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Abstract 

A Fibonacci string of order n is a binary string of length n with no 
two consecutive ones. A Fibonacci string of order n which does not 
have a one in both t he first and last postition is called a Lucas string 
of order n . The Lucas cube An is the subgraph of the hypercube Qn 
induced by the set of Lucas strings. For positive integers i, n , with 
n > i 2'. 1, th e ith extended Lucas cube of order n, denoted by A~ , 
is a vert.ex induced subgraph of Qn, where V(A~) = \/~ is defined 
recursively by the relation : 

and the initial conditions Vi° = {O , I} , V,; = V(An) for n 2'. 2. We 
consider the number of colours required for a strong edge colouring 
of A~ and prove that for n 2'. 3, obs(A~) = n + 1 when i = 1 and 
i = 2, and obtain bounds on obs(A~) for n > i 2'. 3. 
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1 Introduction 

A proper edge colouring of a simple graph G is called strong if it is vertex 
disti nguishing. The observability of G , denoted by obs(G) , is the minimum 
number o f colours required for a strong edge colouring of G. The parameter 
obs( G) was introduced by Cerny et al. [2] and independently by Burris 
and Schelp [1], who denote it by x~ ( G). In this study, we consider the 
observability of an infinite family of subgraphs of the hypercube (or n ­

cube) Qn. 

A Fibonacci string of order n is a binary string of length n with no two 
consecutive ones. A Fibonacci string of order n which docs not have a one 
in both the first and last post ition is called a Lucas string of order n . 

Let. Vn , (\ denote respectively the set of Fibonacci strings and the set of 
Lucas strings of order n . Let t , w be two binary strings. We denote by t w 
the string obtained by concatenating t and w. More generally, if S is any 
set of binary strings, let tSw = { tsw : s E S}. Then for n 2'. 2 , the set Vn 
satisfies the recursive relation 

Vn = 0Vn-1 + lOVn-2, 

wi th initial conditions Vo= {0}, Vi = {0 , 1}. 

(1) 

It is easily seen that \/1 = {0} and V2 = {00 , 01 , 10} . Then for n 2'. 3, Vn is 
given by the recursive relation 

(2) 

The Fibonacci cube r n, proposed by Hsu [6] , and the Lucas cube An , pro­
posed by Munarini et al. [7], are the subgraphs of the hypercube Qn induced 
respective ly by the set of Fibonacci strings Vn and the set of Lucas strings 
Vn . Thus the Lucas cubes are subgraphs of the Fibonacci cubes . 

From relation (1) , it can be seen that IVnl satisfies 

(3) 

and hence the sequence I Vn I is a generalised Fibonacci sequence with initial 
terms !Vo l= 1 and IVi l = 2. Recollect the Fibonacci sequence {Fn} ~=O = 
0, 1, J , 2, 3, 5 . . . , so that IV.,I = .F'n+2, n 2'. 0. 

In a similar way, it follows from (2) that for n 2'. 3, IVnl satisfies the 
recurrence relation 

(4) 

and hence when n ~ 3 , IVnl also satisfies the Fibonacci recurrence re­
lation . Re lation (4) gives IV.3 1 = 4 and jV4 1 = 7 and hence the sequence 
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{IV,, I }~= l = 1, 3, 4, 7, . .. is a subsequence of the Lucas sequence { Ln }~=O = 
2, 1, 3 , 4 , 7, .. .. In fa.ct, we have IVnl = Ln , for n 2: 1. 

The Fibonacci cubes have been generalised by Wu [10] to give an infinite 
family of subcubes of the hypercube. The Lucas cubes can also be gen­
eralised in the following way. For positive integers i , n , with n > i 2: 1, 
the ith extended Lucas cube of order n, denoted by A~ , is a vertex induced 
subgraph of Qn , where V(A~) = V~ is defined recursively by the relation : 

(5) 

and the initial conditions V1° = {0, l} , v,? = Vn for n > 2. Thus it is easy 
to see that the vertices of A~ are (0 ,1)-strings of length n in which the last 
i posit ions are vertices of Q; and the first n - i positions are vertices of 
A n-i · From definition (5) , it follows immediately that for n > i 2: 1, 

J\. i J\. i- 1 }/ 
n = n-1 X '- 2 , (6) 

where A~ = A,. for n 2: 2 and 1/1° = {0, l}. The construction of A;,+1 from 
A~, for n = 1,2,3, is illustrated in Figure 1 below. 

0 1 10 01 

lJO Tro 
01 11 101 001 Oll 

A' 2 

Figure 1. 

By recursion from equation (6), we have 

A; Ai- j Q 
n = n-j X j, 
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for 2 ~ j :'.Si< n. Moreover , it is easy to see that A~- I ::::- Qn , for n 2: 1. 

In th is st udy, we prove that fo r n 2: 3, obs(A~.) = n + 1 when i = 1 and 
i = 2, and obtain bounds on obs(A~) for i 2: 3. An interest ing property 
of the parameter obs is that if H is a proper subgraph of a graph G, then 
obs(H) may be less than, equal to , or more than obs(G). The value of 
obs( Qn) fo r low values of n and its assymptotic behaviour are established 
in [4], but for large values of nit is not known whether obs(Qn) is a strictly 
increasing funct ion of n . It is therefore interesting to note (see [3]) that 
obs(fn) = obs(An) when n 2: 4, although An is a proper subgraph of r n 
in this range. Moreover, t he value of the observabi li ty of the extended 
Fibonacci cube r~ obtained in [8] implies that obs(A~) = obs(f~) , for 
i = 1, 2 and n 2: 4, a lthough A~ is a proper subgraph of r~ for these values 
of i and n. The value of obs(G) for some other special classes of graphs has 
been determined in [2] and [5] . Bounds on the value of obs( G) in general 
a re obtain ed in [l] . Structural properties of the Lucas cubes are discussed 
in [7] and of the extended Lucas cubes in [9]. 

2 Results 

Noting that for a ll n 2'. 2, the Lucas cube An contains a single vertex of 
maximum degree 6-(An) = n , our first lemma is a direct deduction from 
equation (7) . 

Lemma 2.1 A~ contains exactly 2; vertices of degree 6-(A~) = n when 
1 ~ i ~ n - 2; and when i = n - 1, all 2n vertices have degree n . □ 

We require the following results of Dedo et a l. [3] . 

Lemma 2.2 (i) obs(r n) = n , for n 2: 4; 

(ii) obs(A,.) = n, for n 2: 2. 

Theorem 2.3 For n 2: 2, obs(A;,+d = n + 2. 

Proof. It follows from Lemma 2. 1 that when n > 2, at least n + 2 colours 
arc required for a strong edge colouring of A~+I .-We shall prove that n + 2 
colours suffice. An example of a strong (n + 2)-edge colouring of A~+I for 
n = 2, 3, 4, 5 , 6 is shown in Figure Al, Figure A2 and Figure A3 in the 
Appendix . 
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A sume first that n ~ 8 . By ite rat ing a suitable number o f times the 
decomposition (1) where n ~ 2 , equation (2) gives 

\I,. l00lOVn- 60 + 000] 0Vn-5 + 0lOl0Vn-5 + lO00Vn -50 

+ 0000Vn-4 + 0lO0Vn - 4 + l0l0Vn-50 + 00lOVn -4· 

In the decomposition of A11 i llustrated in Figure 2 , each box represents 
the subgraph induced by the given sets of vertices. Thus , for example , 
the s ubgraphs generated by t he ver tex sets 000lO(Vn -60 + Vn-101) and 
lO00(0Vn- 6 + 10Vn_ 7 )0 are each isomorphic to r n-5 · Each bond between 
a pair of boxes represents a set of edges joining the verti ces in the first box 
to th ir adjacent vertices in the second box . 

10010Vn-s0 
000lOV,. _s0 

0l0l0Vn- 5 --
000lOVn-101 

--

H I 
00000Vn -s0 

lO000Vn-s0 00000Vn -101 0lO00Vn-s -- --
100010Vn-10 0000lOVn-10 0l0Ol0Vn -6 

000010 Vn-s0 1 

I 
1010Vn-s0 

00lOVn-s0 -- 0010Vn-s01 

Figure 2 . 

ow con ider the decomposition of A~+l shown in Figure 3, given by taking 
two di ti net copies of A n , say O 1 a nd 02, each deco mposed as in Figure 
2 . In Figure 3, each of the subgraphs defined in Figure 2 (except for H) is 
rep re ented by o ne o f the vertices v; in 0 1 (w; in 0 2 ) , i = 2, 3 , 5 , 6, 7 , 8 , and 
H is represented by the two verti ce. v1 , v4 in O i ( w1 , w4 in G 2 ) jo ined by 
a double Ii ne. Th e verti ces v2, v3 ( w 2 , w3 ) represent subgraphs isormorphic 
to r n-5, while vs, vs, v1 , vs (w5 , ws, w1 , w8 ) represent subgraphs iso rmor­
phi c to L' n-4 · The subgraph H induced by the verti ces 11 1 , v4 (w 1 , w4 ) is 
isomorphi c to I'n-4· 

We decompose in 0 1 the set o f vertices of the subgraph v5 as V(v5 ) = 
Ss1 US 2USs3U 54 , where s1 = O0000Vn-60 , 52 = 00000Vn-10 1, Ss3 = 
000010\/n-10 , Ss4 = 0000lOVn-s0l. imilarly, let V(v1 ) = S4 1 u. 42, where 
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S41 = l0000Vn- 60, S42 = 100010Vn-10. Let 821 = 000l0 Vn - 60, S22 = 
000l0Vn -101 , S61 = 0lO0Vn - s0 , S G2 = 0l00Vn-601. Then all the vertices 
of the subgraph v5 are adjacent to vertices of v6 , vs, W5. In addition , 
the vertices of S51 are adjacent to vertices of S21 , S41 ; vertices of S52 are 
adjacent to S22; Ss3 to S 42. However, no vertex of S 54 is adjacent to any 
vertex of v2 or V4. Moreover , the vertices 10010Vn_ 60 of the subgraph H 
are adjacent to vertices in S2 1 , but not to any vertex in S22; vertices of 
V7 are adjacent to vertices of 00l0Vn- s0 in Vs , but not to any vertex in 
0010Vn _6 0J; vertices of v3 are adjacent to vertices in S61 , but not to any 
vertex in S52. An analagous situation holds for the vertices of G2 . 

Figure 3. 

In Figure 3 , we have made the following assignment of colours: to the 
vertices of v 1 , the set { 3, 6}; to the vertices of v2 : { 1, 3, 4, 5} , { 1, 4, 5}; to the 
vertices of V3 : { 3, 4, 5}; to the vertices of v4 : { 1, 3, 4} ; to the vertices of v5 : 

{ 1, 2, 3, 4, 6}, {1, 2, 4, 6}, { 2, 3, 4, 6}, {2 , 4, 6}; to the vertices of v6 : { 1, 2, 3} , 
{1,2} ; to the vertices of v7 : {2 , 4,5} ; to the vertices ofvs: {2,3,4}, {3,4}. 
Similarly, to the vertices of w1 , we assign the set {4 , 6} ; to w2 : {1 , 2,4 , 5} , 
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{1 , 2, 5} ; to w3 : {2,5, 6} ; to w4 : {1 ,4,6}; tows: {1 , 3, 4 , 5 , 6}, {3 , 4,5,6}, 
{ 1, 3, 5, 6} , { 3, 5, 6}; to w6 : { 1, 3, 6} , { 1, 3}; to W7 : { 1, 5, 6} ; to ws: {1 , 3 , 5}, 
{3 , 5} . ote that a ll these colour sets are dist inct and use just 6 colours. 

ext consider the fo llowing edge colouring of A~ obtained from the colour­
ing shown in Figure 3 by assigning particular colours to the edges of the 
subgraphs denoted by v;, w;, i = 2, 3, 5,6, 7,8, and both copies of H . In 
G 1 (G2 ) , the subgraphs v5 , v6 , vs (ws, w5, ws ) are each isomorphic to f a 
and have the colouring shown in Figure 4, where t is respectively 5, 4 , yin 
v5 , v6, vs ( 1, 4 , 6 in w5 , w6, w8 ) . H is also isomorphic to r 3 and both copies 
have the colouring shown in Figure 5. The subgraphs v; , w; , i = 2, 3, 7 are 
each isormorphic to r 2 ~ A2 (see Figure 1) and in each of these subgraphs 
we give one edge t he colour x and the other the colour y . 

X y 2 v1(w1) 

z X y z 

t X y V4 (w4) 

Figure 4. Figure 5 . 

For i = 1, 2, ... 8, th is gives the fo llowing colour sets at the vertices of v;: 
{2 , 3, 6,y}, {2 , 3, 6 ,z}; {1 , 3, 4, 5,x}, {1 , 3, 4, 5, x , y}, {1 , 4, 5, y}; {3 ,4,5,x}, 
{3 , 4, 5 , x,y}, {3 , 4 , 5, y}; {1 , 3, 4,x , y} , {1 , 3, 4 , x , y, z} , {1 , 3, 4, y}; 
{1 , 2, 3 , 4 , 6, x }, {1 , 2, 3, 4, 6,x, y,z}, {1 , 2, 3, 4 , 6,x , y} , {2 , 4 , 5, 6, z}, 
{ 2, 4, 5 , 6, X}; { 1, 2, 3, X}, { 1, 2, 3, X, y , Z}, { 1, 2, 3, X , y} , { 1, 2, 4, Z}, { 1, 2 , 4, X}; 
{2 , 4, 5 , x }, {2 , 4, 5, x , y} , {2 ,4,5 , y} ; {2 , 3, 4,x}, {2 , 3, 4, x , y,z}, {2 , 3, 4 , x , y} , 
{3 , 4, y , z }, {3 , 4 , x , y} ; 
and at the vert ices of w;: 
{2 , 4, 6 , y} , {2 , 4, 6 ,z}; {1 , 2, 4, 5,x}, {1 , 2, 4 , 5, x , y} , {1 , 2, 5, y}; {2 , 5, 6 ,x}, 
{2 , 5, 6 , x,y}, {2 , 5, 6, y} ; {1 , 4 , 6, x,y} , {l , 4,6 , x,y, z}, {1 , 4, 6, y} ; 
{1 , 3, 4 , 5, 6, x}, {1 , 3, 4 , 5, 6, x , y,z}, {1 , 3, 4, 5 , 6, x , y} , {1 , 3, 5, 6, z}, 
{1 , 3, 5 , 6, x}; {l , 3, 6, x} , {1 , 3, 6,x, y,z} , {l , 3,6, x , y} , {l , 3, 4, z}, {1 , 3, 4, x} ; 
{ 1, 5, 6 , X}, {] , 5 6, X, y}, { 1, 5, 6, y} ; { 1, 3, 5, X}, { 1, 3, 5, X, y, Z}, {l , 3, 5 , X, y}, 
{3 , 5,6 ,z}, {3 , 5, 6,x}. 

T hese sets are distinct and h nee we have a strong edge colouring of A~ 
using 9 colours. Thus the theorem is also true when n = 7. 

ow consid er a trong edge colouring of A~+ 1 when n 2'. 8, obtained by 
assigning a trong edge colouring to each of the subgraph isomorphic to 
r j, n - 6 ~ j ~ n - 4, represented by the vertices v; , w;, l ~ i ~ . Since 
obs(r ... ) S: 4 when n :::; 4, this can b done using at most n - 4 distinct 
colours by Lemma 2.2 in th e case when n 2'. 8. We now assign to the 
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edges in the decomposition of A~+ t represented by Figure 3 the colours 
shown in that figure. This gives a strong edge colouring of A~+I using 
n - 4 + 6 = n + 2 colours . □ 

We require the following res ult proved in [8]. 

Lemma 2.4 Let G be a graph containing at most one isolated vertex and 
no isolated edge. Then obs(G x Q2 ) ~ obs(G) + 3. D 

Theorem 2.5 obs(A;) = n + 1, for all n 2'.: 4. 

Proof. Since A; contains at least two vertices of degree n for all n 2'.: 4, at 
least n + 1 colours are necessary for a strong edge colouring. However, by 
equation (7) , A; = An-2 x Q2 and hence it follows from Lemma 2.4 and 
Lemma 2.2 , that n + l colours also suffice. D 

Theorem 2.6 Let k be the least positive integer such that (~) ?: 2i. Then 
for i ?: 1 and n ?: i + 2, 

k ~ obs(A~)::; n + fi/21 . 

Proof. The lower bound follows from Lemma 2.1 and cases i = 1, 2 are 
covered by Theorem 2.3 and Theorem 2.5. It therefore remains to establish 
the upper bound in the cases when i > 3. Consider first when i = 2r, 
r 2'.: 2. Then equation (7) gives A~ = (A;_;+ 2 x Q;_ 4) x Q2 and hence 
obs(A~) :Sobs(A; _;+2 x Q; _4 ) + 3, by Lemma 2.4. Iterating, we obtain 

obs(A~) ::; obs(A~-i+2 ) + 3(r - 1) = n + r , 

by Theorem 2.5. 

A similar analysis in the case when i = 2r + 1, r 2'.: 1, using Theorem 2.3 

. 1 
obs(A~) ::; obs(An-i+l) + 3r = n + r + l. D 

Corollary 2. 7 obs(A;) = n + 2 when 11 = 5, 6, and obs(A;) ~ 11 + 2 when 
n > 7. D 

Corollary 2.8 obs(A~) = n + 2 when 6 ~ n ~ 14, and obs(A~) ::; n + 2 
when n > 15. D 
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A Appendix 
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Figure Al. 

34 



3 

A strong 7-edge colouring of A~ 

Figure A2 . 
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A strong 8-edge colouring of A$ 

Figure A3 . 
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