Observability of the Extended Lucas Cubes

Carol Whitehead

Department of Mathematical and Computing Sciences, Goldsmiths College, London SE14 6NW, U.K. e-mail:c.whitehead@gold.ac.uk

Norma Zagaglia Salvi* Dipartimento di Matematica, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy e-mail:norzag@mate.polimi.it

March 13, 2003

Abstract

A Fibonacci string of order n is a binary string of length n with no two consecutive ones. A Fibonacci string of order n which does not have a one in both the first and last postition is called a *Lucas string* of order n. The *Lucas cube* Λ_n is the subgraph of the hypercube Q_n induced by the set of Lucas strings. For positive integers i, n, with $n > i \ge 1$, the *i*th extended Lucas cube of order n, denoted by Λ_n^i , is a vertex induced subgraph of Q_n , where $V(\Lambda_n^i) = \hat{V}_n^i$ is defined recursively by the relation:

$$\hat{V}_n^i = \hat{V}_{n-1}^{i-1} 0 + \hat{V}_{n-1}^{i-1} 1$$

and the initial conditions $\hat{V}_1^0 = \{0, 1\}$, $\hat{V}_n^0 = V(\Lambda_n)$ for $n \ge 2$. We consider the number of colours required for a strong edge colouring of Λ_n^i and prove that for $n \ge 3$, $\operatorname{obs}(\Lambda_n^i) = n + 1$ when i = 1 and i = 2, and obtain bounds on $\operatorname{obs}(\Lambda_n^i)$ for $n > i \ge 3$.

Key words: Hypercube, Lucas cube, edge colouring, observability.

Bulletin of the ICA, Volume 42 (2004), 25-36

^{*}This work was partially supported by MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca).

1 Introduction

A proper edge colouring of a simple graph G is called *strong* if it is vertex distinguishing. The *observability* of G, denoted by obs(G), is the minimum number of colours required for a strong edge colouring of G. The parameter obs(G) was introduced by Černý et al. [2] and independently by Burris and Schelp [1], who denote it by $\chi'_s(G)$. In this study, we consider the observability of an infinite family of subgraphs of the hypercube (or *n*-cube) Q_n .

A Fibonacci string of order n is a binary string of length n with no two consecutive ones. A Fibonacci string of order n which does not have a one in both the first and last postition is called a Lucas string of order n.

Let V_n , \hat{V}_n denote respectively the set of Fibonacci strings and the set of Lucas strings of order n. Let t, w be two binary strings. We denote by tw the string obtained by concatenating t and w. More generally, if S is any set of binary strings, let $tSw = \{tsw : s \in S\}$. Then for $n \ge 2$, the set V_n satisfies the recursive relation

$$V_n = 0V_{n-1} + 10V_{n-2},\tag{1}$$

with initial conditions $V_0 = \{\emptyset\}, V_1 = \{0, 1\}.$

It is easily seen that $\hat{V}_1 = \{0\}$ and $\hat{V}_2 = \{00, 01, 10\}$. Then for $n \ge 3$, \hat{V}_n is given by the recursive relation

$$\hat{V}_n = 0V_{n-1} + 10V_{n-3}0. \tag{2}$$

The Fibonacci cube Γ_n , proposed by Hsu [6], and the Lucas cube Λ_n , proposed by Munarini et al. [7], are the subgraphs of the hypercube Q_n induced respectively by the set of Fibonacci strings V_n and the set of Lucas strings \hat{V}_n . Thus the Lucas cubes are subgraphs of the Fibonacci cubes.

From relation (1), it can be seen that $|V_n|$ satisfies

$$|V_n| = |V_{n-1}| + |V_{n-2}| \tag{3}$$

and hence the sequence $|V_n|$ is a generalised Fibonacci sequence with initial terms $|V_0| = 1$ and $|V_1| = 2$. Recollect the Fibonacci sequence $\{F_n\}_{n=0}^{\infty} = 0, 1, 1, 2, 3, 5...$, so that $|V_n| = F_{n+2}, n \ge 0$.

In a similar way, it follows from (2) that for $n \geq 3$, $|\hat{V}_n|$ satisfies the recurrence relation

$$|V_n| = |V_{n-1}| + |V_{n-3}| = F_{n+1} + F_{n-1},$$
(4)

and hence when $n \ge 3$, $|V_n|$ also satisfies the Fibonacci recurrence relation. Relation (4) gives $|\hat{V}_3| = 4$ and $|\hat{V}_4| = 7$ and hence the sequence

 $\{|\hat{V}_n|\}_{n=1}^{\infty} = 1, 3, 4, 7, \dots$ is a subsequence of the Lucas sequence $\{L_n\}_{n=0}^{\infty} = 2, 1, 3, 4, 7, \dots$ In fact, we have $|\hat{V}_n| = L_n$, for $n \ge 1$.

The Fibonacci cubes have been generalised by Wu [10] to give an infinite family of subcubes of the hypercube. The Lucas cubes can also be generalised, in the following way. For positive integers i, n, with $n > i \ge 1$, the *i*th extended Lucas cube of order n, denoted by Λ_n^i , is a vertex induced subgraph of Q_n , where $V(\Lambda_n^i) = \hat{V}_n^i$ is defined recursively by the relation:

$$\hat{V}_n^i = \hat{V}_{n-1}^{i-1} 0 + \hat{V}_{n-1}^{i-1} 1 \tag{5}$$

and the initial conditions $\hat{V}_1^0 = \{0, 1\}, \hat{V}_n^0 = \hat{V}_n$ for $n \ge 2$. Thus it is easy to see that the vertices of Λ_n^i are (0,1)-strings of length n in which the last i positions are vertices of Q_i and the first n - i positions are vertices of Λ_{n-i} . From definition (5), it follows immediately that for $n > i \ge 1$,

$$\Lambda_n^i = \Lambda_{n-1}^{i-1} \times K_2, \tag{6}$$

where $\Lambda_n^0 = \Lambda_n$ for $n \ge 2$ and $\hat{V}_1^0 = \{0, 1\}$. The construction of Λ_{n+1}^1 from Λ_n^0 , for n = 1, 2, 3, is illustrated in Figure 1 below.

By recursion from equation (6), we have

$$\Lambda_n^i = \Lambda_{n-j}^{i-j} \times Q_j,\tag{7}$$

for $2 \le j \le i < n$. Moreover, it is easy to see that $\Lambda_n^{n-1} \simeq Q_n$, for $n \ge 1$. In this study, we prove that for $n \geq 3$, $obs(\Lambda_n^i) = n + 1$ when i = 1 and i = 2, and obtain bounds on $obs(\overline{\Lambda_n^i})$ for $i \ge 3$. An interesting property of the parameter obs is that if H is a proper subgraph of a graph G, then obs(H) may be less than, equal to, or more than obs(G). The value of $obs(Q_n)$ for low values of n and its assymptotic behaviour are established in [4], but for large values of n it is not known whether $obs(Q_n)$ is a strictly increasing function of n. It is therefore interesting to note (see [3]) that $obs(\Gamma_n) = obs(\Lambda_n)$ when $n \ge 4$, although Λ_n is a proper subgraph of Γ_n in this range. Moreover, the value of the observability of the extended Fibonacci cube Γ_n^i obtained in [8] implies that $obs(\Lambda_n^i) = obs(\Gamma_n^i)$, for $i = 1, 2 \text{ and } n \geq 4$, although Λ_n^i is a proper subgraph of Γ_n^i for these values of i and n. The value of obs(G) for some other special classes of graphs has been determined in [2] and [5]. Bounds on the value of obs(G) in general are obtained in [1]. Structural properties of the Lucas cubes are discussed in [7] and of the extended Lucas cubes in [9].

2 Results

Noting that for all $n \geq 2$, the Lucas cube Λ_n contains a single vertex of maximum degree $\Delta(\Lambda_n) = n$, our first lemma is a direct deduction from equation (7).

Lemma 2.1 Λ_n^i contains exactly 2^i vertices of degree $\Delta(\Lambda_n^i) = n$ when $1 \leq i \leq n-2$; and when i = n-1, all 2^n vertices have degree n. \Box

We require the following results of Dedò et al. [3].

Lemma 2.2 (i) $obs(\Gamma_n) = n$, for n > 4;

(ii) $obs(\Lambda_n) = n$, for $n \ge 2$.

Theorem 2.3 For $n \ge 2$, $obs(\Lambda_{n+1}^1) = n + 2$.

Proof. It follows from Lemma 2.1 that when $n \ge 2$, at least n + 2 colours are required for a strong edge colouring of Λ_{n+1}^1 . We shall prove that n+2 colours suffice. An example of a strong (n+2)-edge colouring of Λ_{n+1}^1 for n = 2, 3, 4, 5, 6 is shown in Figure A1, Figure A2 and Figure A3 in the Appendix.

Assume first that $n \ge 8$. By iterating a suitable number of times the decomposition (1) where $n \ge 2$, equation (2) gives

$$\hat{V}_n = 10010V_{n-6}0 + 00010V_{n-5} + 01010V_{n-5} + 1000V_{n-5}0 + 0000V_{n-4} + 0100V_{n-4} + 1010V_{n-5}0 + 0010V_{n-4}.$$

In the decomposition of Λ_n illustrated in Figure 2, each box represents the subgraph induced by the given sets of vertices. Thus, for example, the subgraphs generated by the vertex sets $00010(V_{n-6}0 + V_{n-7}01)$ and $1000(0V_{n-6} + 10V_{n-7})0$ are each isomorphic to Γ_{n-5} . Each bond between a pair of boxes represents a set of edges joining the vertices in the first box to their adjacent vertices in the second box.

Figure 2.

Now consider the decomposition of Λ_{n+1}^1 shown in Figure 3, given by taking two distinct copies of Λ_n , say G_1 and G_2 , each decomposed as in Figure 2. In Figure 3, each of the subgraphs defined in Figure 2 (except for H) is represented by one of the vertices v_i in G_1 (w_i in G_2), i = 2, 3, 5, 6, 7, 8, and H is represented by the two vertices v_1, v_4 in G_1 (w_1, w_4 in G_2) joined by a double line. The vertices v_2, v_3 (w_2, w_3) represent subgraphs isormorphic to Γ_{n-5} , while v_5, v_6, v_7, v_8 (w_5, w_6, w_7, w_8) represent subgraphs isormorphic to Γ_{n-4} . The subgraph H induced by the vertices v_1, v_4 (w_1, w_4) is isomorphic to Γ_{n-4} .

We decompose in G_1 the set of vertices of the subgraph v_5 as $V(v_5) = S_{51} \cup S_{52} \cup S_{53} \cup S_{54}$, where $S_{51} = 00000V_{n-6}0$, $S_{52} = 00000V_{n-7}01$, $S_{53} = 000010V_{n-7}0$, $S_{54} = 000010V_{n-8}01$. Similarly, let $V(v_4) = S_{41} \cup S_{42}$, where

 $S_{41} = 10000V_{n-6}0$, $S_{42} = 100010V_{n-7}0$. Let $S_{21} = 00010V_{n-6}0$, $S_{22} = 00010V_{n-7}01$, $S_{61} = 0100V_{n-5}0$, $S_{62} = 0100V_{n-6}01$. Then all the vertices of the subgraph v_5 are adjacent to vertices of v_6 , v_8 , w_5 . In addition, the vertices of S_{51} are adjacent to vertices of S_{21} , S_{41} ; vertices of S_{52} are adjacent to S_{22} ; S_{53} to S_{42} . However, no vertex of S_{54} is adjacent to any vertex of v_2 or v_4 . Moreover, the vertices $10010V_{n-6}0$ of the subgraph H are adjacent to vertices in S_{21} , but not to any vertex in S_{22} ; vertices of v_7 are adjacent to vertices of $0010V_{n-5}0$ in v_8 , but not to any vertex in $0010V_{n-6}01$; vertices of v_3 are adjacent to vertices in S_{61} , but not to any vertex in S_{62} .

Figure 3.

In Figure 3, we have made the following assignment of colours: to the vertices of v_1 , the set $\{3, 6\}$; to the vertices of v_2 : $\{1, 3, 4, 5\}$, $\{1, 4, 5\}$; to the vertices of v_3 : $\{3, 4, 5\}$; to the vertices of v_4 : $\{1, 3, 4\}$; to the vertices of v_5 : $\{1, 2, 3, 4, 6\}$, $\{1, 2, 4, 6\}$, $\{2, 3, 4, 6\}$, $\{2, 3, 4, 6\}$; to the vertices of v_6 : $\{1, 2, 3\}$, $\{1, 2\}$; to the vertices of v_7 : $\{2, 4, 5\}$; to the vertices of v_8 : $\{2, 3, 4\}$, $\{3, 4\}$. Similarly, to the vertices of w_1 , we assign the set $\{4, 6\}$; to w_2 : $\{1, 2, 4, 5\}$,

 $\{1, 2, 5\}$; to w_3 : $\{2, 5, 6\}$; to w_4 : $\{1, 4, 6\}$; to w_5 : $\{1, 3, 4, 5, 6\}$, $\{3, 4, 5, 6\}$, $\{1, 3, 5, 6\}$, $\{3, 5, 6\}$; to w_6 : $\{1, 3, 6\}$, $\{1, 3\}$; to w_7 : $\{1, 5, 6\}$; to w_8 : $\{1, 3, 5\}$, $\{3, 5\}$. Note that all these colour sets are distinct and use just 6 colours.

Next consider the following edge colouring of Λ_8^1 obtained from the colouring shown in Figure 3 by assigning particular colours to the edges of the subgraphs denoted by $v_i, w_i, i = 2, 3, 5, 6, 7, 8$, and both copies of H. In G_1 (G_2), the subgraphs v_5, v_6, v_8 (w_5, w_6, w_8) are each isomorphic to Γ_3 and have the colouring shown in Figure 4, where t is respectively 5, 4, y in v_5, v_6, v_8 (1, 4, 6 in w_5, w_6, w_8). H is also isomorphic to Γ_3 and both copies have the colouring shown in Figure 5. The subgraphs $v_i, w_i, i = 2, 3, 7$ are each isormorphic to $\Gamma_2 \cong \Lambda_2$ (see Figure 1) and in each of these subgraphs we give one edge the colour x and the other the colour y.

For i = 1, 2, ..., 8, this gives the following colour sets at the vertices of v_i : {2,3,6,y}, {2,3,6,z}; {1,3,4,5,x}, {1,3,4,5,x,y}, {1,4,5,y}; {3,4,5,x}, {3,4,5,x,y}, {3,4,5,x}, {1,3,4,x,y,z}, {1,3,4,y}; {1,2,3,4,6,x}, {1,2,3,4,6,x,y,z}, {1,3,4,x,y,z}, {1,3,4,y}; {1,2,3,4,6,x}, {1,2,3,4,6,x,y,z}, {1,2,3,4,6,x,y}, {2,4,5,6,z}, {2,4,5,6,x}; {1,2,3,x}, {1,2,3,x,y,z}, {1,2,3,x,y}, {1,2,4,z}, {1,2,4,x}; {2,4,5,x}, {2,4,5,x,y}, {2,4,5,x,y}, {2,3,4,x,y,z}, {2,3,4,x,y}, {3,4,y,z}, {3,4,x,y}; and at the vertices of w_i :

 $\{2, 4, 6, y\}, \{2, 4, 6, z\}; \{1, 2, 4, 5, x\}, \{1, 2, 4, 5, x, y\}, \{1, 2, 5, y\}; \{2, 5, 6, x\}, \\ \{2, 5, 6, x, y\}, \{2, 5, 6, y\}; \{1, 4, 6, x, y\}, \{1, 4, 6, x, y, z\}, \{1, 4, 6, y\}; \\ \{1, 3, 4, 5, 6, x\}, \{1, 3, 4, 5, 6, x, y, z\}, \{1, 3, 4, 5, 6, x, y\}, \{1, 3, 5, 6, z\}, \\ \{1, 3, 5, 6, x\}; \{1, 3, 6, x\}, \{1, 3, 6, x, y, z\}, \{1, 3, 6, x, y\}, \{1, 3, 4, z\}, \{1, 3, 4, x\}; \\ \{1, 5, 6, x\}, \{1, 5, 6, x, y\}, \{1, 5, 6, y\}; \{1, 3, 5, x\}, \{1, 3, 5, x, y, z\}, \{1, 3, 5, x, y\}, \\ \{3, 5, 6, z\}, \{3, 5, 6, x\}.$

These sets are distinct and hence we have a strong edge colouring of Λ_8^1 using 9 colours. Thus the theorem is also true when n = 7.

Now consider a strong edge colouring of Λ_{n+1}^1 when $n \ge 8$, obtained by assigning a strong edge colouring to each of the subgraphs isomorphic to Γ_j , $n-6 \le j \le n-4$, represented by the vertices $v_i, w_i, 1 \le i \le 8$. Since $obs(\Gamma_n) \le 4$ when $n \le 4$, this can be done using at most n-4 distinct colours by Lemma 2.2 in the case when $n \ge 8$. We now assign to the

edges in the decomposition of Λ_{n+1}^1 represented by Figure 3 the colours shown in that figure. This gives a strong edge colouring of Λ_{n+1}^1 using n-4+6=n+2 colours. \Box

We require the following result proved in [8].

Lemma 2.4 Let G be a graph containing at most one isolated vertex and no isolated edge. Then $obs(G \times Q_2) \leq obs(G) + 3$. \Box

Theorem 2.5 $obs(\Lambda_n^2) = n + 1$, for all $n \ge 4$.

Proof. Since Λ_n^2 contains at least two vertices of degree n for all $n \ge 4$, at least n+1 colours are necessary for a strong edge colouring. However, by equation (7), $\Lambda_n^2 = \Lambda_{n-2} \times Q_2$ and hence it follows from Lemma 2.4 and Lemma 2.2, that n+1 colours also suffice. \Box

Theorem 2.6 Let k be the least positive integer such that $\binom{k}{n} \ge 2^i$. Then for $i \ge 1$ and $n \ge i+2$,

$$k \leq \operatorname{obs}(\Lambda_n^i) \leq n + \lceil i/2 \rceil.$$

Proof. The lower bound follows from Lemma 2.1 and cases i = 1, 2 are covered by Theorem 2.3 and Theorem 2.5. It therefore remains to establish the upper bound in the cases when $i \geq 3$. Consider first when i = 2r, $r \geq 2$. Then equation (7) gives $\Lambda_n^i = (\Lambda_{n-i+2}^2 \times Q_{i-4}) \times Q_2$ and hence $\operatorname{obs}(\Lambda_n^i) \leq \operatorname{obs}(\Lambda_{n-i+2}^2 \times Q_{i-4}) + 3$, by Lemma 2.4. Iterating, we obtain

$$\operatorname{obs}(\Lambda_n^i) \le \operatorname{obs}(\Lambda_{n-i+2}^2) + 3(r-1) = n+r,$$

by Theorem 2.5.

A similar analysis in the case when i = 2r + 1, $r \ge 1$, using Theorem 2.3 gives

$$\operatorname{obs}(\Lambda_n^i) \leq \operatorname{obs}(\Lambda_{n-i+1}^1) + 3r = n + r + 1.$$

Corollary 2.7 $obs(\Lambda_n^3) = n+2$ when n = 5, 6, and $obs(\Lambda_n^3) \le n+2$ when n > 7. \Box

Corollary 2.8 $obs(\Lambda_n^4) = n+2$ when $6 \le n \le 14$, and $obs(\Lambda_n^4) \le n+2$ when $n \ge 15$. \Box

References

- [1] Burris, A.C. and Schelp, R.H., Vertex-distinguishing proper edgecolorings, J. Graph Theory 26 (1997), 73-82.
- [2] Černý, J., Horňák, M. and Soták, R., Observability of a graph, Math. Slovaca 46 (1996), 21-31.
- [3] Dedò, E., Torri, D. and Zagaglia Salvi, N., The observability of the Fibonacci and the Lucas cubes, Discrete Math. 255, 1-3 (2002), 55-63.
- [4] Horňák, M. and Soták, R., Asymptotic behaviour of the observability of Q_n , Discrete Math. 176 (1997), 139-148.
- [5] Horňák, M. and Soták, R., Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995), 289-301.
- [6] Hsu, W.J., Fibonacci cubes A new interconnection topology, IEEE Trans. Parallel and Distributed Systems, 4, no.1 (1993), 3-12.
- [7] Munarini, E., Perelli Cippo, C., Zagaglia Salvi, N., On the Lucas cubes, The Fibonacci Quarterly 39.1 (2001), 12-21.
- [8] Whitehead, C.A. and Zagaglia Salvi, N., Observability of the extended Fibonacci cubes, to appear in Discrete Math..
- [9] Whitehead, C.A. and Zagaglia Salvi, N., Extended Lucas cubes, submitted.
- [10] Wu, J., Extended Fibonacci cubes, IEEE Trans. Parallel and Distributed Systems, 8, no.12 (1997), 3-9.

\mathbf{A} Appendix

A strong 4-edge colouring of Λ_3^1

A strong 5-edge colouring of Λ^1_4

Figure A1.

A strong 7-edge colouring of Λ_6^1

Figure A2.

Figure A3.