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Abstract

A Fibonacci string of order n is a binary string of length n with no
two consecutive ones. A Fibonacci string of order n which does not
have a one in both the first and last postition is called a Lucas string
of order n. The Lucas cube A, is the subgraph of the hypercube Q.
induced by the set of Lucas strings. For positive integers 2, n, with
n > 1 > 1, the ith extended Lucas cube of order n, denoted by A},
1s a vertex induced subgraph of Q,, where V(A}) = V! is defined
recursively by the relation:

Va = VaZi0+ Vo211
and the initial conditions V¥ = {0,1}, V;¥ = V(An) for n > 2. We
consider the number of colours required for a strong edge colouring

of A}, and prove that for n > 3, obs(A},,) = n+ 1 when : = 1 and
1 = 2, and obtain bounds on obs(A},) for n > 1 > 3.
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1 Introduction

A proper edge colouring of a simple graph G is called strong if it is vertex
distinguishing. The observability of G, denoted by obs(G), is the minimum
number of colours required for a strong edge colouring of G. 'The parameter
obs(G) was introduced by Cerny et al. [2] and independently by Burris
and Schelp [1], who denote it by x%(G). In this study, we consider the
observability of an infinite family of subgraphs of the hypercube (or n-
cube) Q.

A Fibonacct string of order n is a binary string of length n with no two
consecutive ones. A Fibonacci string of order n which does not have a one
in both the first and last postition is called a Lucas string of order n.

Let V,, V, denote respectively the set of Fibonacci strings and the set of
Lucas strings of order n. Let ¢, w be two binary strings. We denote by tw
the string obtained by concatenating ¢t and w. More generally, if S is any
set of binary strings, let tSw = {tsw : s € S}. Then for n > 2, the set V,
satisfies the recursive relation

Vo= Ovn—l = 10Vn-—2, (l)
with initial conditions V; = {0}, V1 = {0, 1}.

It is easily seen that V; = {0} and V5 = {00, 01,10}. Then for n > 3, V,, is
given by the recursive relation

Vo = 0Vpo1 + 10V, _30. (2)

The Fibonacci cube Ty, proposed by Hsu [6], and the Lucas cube A,, pro-
posed by Munarini et al. [7], are the subgraphs of the hypercube Q,, induced
respectively by the set of Fibonacci strings V,, and the set of Lucas strings
V,,. Thus the Lucas cubes are subgraphs of the Fibonacci cubes.

From relation (1), it can be seen that |V,,| satisfies
[Val = [Vaca| + [Va-2| (3)

and hence the sequence |V},| is a generalised Fibonacci sequence with initial
terms |Vp| = 1 and |Vi| = 2. Recollect the Fibonacci sequence {F,}3%, =
0,1,1,2,3,5. .., so that |V,| = Fh42, n > 0.

In a similar way, it follows from (2) that for n > 3, |Vj,| satisfies the
recurrence relation

|VnI:IVn-—1|+|Vn——3|:Fn+l+F’n—ly (4)

and hence when n > 3, |V,,| also satisfies the Fibonacci recurrence re-
lation. Relation (4) gives |V3| = 4 and |V4| = 7 and hence the sequence
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{IVal}e2, = 1,3,4,7,...is a subsequence of the Lucas sequence {L, }72, =
2,1,3,4,7,.... In fact, we have |V,| = Ly, forn > 1.

The Fibonacci cubes have been generalised by Wu [10] to give an infinite
family of subcubes of the hypercube. The Lucas cubes can also be gen-
eralised, in the following way. For positive integers ¢,n, with n > i > 1,
the ith ertended Lucas cube of order n, denoted by A%, is a vertex induced
subgraph of @, where V(AL) = Vr: is defined recursively by the relation:

Vi = Vizlo+ Vil )

and the initial conditions V;? = {0,1}, V,? = V,, for n > 2. Thus it is easy
to see that the vertices of A!, are (0,1)-strings of length n in which the last
i positions are vertices of @; and the first n — i positions are vertices of
Ay —i. From definition (5), it follows immediately that forn > > 1,

AL = AL % K, (6)
where A = A,, for n > 2 and V}? = {0, 1}. The construction of A}, from
A2, for n =1,2,3, is illustrated in Figure 1 below.

100

0 110 00 01 010 000 001

A? = K, Ad = A, AY = Aj
1000

00 10 100 000 010 1001

0100 0000 0010
01 11 101 001 011 0101 0001 0011
Aj Aj A
Figure 1.
By recursion from equation (6), we have
Ay = A, @y (7)
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for 2 < j < i< n. Moreover, it is easy to see that A?~! ~ @, for n > 1.

In this study, we prove that for n > 3, obs(A}) = n + 1 when i = 1 and
i = 2, and obtain bounds on obs(A!) for i > 3. An interesting property
of the parameter obs 1s that if H is a proper subgraph of a graph G, then
obs(H) may be less than, equal to, or more than obs(G). The value of
obs(Qn) for low values of n and its assymptotic behaviour are established
in [4], but for large values of n it is not known whether obs(Q,,) is a strictly
increasing function of n. It is therefore interesting to note (see [3]) that
obs(I',) = obs(A,) when n > 4, although A, is a proper subgraph of I',,
in this range. Moreover, the value of the observability of the extended
Fibonacci cube T obtained in [8] implies that obs(A}) = obs(I'), for
i = 1,2 and n > 4, although A! is a proper subgraph of I', for these values
of 7 and n. The value of obs((G) for some other special classes of graphs has
been determined in [2] and [5]. Bounds on the value of obs(G) in general
are obtained in [1]. Structural properties of the Lucas cubes are discussed
in [7] and of the extended Lucas cubes in [9].

2 Results

Noting that for all n > 2, the Lucas cube A, contains a single vertex of
maximum degree A(A,) = n, our first lemma is a direct deduction from
equation (7).

Lemma 2.1 A}, contains ezactly 2' vertices of degree A(A}) = n when
1<i<n—2; and wheni=n—1, all 2" vertices have degree n. O

We require the following results of Dedo et al. [3].

Lemma 2.2 (i) obs([',) = n, forn > 4;

(i1) obs(Ap) =n, for n > 2.
Theorem 2.3 Forn > 2, obs(A}, ) =n+2.

Proof. It follows from Lemma 2.1 that when n > 2, at least n + 2 colours
are required for a strong edge colouring of A}, ;. We shall prove that n+2
colours suffice. An example of a strong (n + 2)-edge colouring of A}, for
n = 2,3,4,5,6 is shown in Figure Al, Figure A2 and Figure A3 in the
Appendix.



Assume first that n > 8. By iterating a suitable number of times the
decomposition (1) where n > 2, equation (2) gives

Vi = 10010V, _¢0 + 00010V, -5+ 01010V, _5 + 1000V}, _50
+ 0000V, —4 + 0100V, 4 + 1010V, _50 + 0010V}, _4.

In the decomposition of A, illustrated in Figure 2, each box represents
the subgraph induced by the given sets of vertices. Thus, for example,
the subgraphs generated by the vertex sets 00010(V;,_60 + V,,—701) and
1000(0V,,—¢ + 10V,,_7)0 are each isomorphic to I',,_5. Each bond between
a pair of boxes represents a set of edges joining the vertices in the first box
to their adjacent vertices in the second box.

00010V,,_s0
10010V, —60 00010V, _701 01010V, _5
H |
00000V, 0
10000V, _60 00000V,,_701 01000V, _s
100010V, _70 000010V, _70 010010V, _¢
000010V, _g01
0010V, _50
1010520 0010V, 01
Figure 2.

Now consider the decomposition of A}, ; shown in Figure 3, given by taking
two distinct copies of A,, say (G| and (G5, each decomposed as in Figure
2. In Figure 3, each of the subgraphs defined in Figure 2 (except for H) is
represented by one of the vertices v; in Gy (w; in Gy), 1 =2,3,5,6,7,8, and
H is represented by the two vertices vy, v4 in G; (wy, w4 in G3) joined by
a double line. The vertices vy, v3 (w2, w3) represent subgraphs isormorphic
to I'y_5, while vs, vs, v7, v8 (w5, wg, wz, ws) represent subgraphs isormor-
phic to I',_4. The subgraph H induced by the vertices vy, vq (wy,ws) is
isomorphic to I', _4.

We decompose in (G; the set of vertices of the subgraph vs as V(v;) =
S5, U S50 US53U Ss4, where S5, = 00000V, _60, S50 = 00000V, _701, Ss3 =
000010V, -70, Ss4 = 000010V;,_g01. Similarly, let V(v4) = S4; U S42, where
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Sa1 = 10000V, _60, S4o = 100010V,_70. Let So; = 00010V,_60, Sap =
00010V;,—701, Sg; = 0100V}, _50, Sgo = 0100V,,_¢01. Then all the vertices
of the subgraph vs are adjacent to vertices of vg, vs, ws. In addition,
the vertices of S5, are adjacent to vertices of Syy, S41; vertices of Sy, are
adjacent to Spg; Ss3 to S42. However, no vertex of Ss4 is adjacent to any
vertex of vs or vs. Moreover, the vertices 10010V, _¢0 of the subgraph H
are adjacent to vertices in Sp;, but not to any vertex in Ssy; vertices of
vy are adjacent to vertices of 0010V,,_50 in wvg, but not to any vertex in
0010V, _601; vertices of vz are adjacent to vertices in Sg1, but not to any
vertex in Sgz. An analagous situation holds for the vertices of Ga.

U1 3 V2 4 v3
1 3
3 2
- Vs Vg
£ b)
(% 1
Wao w3
2
| 6
W 3 We
6 5
wy 1 ws
Figure 3.

In Figure 3, we have made the following assignment of colours: to the
vertices of vy, the set {3,6}; to the vertices of vy: {1,3,4,5}, {1,4,5}; to the
vertices of va: {3,4, 5}; to the vertices of vs: {1,3,4}; to the vertices of vs:
{1,2,3,4,6}, {1,2,4,6}, {2,3,4,6}, {2,4,6}; to the vertices of vg: {1,2, 3},
{1, 2}; to the vertices of v7: {2,4,5};to the vertices of vs: {2,3,4}, {3,4}.
Similarly, to the vertices of wy, we assign the set {4,6}; to wy: {1,2,4,5},
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{1,2,5}; to wa: {2,5,6}; to wa: {1,4,6}; to ws: {1,3,4,5,6}, {3,4,5,6},
{1,3,5,6}, {3,5,6}; to we: {1,3,6}, {1,3}; to wz: {1,5,6}; to ws: {1,3,5},
{3,5}. Note that all these colour sets are distinct and use just 6 colours.

Next consider the following edge colouring of A} obtained from the colour-
ing shown in Figure 3 by assigning particular colours to the edges of the
subgraphs denoted by v;,w;, i = 2,3,5,6,7,8, and both copies of H. In
Gy (G2), the subgraphs vs, ve, vs (ws, wg, wg) are each isomorphic to I's
and have the colouring shown in Figure 4, where ¢ is respectively 5,4,y in
vs, ve, vg (1,4, 6 in ws, we, wg). H is also isomorphic to I's and both copies
have the colouring shown in Figure 5. The subgraphs v;, w;, i = 2,3, 7 are
each isormorphic to I'y = A, (see Figure 1) and in each of these subgraphs
we give one edge the colour z and the other the colour y.

vi(w1)

1 z Y va(ws)

Figure 4. Figure 5.

For i =1,2,...8, this gives the following colour sets at the vertices of v;:
{2,3,6,y}, {2,3,6,z}; {1,3,4,5,z}, {1,3,4,5,z,y}, {1,4,5,y}; {3,4,5, 2},
{3,4,5,z,y}, {3,4,5,y}; {1,3,4, 7,9}, {1,3,4,2,y,2}, {1,3,4,3};
{1,2,3,4,6,z},11,2,3,4,6,2,y,2}, {1,2,3,4,6,z,y}, {2,4,5,8, z},

12,4, 5.6, L1953 el 1903 g 2 1o 4l 2.8 2 ) {1 204 e {109 4its
12,4,5,2},{2,4,5, 2,9}, {2,4,5,94}:{2,3,4,2}, {2,3,4, 2,9, 2}, {2,3,4, 2,9},
{3’47912}) {3,4,z,y};

and at the vertices of w;:

{2,4,8,y}, {2,4,6, 2}; {1,2,4,5,2}, {1,2,4,5,2, 9}, {1,2,5,9}; {2,5,6, 2},
{2,5,6,z,y}, {2,5,6,y}; {1,4,6,z,y}, {1,4,6,z,y,2}, {1,4,6,y};
{1,3,4,5,6,z}, {1,3,4,5,6,z,y, 2}, {1,3,4,5,6,z,y}, {1,3,5,6, z},
11,3,5,6,2}: {1,3,8,2},{1,3.8,2,9,2},{1,3,6,2, ¢}, {1,3,4,2},{1,3,4,z};
{1,5,6,2},{1,5,6,z,y}, {1,5,6,y};{1,3,5,2},{1, 3,5, z,y, z}, {1, 3, 5,2, y},
{3,5,6,z}, {3,5,6,z}.

These sets are distinct and hence we have a strong edge colouring of A}
using 9 colours. Thus the theorem is also true when n = 7.

Now consider a strong edge colouring of A}, when n > 8, obtained by
assigning a strong edge colouring to each of the subgraphs isomorphic to
I'j, n —6 < j < n—4, represented by the vertices v;, w;, 1 <7 < 8. Since
obs(I',) < 4 when n < 4, this can be done using at most n — 4 distinct
colours by Lemma 2.2 in the case when n > 8. We now assign to the
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edges in the decomposition of A}, represented by Figure 3 the colours
shown in that figure. This gives a strong edge colouring of A}, using
n—4+6=n+ 2 colours. O

We require the following result proved in [8].

Lemma 2.4 Let G be a graph containing at most one isolated vertexr and
no wsolated edge. Then obs(G x @Q2) < obs(G) + 3. O

Theorem 2.5 obs(A2) = n+ 1, for all n > 4.

Proof. Since A% contains at least two vertices of degree n for all n > 4, at
least n + 1 colours are necessary for a strong edge colouring. However, by
equation (7), A2 = A,_» x Q2 and hence it follows from Lemma 2.4 and
Lemma 2.2, that n + 1 colours also suffice. O

Theorem 2.6 Let k be the least positive integer such that (:) > 2'. Then
fori>1andn> i+ 2,

k < obs(AL) < n 4+ [i/2].

Proof. The lower bound follows from Lemma 2.1 and cases i = 1,2 are
covered by Theorem 2.3 and Theorem 2.5. It therefore remains to establish
the upper bound in the cases when 7 > 3. Consider first when i = 2r,
r > 2. Then equation (7) gives A}, = (AZ_;,, x Qi—4) x Q2 and hence

obs(A}) <obs(AZ_;,, x Qi—4) + 3, by Lemma 2.4. Iterating, we obtain
obs(A}) < obs(AZ_;15) +3(r—1)=n+r,

by Theorem 2.5.

A similar analysis in the case when ¢ = 2r + 1, » > 1, using Theorem 2.3
gives _
obs(A}) <obs(A} ;) +3r=n+r+1. 0

Corollary 2.7 obs(A2) = n+2 when n = 5,6, and obs(A2) < n+2 when
n> 7. =

Corollary 2.8 obs(Al) = n+ 2 when 6 < n < 14, and obs(A}) < n + 2
when n > 15. O
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A Appendix

2

3 1 1 '

- 4 L

2
1 2 2 \ N \
4 3 = 1 3 &
A strong 4-edge colouring of A} A strong 5-edge colouring of A}
1
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5
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5

5
A strong 6-edge colouring of A}

Figure Al.
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Figure A2.



Figure A3.



