynomial then aj(>..x + µ) + /3, a , >.. f:. 0 is planar. To 
see this let h (x) = >..x + µ. Then his a permutation polynomial and thus to 
each uGF(q) there corresponds a unique ytGF(q) such that >..x + µ = y . 
Let 

g(y) = af(y) + /3. 

Then 

o(g, m)(y) = (af(y + m) + /3) - (af(y) + /3) = a(/(y + m) - f(y)) 

which is a permutation polynomial since f is planar. 
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1.2 Dembowski-Ostrom Polynomials 
In their 1968 paper Dembowski and Ostrom [3) described a class of poly­

nomials which sometimes give rise to planar functions. These polynomials 
are called Dembowski-Ostrom polynomials and are defi ned in the following 
manner. 

Definition 1.4. The polynomial f (x)t:GF(q) [x], q = pe, is a 
Dembowski-Ostrom polynomial if the reduced form off has the form 

e- 1 

f (x) = L aij xP'+pi. 
i ,j=O 

Let f be a Dembowski-Ostrom polynomial (in reduced form) whose 
coeffi cients a;1 satisfy t he condition 

e -1 
~ i j j i 
~ ai1(xP yP + xP yP) = 0 if and only if x = 0 or y = 0. 

i,j=O 

It follows that f is planar. In other words x • y has no zero divisors , where 
x • y = f (x + y) - f( x) - f (y). For example if 

then 

i ; i j 

x • y = J( x + m) - J( x) - j (m) = a;1(xP yP + xP yP = O 

if and only if x = 0 or y = 0. 
The following theorem characterizes Dembowski-Ostrom polynomials as 

those reduced polynomials whose difference polynomials are all additive. 

Theorem 1.5. Let J t:GF(q)[x]with deg(!) < g. The following statements 
are equivalent: 

1. The polynomial f = D + L + c, where D is a Dembowski-Ostrom 
polynomial, L is an additive polynomial and ct:GF(q) is a constant. 

2. For each at:GF*(q) , o(f,a) = La+ Ca where La is an additive poly­
nomial and Cat:GF(q) is a constant (both depending on a) . 

Proof. See Theorem 3.2 of Coulter and Matthews [1}. 
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Section 2: Planar Functions and Affine Planes 

2.1 Planes of Order n Having a Group of Order n 2 

In Section 1 we saw that a function f : K ➔ K, K = GF(q), is 
planar if and only if the incidence structure I(K ; f) is an affine plane. We 
denoted this affine plane determined by f as U (j, q). Lines were defined 
by the equations y = x • m + b and x = c where x • m = m • x = 
f (x + m) - f (x) - f (m). 

The idea of a planar function grew out of the study of a projective 
plane P of order n which has a group r of order n 2 satisfying the following 
conditions: 

1. The plane P is ( C, l)-transitive for some fl ag ( C, l ) and r contains the 
group II of all ( C, [)-elations as a normal subgroup . 

2. The group r permutes the points (and lines) of P in three orbits. 

3. The group r contains a subgroup <I> with r = <I> x II. 

The incidence structure I(K ; j) possesses a collineation group of order 
q2 as given below. 

Theorem 2.1. Let K = (GF(q), +), where q = pe with pan odd prime 
and e 2: l. Let f(x) be a fun ction from K to K , and let I = I(K ; j) be 
the incidence structure defined above. For each pair of elements in K the 
mapping </>u,v : J ➔ I defined by 

<Pu ,v: (x,y) ➔ (x+u ,y-x•u-f(u)+v) 

is a collineation of I . Furthermore, the set C = { </>u ,v lu, v1:K} is an abelian 
collineation group of I of order q2 , sharply transitive on the points of I. 

Proof. See Lemma 10, Theorem 5, and Corollary 2 of Dembowski-Ostrom 
/3). 

Let U (j ; q) be an affine plane defined by planar function f , and let 
B be its extension to a projective plane. Theorem 2.1 showed that for 
u, vtGF(q), the mappings 

<Pu,v : (x , y) H (x + u, y - X • u - f (u) + v) 

form an abelian collineation group of order n 2 , transitive on the affine 
points. 

A line of the form y = x • m + b is mapped by </>u,v to the line y = 
x • (m - u) + {f(m - u) - f(m) + b + v }. The line x = c is mapped to 
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x = c + u. The slope point (m) is mapped to (m - u) and the point (0, 0) 
is mapped to (u , - f (u) + v). 

The collineation group r = { <Pu ,v iu, veG F( q)} has 3 point orbits: 
{(oo) } , l= - {(oo) }, and the affine points. 

Let TI = { ¢0 ,v JveGF(q)} where <Po ,v : (x, y) -+ (x, y + v), (0, 0) -+ (0 , v) . 
The set TI is a subgroup of r consisting of ((oo), l00 ) elations. These elations 
keep every line x = c fixed and are transitive on x = 0. Thus the group TI 
is a transitive group of ((oo) , l00 )-elations. The set <I>= {¢u,o iueGF(q)} , 
where 

<Pu,o: (x,y) r-t (x + u, y - x • u - f (u)), 

is also a subgroup of r . The line y = x • m +bis mapped by <Pu ,o to 

y = x • (m - u) + {f (m - u) - f (m) + b} 

and the line x = c is mapped to the line x = c + u . Thus the group <I> 
is sharply transitive on the set of lines x = c. It follows that r = <I> x TI . 
Since P contains a transitive group of ((oo), l00 )-elations, the plane P is 
coordinatized by a Cartesian group, i.e., the plane Pis in the Lenz Barlott i 
Class II or higher. The projective extension of P of U(f ; q) also satisfies 
conditions 1-3 listed above. 

Let f( x) be a planar function over GF(q), let U(f ; q) be the affine 
plane determined by f , and let P be the projective extension of U(f ; q). 
The discussion at the beginning of this section showed that the plane P 
is ((oo), l00 )-transitive. Consequently the plane U(f ; q) was in at least LB 
Class II.I or higher . If the affine plane is (P, [)-transitive for an additional 
pair we have the following resul t. 

Theorem 2.2 Let U(f ; q) be an affine plane determined by a planar fun c­
tion. If U(f ; q) is (P, l)-transitive for a pair (P, l) in addition to ((oo), l00 ) 

then U (f; q) is a semifield plane. 

Proof. To prove the proposition we n eed to show that U(f; q) is not in the 
Lenz Barlotti Class LB Il. 2. This is a sufficient condition since f or fin ite 
fields the classes LB Il. 3 and LB III are empty. If P is a translation plane 
then it is a semi field plane ( recall that x • m = m • x). So suppose U (f ; q), 
the affine plane determined by a planar function f , is a finit e affine plane of 
Lenz-Barlotti Class LB Il. 2. The projective extension of affine planes in LB 
Il. 2 contain 2 pairs of (P, [)-transitivities : ((oo) , [00 )-transitive and (B , m)­
transitive where Bd00 , B =/- (oo), and [00 nm = (oo). Since the co llincations 
in <I> are transitive on the lines through ( oo) and on l00 - { ( oo)} , without 
loss of generality we can assume m is the line x = 0 and B = (O) . But then 
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the mappings '-Pu,o, which map (0) to ( -u) and the line x = 0 to x = u , 
imply that U(f ; q) is in LB IJ. 3 which is empty. 

Note that the planes of Lenz-Barlotti class LB II.3 can be described in 
the following way: 

In the plane there exists a point R and a line r through R. Furthermore, 
there is a bijection 0 between the points on r and the lines through R with 
B(R) = r such that the plane is (P, B(P)) transitive for all Pff . 

In our case R = ( oo), r = l00 and 0 is the mapping given by: 

0((00)) is l00 and 0((-u)) is the line x = u. 

This theorem shows that there are no affine planes described by planar 
polynomials between LB II.l and LB V.l. 

2.2 Isomorphic Planes 
Coulter and Matthews [1] showed that with certain restrictions on a poly­
nomial L, a planar polynomial f could be combined in various ways with 
L to yield a plane isomorphic to U (J; q). The proofs of the following two 
theorems are adaptations of their arguments (see Theorems 5.1 and 5.2 of 
Coulter and Matthews [l]). 

Theorem 2.3 If f is a planar polynomial and L is an additive polynomial, 
both defined over GF(q), then U(f; q) ~ U(f + L; q). 

Proof. We need to show that there exists a bijection ¢> of the points of 
U(J ; q) onto the points of U(f + L; q) mapping the lines of U(f; q) onto the 
lines of U(J + L; q) and preserving incidence. Let¢> : GF(q) x GF(q) --+ 
GF(q) x GF(q) be the bijection defined by ¢> : (x , y)--+ (x , y) . If (x, y) lies 
on the line 

y = x • m + b = f( x + m) - f( x ) - f(m) + b, 

then 

y = f( x + m) + L(x) + L(m) - J(x) - L(x) - f(m) - L(m) + b. 

Since L is additive we have L(x) + L(m) = L(x + m). It follows that 
(x,y)q> = (x,y) lies on the line 

y = (J + L)(x + m) - (J + L)(x) - (J + L)(m) + b. 

Theorem 2.4 If f is a planar polynomial and L is an additive permu­
tation polynomial, both defined over GF(q) then U(f; q) ~ U(f(L); q) ~ 
U(L(J) ; q). 
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Proof. First consider the bijection from U(J; q) to U(J(L); q) defined by 
(x,y)¢ = (L- 1 (x),y). If (x,y) lies on 

y - f (x + m) - f (x) - f (m) + b 
f (LL- 1(x + m) - f (LL - 1 (x)) - f (LL- 1 (m)) + b 
(J(L))(L- 1 (x) + L- 1 (m)) - (J(L))(L - 1 (x)) - (J (L))(L- 1 (m)) + b, 

then the point (x,y)¢ = (L- 1 (x),y) lies on 

y = (J(L))(x + L - 1 (m)) - (J(L))(x) - (J(L))(L - 1 (m)) + b. 

The image of x = c is x = L- 1 (c). Consequently, U(f ; q) ~ U(J(L) ; q) . 
Now consider the bijection 'If; defined by (x , y) 'lf; = (x,L(y)) . This gives 

a collineation mapping the line 

y = J( x + m) - f (x) - J(m) + b 

to the line 

y = (L(J))(x + m) - (L(J))(x) - (L(f))(m) + L(b). 

This follows from 

L(y) = L(J(x + m) - J (x) - f(m) + b) 
= L(J(x + m)) - L(J(x)) - L(j(m)) + L(b) 

by the additivity of L . Thus, if (x , y) is on the line 

y = f( x + m) - J(x) - J(m) + b, 

then (x , y) 'ljJ = (x, L(y)) is on the line 

y = (L (f ))(x + m) - (L(J))(x) - (L(J))(m) + L(b) . 

Note that by Theorem 1.3 , if f is a planar polynomial over GF(q) and L 
is a permutation polynomial over GF(q) then L(J) is a planar polynomial 
over GF(q). Thus , the planarity property is preserved . But Theorem 
2.4 gives us the additional result that the planes they define are actually 
isomorphic. The following application of Theorem 2.4 is used in the proof 
of the Corollary 5.10 . 

Corollary 2.5 Let L = xP" be an additive permutation polynomial. If 
J (x) = xn is a planar polynomial then the planes defin ed by f (x) = xn and 
J(xP") = (xP• )n = (xn)P" are isomorphic. 
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Section 3: Multiplicative Properties 

3.1 Properties of the • and the o Multiplication 
Definition 1.1 says that a function f : I<---+ I< , where I<= (GF(q),+), 
is a plana r function if for every atK, a =I- 0, the function J(J, a) : x ---+ 
f (x + a) - J (x) is a bijection . An incidence structure I= I (K; J) was also 
defined with points being the elements of I< x I< and lines being of the form 
x = 0 or y = x • m + b where x • m = f( x + m) - f (x) - f (m) = m • x . 

By Theorem 1.1 , t he structure I (K ; J) is an affine plane if and only 
if J is a planar function . We denoted this affine plane by U(J ; q). Note 
t hat U(J ; q) is coordinatized by a Cartesian group whose elements are t he 
elements of K . 

In this section we examine the properties of the • mul t iplication over 
I<= (GF(q) , + ). Since wi thout loss of generality we may assume J (0) = 0 , 
there holds 

x • 0 = J (x + 0) - f (x) - J(0 ) = 0 = 0 • x. 

The • multiplication as defined does not have an identity for an a rbitrary 
f. We define a new multiplication, o , in the following way. 

Choose an element e =I- 0 in I<. For xEK, define 

x = x • e = e • x. 

For x , mEK , define 

i: o in = x • m = m • x = in o i:. 

Then , 

xoe = x • e = x 

and 

e OX = e • X = x. 
Thus e = e • e is the identity for the o multiplication . 

Lemma 3.1. If the • multiplication has an identity e, then the • mul­
tiplication and the o multiplication obtained using the same elem ent e are 
equal. 

Proof. Let e =I- 0 be the identity for the• multiplication. Then x = x• e = 
x and x o ih = x om. But x o ih was defined to be x • m so x om = x • m , 
thus the o multiplication is the same as the • multiplication. 
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Theorem 3 .2. If the • multip lication is distributive then the o multipli­
cation is distributive. 

Proof. Let m,xtGF (q) . Then 

mo x +mo ii = m • x + m • y = m • (x + y) =mo (x + y) . 

The o multiplication is distributive if and only if x + ii = x + y. But 

x +ii = x • e + y • e = (x + y ) • e = x + y. 

Theorem 3.3. If the • multiplication is associative then the o multipli­
cation is associative. 

Proof. Let a, b, C€.GF(q ). Then 

(a Ob) 0 C =(a • b) 0 C. 

Now since • is the operation of a loop on I( - {O} , there exists a unique d 
such that a • b = d • e = d. So 

(a o b) o c = do c = d . c. 

Similarly 
a o (b o c) = a o (b • c) = a oh= a • h . 

where h is the unique element of I( such that b• c = h • e . Hence (a ob)oc = 
a o (b o c) if and only if d • c = a • h where a • b = d • c and b • c = h • e . 

Since the • multiplication is commutative and is assumed here to be 
associative, then (a • b) • c =a • (b • c) implies that (d • e) • c =a • (h • e) is 
equivalent to (d • c) • e = (a • h) • e. By the planarity off then d • c =a • h 
and the o multiplication is thus associative. 

Theorem 3.4. Let f (x) be a planar function over K = (GF(q),+). The 
plane U (J; q) is a translation plane if and only if the • multiplication is 
distributive. 

Proof. See Corollary 4 of Dembowski and Ostrom /3). The plane U(J ; q) 
is a translation plane if and only if the Cartesian group satisfies the dis­
tribntive law: (u + v) • w = u • w + v • w. 

Remark: Since • multiplication is commutative, then if U(J ; q) is a 
translation plane, it is actually a semifield plane. 
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Dembowski-Ostrom polynomials have distributive multiplication 
(Dembowski-Ostrom [3], pg. 257). The following theorem shows that the 
converse is true: if U(f ; q) is a translation plane defined by a planar poly­
nomial f , then f is a Dembowski-Ostrom polynomial. 

Theorem 3.5 . Let f (x) be a planar function on K = (GF(q), +). If the 
• multiplication is distributive then U (f; q) is isomorphic to a plane defined 
by a Dembowski-Ostrom planar polynomial. 

Proof. For M.K, we have 

6(!, a)(x) f(x + a) - f(x) 
f(x + a) - f (x) - f(a) + f(a) 
x •a + f(a ). 

Let La(x) = x • a. If (x + y) • a = x •a+ y • a then La(x + y) = 
La(x) + La(y) . Thus L a is an additive polynomial. Then 6(!, a) = La+ Ca 
where f (a) = Ca is a fixed element of (K, •) dependent on a. By Theorem 
1.5 (Coulter and Matthews /1}, Theorem 3.2), f = D + L + c where D 
is a D embowski-Ostrom polynomial, L is an additive polynomial and cf.K 
is a constant. By Theorem 2.3 (Coulter and Matthews /1}, Theorem 5.1) 
if L is an additive polynomial and g is a planar polynomial both defined 
over GF(q) then U(g;q) =!' U(g + L;q). Since¢ : (x , y)-+ (x,y + c) is an 
isomorphism mapping the line y = x • m+b to the line y = x •m+ (b+c), the 
planes U(g; q) and U(g+c; q) are also isomorphic. So if the• multiplication 
is distributive then the plane determined by f = D + L + c is isomorphic to 
the plane determined by a Dembowski-Ostrom polynomial. 

All indications are that planar polynomials are even. Additive polyno­
e -1 

mials over GF(pe) are of the form L bjxP;. Thus , if f is even and • is 
j=O 

distributive then f = D + c where D and care as above. 
Recall that planar functions describe an affine plane which is in Lenz­

Barlotti class at least II.I, with the next Lenz-Barlotti class containing a 
plane described by a planar function being the class LB V.I (a semifield 
plane) .Thus either the plane contains no translation line or point (LB II.I) 
or it is at least a semifield plane (LB V.I). If f( x) is not a Dembowski­
Ostrom, the U(f; q) is in LB II.I. 

For planar monomials we have the following result . 

Theorem 3.6 Let f( x) be a planar fun ction over K = (GF(q), + ). If 
f (x) = xn, n < q and the • multiplication has an identity, then n = 2. 

64 



Proof. Assume e -/: 0 and x • e = x = e • x. Then 

x • e = (x + e)n - x n - en =~ ( 7 ) x n- iei . 

Now if x • e = x for all x then 

implies that ( 7 ) = O(mod p) except when i = n - l. But ( n ~ 1 ) = 

( ~ ) = n so ( 7 ) is not congruent to O(mod p) also when i = l. Thus 

x • e = x for all x implies that nxen- l + nxn- 1e = x for all x . Since 
n < q, x n-l -/: ex unless n = 2. Th en x • e = x implies n = 2. When 
n = 2, x • e = (x + e)2 

- x2 
- e2 = 2xe = x, which implies that e = ½· 

Theorem 3.7. Let f( x) be a planar functio n over K = (GF(q) , +) . If 
f (x) = x n and the • multiplication is associative, then n = 2. 

Proof. Now (K - {O} , • ) is a finit e quasigroup with binary operation • · 
If the • multiplication is also associative then (K - {O} , • ) is a sem igroup 
as well . Thus (K - {O} , • ) is a group and has an identity elem ent e such 
that x • e = x fo r all x. By Th eorem 3.6, n = 2. 

Dembowski and Ostrom [3) have shown that if / (x) = ax2 then the 
plane U(f ; q) is Desarguesian. An affine plane coordinatized by a Cartesian 
group in which mult iplication is commutative, distribut ive and associative 
is Desarguesian. Theorem 3.7 proves that if U(f ; q) is a Desarguesian plane 
defined by a planar monomial wi th f (x) = xn, then n = 2. 

3.2 Construction of Planar Polynomials Which Define Desargue­
s ian Planes There are planar polynomials other t han ax2 , where a is 
a constant, whi ch define a Desarguesian plane. Since the ternary ring co­
ordinatizing the Desarguesian plane has the distribu t ive proper ty, these 
polynomials must be Dembowski-Ostrom polynomials by T heorem 3.5. 

The following example shows how to construct planar polynomials whose 
associated plane is Desarguesian. 

x2 
Let f (x) = 2 . Then f (x) is planar over GF (q) and defines a Desargue-

sian plane ([3) p . 255) . Defin e g(x) = L (f (L- 1 (x))) where Lis an invert ible 
linear transform ation. By Theorem 1.3 t he function g(x) is planar. 
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Define a * multiplication by 

Then 

g(x + m) - g(x) - g(m) 
L(J(L- 1(x + m))) - L(J(L- 1 (x))) - L(J(L- 1 (m))) 

L[! (L - 1 (x) + L - 1 (m)) 2 - !(L- 1 (x)) 2 - !(L- 1 (m))2] 
2 2 2 

L [L - 1 (x)L- 1(m)] . 

L[L- 1(x * m)L - 1 (u)] 
L[L- 1 (L (L - 1 (x)L - 1 (m))) L - 1 (u)] 
L[L - 1 (x)L- 1 (m) L - l (u)] 
L[L-1 (x )(L - 1 (m)L- 1 (u))] 
L[L- 1(x)L- 1 L(L- 1 (m)L- 1 (u))] 
L[L- 1(x) L - 1 (m * u)] 
x*(m*u). 

Hence the * multiplication is associative . 
If e is t he identity for the • multiplication defined by the function f 

x = x • e = J (x + e) - J (x) - J (e) 

then X* L(e) = x: 

x * L(e) L[f(L-1 (x + L(e)))] - L[f(L- 1(x))] - L[f(L-1 (L(e)))] 
= L[f (L- 1 (x) + e) - J (L - 1 (x)) - f (e) ] 

L[L - 1 (x) • e] 
L [L - 1 (x) ] 
x. 

This illustrates the fact t hat although the only planar monomial which 
defines a Desarguesian plane is of the form f (x) = ax2 for some constant a, 
there are many Dembowski-Ostrom polynomials which define a Desargue­
sian plane. Construction of these polynomials can be obtained by using an 
invertible linear transformation over GF(pr) and defining the Dembowski-

x2 
Ostrom planar polynomial to be g(x) = L(J(L- 1 (x)) ) where f (x) = 2 . 

This raises the following question: 
Given planar Dembowski-Ostrom polynomial g which defines a Desar­

guesia n plane F does there exist a Ji n ar transformation that maps g back 
to x 2? 

This question has been answered by Ostrom. 
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Theorem 3.8. (Ostrom, private communication) If g is a planar poly­
nomial which defines a Desarguesian affine plane over GF(pr) then there 
exists a linear transformation which maps g into the polynomial x 2 that 
also defines a D esarguesian plane over G F(pr). 

Section 4. Planar Monomials 

4.1 General Results 
In this section we examine the algebraic properties of planar monomials 
f( x) = xn over GF(q). The first theorem shows that f( x) = xn can be 
replaced by a monomial of degree less than q which induces on GF(q) the 
same function as f (x). 

Lemma 4.1. Let f (x) = xn be a planar monomial over GF(q) with q 
odd. If n > q - l then f (x) = xn induces on GF(q) the same fun ction as 
g(x) = X 8 for some s withs < n. 

Proof. Assume n:?: q and let n = q + t. Then xn = xq+t = xxt = xt+l 
and t + 1 = n - q + l < n. 

Note t hat n > l ; for if n = l then J (x + a) - f( x) = a for all x which 
contradicts the planarity of J. Furthermore, it follows by induction from 
Lemma 4.1 that if J( x) = xn with n > q - l , then J( x) = xn induces on 
GF(q) the same function as a monomial h(x) = xm with m < q. 

Lemma 4.2 If J is a planar fun ction defined over K = (GF(q), +) , then 
J cannot be odd. 

Proof. If J is odd then f (-x) = - J( x). But then 

x • (-x) = J (x - x) - J (x) - J (-x) = J(0 ) - J (x) + J (x) = 0 

fo r all x . This contradicts the fa ct that there are no zero divisors in a 
Cartesian group. 

Theorem 4.3. The polynomial J (x) = xn is planar over GF(q) if and 
only if (x + l)n - xn is a permutation polynomial over GF(q). If f( x) = xn 
is a planar polynomial over GF(q) then (n,q - 1) = 2. 

Proof. The polynomial J (x) = xn is planar over GF(q) if and only if 
o(J, a)(x) = (x + a) n - x n is a permutation polynomial for all a E GF*(q) . 
(See Definitions 1.1 and 1.2.) But o(J, a)(x) =an((!+ 1r- (!)n) , which 

67 



is a permutation polynomial if and only if (x + l)n - xn is a permuta­
tion polynomial. If xn is a planar polynomial over GF(q) it is also planar 
polynomial over G F(p). Since all planar monomials over the prime fi eld 
are of the form ax2

, the condition n = 2(mod p - l) must hold. As­
sume now that xn is planar over GF(q). Then (x + l )n - x 11 = 0 for a 
unique x E GF(q) if and only if ((x + l) x - 1 )n = 1 fo r a unique x. Thus, 
(n,q- l) = l{yly11 = l} I :S 2 and must be 2, since by Lemma 4- 2, the power 
n is even. 

Note that Theorem 4.3 implies that if n -f 2 and f( x) = x 11 is planar 
over GF(q) then n,( (q - 1). 

In general no necessary and sufficient conditions for f (x) = x11 to be 
planar over GF(q) are known. If q is a prime then x 11 is planar if and only 
if n = 2. The condition n = 2(mod p - 1) is sufficient but not necessary 
while the conditions of Theorem 4.3 are not sufficient. 

4.2 Dembowski-Ostrom planar monomials, xP"'+1 

Only two types of planar monomials over GF(q) are known. The first are 
monomials of the form f(x) = xPQ + 1 . Originally (see Dembowski-Ostrom 
[3]) it was thought that f was planar if and only if a = 0 or (a, e) = 1. 
Coulter and Matthews [1] proved the following. 

Theorem 4.4 Letf(x) = xPQ+ 1. Thepolynomialf isplanaroverGF(pe) 
if and only if a = 0 or -( e ) is odd. o ,e 

Proof. See Theorem 3.3 of Coulter and Matthews fl} for the case (o~e) is 

odd. If a= 0 then f (x) = x2 which is planar. 
Coulter and Matthews show that the condition of Theorem 4.4 is not 

equivalent to the condition (a, e) = 1 originally stated in Dembowski and 
Ostrom [3]. For example, x10 = x32 +1 is planar over G F(36

) since (2~6) is 
odd but (2, 6) -f 1. Another example showing that the two conditions are 
not equivalent is found in Section 4.4 

The next result shows that we can restrict the power a in f(x) = xPQ+i 

when determining planarity. As noted in Section 1.1 if f(x) = cx2 then 
8(!, a)(x) = f(x + a) - f(x) = c(x2 + 2ax + a 2

) - cx2 = 2acx + ca2 is a 
permutation polynomial. 

Therefore, if a= 0, then f (x) = xPa+i is planar. For a> 0 we have the 
following results which are adaptations of Coulter and Matthews' results 
for x(3Q+ 1)/2 (See Lemma 4.3 and Theorem 6.2 of Coulter and Matthews 
[1 ]. ) 

Theorem 4.5 Determination of the planarity of monomials of the form 
f(x) = xP"'+l, a -f 0, over GF(pe) can be restricted to the case where 
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1 :Sa< e. 
Before proving the theorem, we show the following. 

Lemma 4.6 Assume q = pe. For each a E N define a function fa : 
GF(q) -+ GF(q) by f 0(x) = xP

0

+1. If S is the sequence of functions 
{Jo , Ji ,·· ·} then S is periodic with period 2e. 

Proof. Let a = 2>.e + f3 with O :S f3 < 2e and>.> 0. Suppose x E GF(q). 
Then 

2)-. 

xP/3+1 xP(o-2A•l+l = (xPo-2-'"+ l)p = xPo+pn• = (xpn'-1) (xPo +l ) 

X(p'"'-l)(p'"'+l)Xpo+l = X(q"'-I)(q"'+I ) Xpo+I = xPo+I. 

Thus 

We can now prove Theorem 4.5. 

Proof of Theorem 4.5: Let n = p°' + 1. By the above Lemma we may 
assume that 1 :S a :S 2e. If a = 2e then xP"'+I = (xP' )P' x = xx = x2. 

So consider the case 1 :S a < 2e with a = e + /3, f3 < e. Then, for all 
XE GF*(q): 

xP"'+I = (xP•)(P11 +1)x-(p•-1) = xP"+1xp•-1 = xP'+p13 = (xp<•- 131 +1)p13 . 

This holds also for x = 0. Therefore the planes defined by xP"' +I and 
xP<•-/Jl+i are isomorphic and we may restrict ourselves to the range 1 :S 
a< e. 

4.3. Coulter-Matthews Planar Monomials, x<30+1 )/ 2 • 

A new class of planar monomials was described by Coulter and Matthews 
(1). This new class is related to Dickson polynomials of the first kind. 

For any positive integer k , the Dickson polynomial of the first kind 9k (x) 
over GF(q), is the polynomial 

(See Lidl and Niederrcitcr [8) .) Note that the substitution x = r, + ,,,-1 

gives the identity 
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Theorem 4.7 The Dickson polynomial 9k(x) is a permutation polynomial 
over GF(q) if and only if gcd(k , q2 - 1) = l. 

Proof. See Theorem 7.16 of Lidl and Niederreiter {7]. 

Theorem 4.8. Let q = 3e and a EN. The polynomial f( x) = x<30 +1) / 2 

is planar over GF(q) if and only if (a , e) = 1 and a is odd. 

Proof: See Theorem 4.1 of Coulter and Matthews {lj. 
Coulter and Matthews proved their theorem by showing that x (30 +1) / 2 

is planar over GF(3e) if and only if the Dickson polynomial of the first kind 
9 (3o- i );2 (x) is a permutation polynomial over GF(3e). 
Writing x = T/ + r,- 1 , then 

g (T/ + T/
- 1) _ T/ (3° -1 )/2 + T/- (3° -1) / 2 

(3° -1) / 2 - . 

A necessary and sufficient condition for g&30- 1) ; 2 (r, + r, - 1
) to be a per­

mutation polynomial is that ((3° - 1)/2, q - 1) = 1, which they show is 
equivalent to (a, 2e) = l. 

A related class of planar monomials is described in the following theo­
rem. 

Theorem 4.9. Let q = 3e and n = (3°' + q)/2 where a E N. The 
polynomial xn is planar over GF(q) if and only if (a, e) = 1 and a - e is 
odd. 

Proof. See Theorem 4 .2 Coulter and Matthews {lj. 

In considering candidates for a such that x(30 +1) / 2 is planar, we can 
again restrict ourselves to the case 1 ~ a < e. See Lemma 4.3 and Theorem 
6.2 of Coulter and Matthews [l]. 

A natural question is: Are there planar monomials over GF(pe) of the 
form x(P

0 +1)/2 for primes other than 3? The following result, which was 
known to Coulter and Matthews, shows that the answer is no. 

Theorem 4.10. The polynomials f(x) = x(P
0

+1)/2 is planar over GF(pe) 
if and only if p = 3 and (a, 2e) = l. 

Proof: If p = 3 and (a,2e) = 1 then x(P"'+l)/2 is planar over GF(3e) 
by Theorem 4 .8. Now suppose p > 3 and f(y) = yn . Then f is planar if 
and only if (y + a)n - yn is a permutation polynomial over GF(q) for all 
a E GF(q) . Let y = x - 2. If h(x) = 8(!, 4)(x - 2) then 
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h(x) ((x - 2) + 4)n - (x - 2)n 
(x + 2)n - (x - 2)". 

If h(x) is not a permutation polynomial, then f is not planar. We will 
show that h(x) is a Dickson polynomial of the first kind, i.e. h(x) = 
2g(PQ - l) / 2 (x), and that this is a permutation polynomial if and only if p = 3. 
If x = 'rJ + 1/- 1 then 

If n = P
0

2+
1 then 

h(x) 

Now h(x ) = 2g(Pa_ 1~; 2 (x) is a permutation polynomial over GF(q) if and 
only if ((p°' - 1)/2 , q - l ) = l. Since q2 = l (mod 4) (for all primes p > 2) 
this is equivalent to the condition that 2 = (p°' - 1, p2e - 1) = (p( 0

,
2e) - 1), 

which holds if and only if (o:, 2e) = 1 and p = 3. 

4.4 Planes Determined by Planar Monomials xPa+1 and x<3a+i)/ 2 

From Section 3 we have the result that if U(f , q) is a Desarguesian plane 
defined by a planar monomial with f (x) = xn, then n = 2. We now consider 
planes determined by planar monomials xP

0 

+1 and x( 30 + l )/2 . Every planar 
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polynomial over a prime fi eld GF(p) reduces to a quadratic polynomial. 
The only known planar polynomials over GF(pe) are f(x) = xP"+ 1, where 
a = 0 or -( e) is odd , and f( x ) = x(P"+ l) / 2 , where (a ,e) = l , a odd and a ,e 
p = 3. 

Theorem 4.11 Th e planes defin ed by planar monomials of the form 
xP"+l and x (3"+ 1)/2 over GF(p2 ) are Desarguesian . 

Proof: If a = 0, then xP" +1 = x2 whose associated plane is D esarguesian. 
If J(x) = x P" +l , a-/- 0 or f(x) = x(3" +l )/2 , a-/- 0, is a planar function 
then by Th eorem 4- 5 and Theorem 6.2 of Coulter and Matthews /2}, we 
can restrict ourselves to the case where 1 :S a < e . Thus e = 2 implies 
a = l. Then x(3" +l )/ 2 = x2 whose corresponding plane is Desarguesian . 
For xP"+ l , (1\) is not odd so the only planar monomial of the form xP"+ l 

over GF(p2
) is f (x) = x 2 . 

Note: Dembowski-Ostrom planar polynomials described a semifield and all 
semifields of order p2

, where p is a prime, are fields ( with corresponding 
planes that are Desarguesian). By Theorem 3.7 the only planar monomials 
that describe a Desarguesian plane are of the form ax2 . The Coulter­
Matthews condition for xP"+l to be planar over GF(pe), i.e. that (a~e ) 

is odd, differs from the previously held sufficient condition that a = 0 or 
(a , e) = 1. While a = 0 is a sufficient condition (J(x) = x2 in this case) 
(a, e) = 1 would imply xP+I is planar over GF(p2 ) but this contradicts the 
results of Theorem 3.7 which states that in this case n = 2. 

For GF(33 ) , the polynomial f(x) = x(3"+ 1)/2 in reduced form is planar 
if and only if 1 :S a < 3 , a odd , and (a, 3) = l. This implies that a must 
be l. Again, x(3"+I) / 2 = x 2 and the corresponding plane is Desarguesian. 

The Dembowski-Ostrom monomial , f( x ) = xP
0

+1 , 1 :Sa < 3 is planar 
over GF(p3

) if and only if (a~3) is odd. If a= 1, then f (x) = xP+l is planar 

over GF(p3 ) and if a= 2 then xP"+I is planar over GF(p3 ) . Note that xP+ 1 

and xP
2
+1 are planar monomials over GF(p3) that define non-Desarguesian 

planes . This answers a question raised by Coulter and Matthews [2, p .183] . 

Section 5: Exponent Bounds of Planar Polynomials. 

5.1 Background of the Problem 

By Definition 1.1 a quadratic polynomial is planar over GF(q). There­
fore in looking for other planar monomials of the form xr, we may as­
sume r > 2 . Note that f (x) = xr is a planar polynomial over the field 
GF(q) if and only if (x + d? - xr is a permutation polynomial over GF(q) 
for each d E GF*(q) . In Johnson [6] the author proves the polynomial 
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<p(x) = (x + lf - xr for 1 :::; r :Sp - 1 is a permutation over GF(p) , pan 
odd prime, if and only if r = 2. Since (x + df - xr = dr[ (~ + 1) - (~Y], 
the polynomial f (x) = xr is a planar polynomial over GF(q) if and only 
if (x + lf - xr is a permutation polynomial over GF(q). Johnson 's result 
showed that over GF(p) the only planar monomial is x2 . 

In other words, Johnson showed that if f (x) = xr, r :S p-1, r =/- 2, then 
f (x) is not a planar monomial. Corollary 5.2 is an extension of this result. 
It considers planar monomials over GF(q), q = pe, and shows that if r :Sp 
and r =/- 2, then f(x) = xr is not a planar monomial. 

Johnson 's proof uses the following result : 
Consider the permutation polynomial <p(x) over GF(pe). For each in­

teger k with (k,p) = 1 and 2 :::; k :::; pe - 2 the polynomial (<p(x))k must 
reduce to a polynomial of degree :::; pe - 2 when replacing xP• by x. 

He then chooses k to be 2n with n = l ~ j where 2 < r < p (with r even 
and r j(p - 1) being necessary conditions for xr to be a planar polynomial) 
and shows that (i.p(x)) 2n = {(x+ lf-xr}2n has only one term of degree p­
l. The binomial coeffi cients for this term are not congruent to O mod p since 
they involve numbers less than p. The (i.p(x)) 2n reduces to a polynomial of 
degree p - l and thus cannot be a permutation polynomial ( and hence xr 
cannot be a planar polynomial). 

In Hiramine (5] the author considers planar polynomials over GF(p) . 
Let d E GF(p) - {O}. If the function f a : GF(p) --+ GF(p) defined by 
f 0 (x) = f(x + d) - J (x) is bijective, then f is a planar function. He 
gives two condition for a function f to be planar. Using these conditions, 
Hiramine shows that over GF(p) the only planar functions are the quadratic 
polynomials . 

Hiramine's proof resembles Johnson 's proof for planar monomials in 
that he shows (J(x + d) - f(x)) 2n, where n = L ~ J and r is the degree 
of the polynomial J(x) with r =/- 2, has only one term of degree p - 1 
and the coefficients of this term are not congruent to zero modulo p. This 
contradicts his given conditions for the planarity of f. His proof differs 
from J ohnson 's in that he considers the sum L-xEGF(p)(f(x + d) - J (x))m 
in determining the unique term of degree p - l. 

In this section we show that if f (x) = xr is planar over GF(pe) with 
e 2:: 1, then either r = 2 or r > p. This generalizes Hiramine's and Johnson 's 
results in the case where e = l. A proof combining both techniques of 
Hiramine and Johnson was found by one of the authors. It is possible that 
it can be refined to determine completely which monomials are planar over 
G F(pe). In another direction, it may be refined to show that all planar 
polynomials over GF(pe) have degree 2 or degree > p. 

However, we give a different proof which is based on Hiramine 's result 
and applies to a larger class of polynomials. We define strongly planar poly­
nomials and show that such polynomials have degree 2 or degree r where r 
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is at least p. 

5.2 Strongly Planar Polynomials over GF(pe) 

Definition 5.1 A strongly planar polynomial is a planar polynomial over 
GF(pe) which fixes GF(p). 

Theorem 5.1 Let f (x) be a strongly planar polynomial over GF(pe). 
Then either deg f (x) = 2 or deg f(x) 2: p. 

Proof: If f is a planar polynomial over G F(pe) then f is planar over 
GF(p). Every planar polynomial over a prime field GF(p) must reduce to 
a quadratic polynomial (see Gluck [4}, Hiramine /5}, R6nyai and Szonyi 
/9}). Thus f (x) induces on GF(p) the same function as ax2 +bx+ c fo r 
some a, b, c E GF(p), a =/:- 0. Consider g(x) = J( x) - (ax 2 +bx+ c) as a 
polynomial over GF(pe). If g(x) is not the zero polynomial then g(x) has 
at least p roots, namely the elements of GF(p). Therefore deg g(x) 2: p 
so deg f( x) 2: p. If deg f (x) = p then deg g(x) = p and xP - x lg(x). 
Th erefore, g( x) = f( x) - (ax 2 - bx+ c) = a(xP - x) , a E GF(pe). Then 
f( x) = a(xP - x) + ax2 +bx + c. 

Corollary 5.2 If f (x) = xn is a planar polynomial over GF(pe) then 
either n = 2 or n > p. 

Proof: Assume n > 2 . Since f (x) = xn fixes GF(p) then by Theorem 
5. 1, n 2: p. If n = p, then f (x) = xP. By Coulter and Matthews /1}, 
f (x) = xP = (x 1 )P is planar if and only if h(x) = x is planar. Since 
h(x) = x is not planar, f (x) = xP is also not planar. Thus n > p. 
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