Observability of the Extended Lucas Cubes

Carol Whitehead
Department of Mathematical and Computing Sciences,
Goldsmiths College, London SE14 6NW, U.K.
e-mail:c.whitehead@gold.ac.uk
Norma Zagaglia Salvi*
Dipartimento di Matematica,
Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy e-mail:norzag@mate.polimi.it

March 13, 2003

Abstract

A Fibonacci string of order n is a binary string of length n with no two consecutive ones. A Fibonacci string of order n which does not have a one in both the first and last postition is called a Lucas string of order n. The Lucas cube Λ_{n} is the subgraph of the hypercube Q_{n} induced by the set of Lucas strings. For positive integers i, n, with $n>i \geq 1$, the i th extended Lucas cube of order n, denoted by Λ_{n}^{i}, is a vertex induced subgraph of Q_{n}, where $V\left(\Lambda_{n}^{i}\right)=\hat{V}_{n}^{i}$ is defined recursively by the relation: $$
\hat{V}_{n}^{i}=\hat{V}_{n-1}^{i-1} 0+\hat{V}_{n-1}^{i-1} 1
$$ and the initial conditions $\hat{V}_{1}^{0}=\{0,1\}, \hat{V}_{n}^{0}=V\left(\Lambda_{n}\right)$ for $n \geq 2$. We consider the number of colours required for a strong edge colouring of Λ_{n}^{t} and prove that for $n \geq 3$, obs $\left(\Lambda_{n}^{t}\right)=n+1$ when $i=1$ and $i=2$, and obtain bounds on obs $\left(\Lambda_{n}^{2}\right)$ for $n>i \geq 3$.

Key words: Hypercube, Lucas cube, edge colouring, observability.

[^0]
1 Introduction

A proper edge colouring of a simple graph G is called strong if it is vertex distinguishing. The observability of G, denoted by obs (G), is the minimum number of colours required for a strong edge colouring of G. The parameter obs (G) was introduced by Černý et al. [2] and independently by Burris and Schelp [1], who denote it by $\chi_{s}^{\prime}(G)$. In this study, we consider the observability of an infinite family of subgraphs of the hypercube (or n cube) Q_{n}.
A Fibonacci string of order n is a binary string of length n with no two consecutive ones. A Fibonacci string of order n which does not have a one in both the first and last postition is called a Lucas string of order n.
Let V_{n}, \hat{V}_{n} denote respectively the set of Fibonacci strings and the set of Lucas strings of order n. Let t, w be two binary strings. We denote by $t w$ the string obtained by concatenating t and w. More generally, if S is any set of binary strings, let $t S w=\{t s w: s \in S\}$. Then for $n \geq 2$, the set V_{n} satisfies the recursive relation

$$
\begin{equation*}
V_{n}=0 V_{n-1}+10 V_{n-2}, \tag{1}
\end{equation*}
$$

with initial conditions $V_{0}=\{\emptyset\}, V_{1}=\{0,1\}$.
It is easily seen that $\hat{V}_{1}=\{0\}$ and $\hat{V}_{2}=\{00,01,10\}$. Then for $n \geq 3, \hat{V}_{n}$ is given by the recursive relation

$$
\begin{equation*}
\hat{V}_{n}=0 V_{n-1}+10 V_{n-3} 0 . \tag{2}
\end{equation*}
$$

The Fibonacci cube Γ_{n}, proposed by Hsu [6], and the Lucas cube Λ_{n}, proposed by Munarini et al. [7], are the subgraphs of the hypercube Q_{n} induced respectively by the set of Fibonacci strings V_{n} and the set of Lucas strings \hat{V}_{n}. Thus the Lucas cubes are subgraphs of the Fibonacci cubes.
From relation (1), it can be seen that $\left|V_{n}\right|$ satisfies

$$
\begin{equation*}
\left|V_{n}\right|=\left|V_{n-1}\right|+\left|V_{n-2}\right| \tag{3}
\end{equation*}
$$

and hence the sequence $\left|V_{n}\right|$ is a generalised Fibonacci sequence with initial terms $\left|V_{0}\right|=1$ and $\left|V_{1}\right|=2$. Recollect the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}=$ $0,1,1,2,3,5 \ldots$, so that $\left|V_{n}\right|=F_{n+2}, n \geq 0$.
In a similar way, it follows from (2) that for $n \geq 3,\left|\hat{V}_{n}\right|$ satisfies the recurrence relation

$$
\begin{equation*}
\left|\hat{V}_{n}\right|=\left|V_{n-1}\right|+\left|V_{n-3}\right|=F_{n+1}+F_{n-1}, \tag{4}
\end{equation*}
$$

and hence when $n \geq 3,\left|\hat{V}_{n}\right|$ also satisfies the Fibonacci recurrence relation. Relation (4) gives $\left|\hat{V}_{3}\right|=4$ and $\left|\hat{V}_{4}\right|=7$ and hence the sequence
$\left\{\left|\hat{V}_{n}\right|\right\}_{n=1}^{\infty}=1,3,4,7, \ldots$ is a subsequence of the Lucas sequence $\left\{L_{n}\right\}_{n=0}^{\infty}=$ $2,1,3,4,7, \ldots$ In fact, we have $\left|\hat{V}_{n}\right|=L_{n}$, for $n \geq 1$.
The Fibonacci cubes have been generalised by Wu [10] to give an infinite family of subcubes of the hypercube. The Lucas cubes can also be generalised, in the following way. For positive integers i, n, with $n>i \geq 1$, the i th extended Lucas cube of order n, denoted by Λ_{n}^{i}, is a vertex induced subgraph of Q_{n}, where $V\left(\Lambda_{n}^{i}\right)=\hat{V}_{n}^{i}$ is defined recursively by the relation:

$$
\begin{equation*}
\hat{V}_{n}^{i}=\hat{V}_{n-1}^{i-1} 0+\hat{V}_{n-1}^{i-1} 1 \tag{5}
\end{equation*}
$$

and the initial conditions $\hat{V}_{1}^{0}=\{0,1\}, \hat{V}_{n}^{0}=\hat{V}_{n}$ for $n \geq 2$. Thus it is easy to see that the vertices of Λ_{n}^{i} are $(0,1)$-strings of length n in which the last i positions are vertices of Q_{i} and the first $n-i$ positions are vertices of Λ_{n-i}. From definition (5), it follows immediately that for $n>i \geq 1$,

$$
\begin{equation*}
\Lambda_{n}^{i}=\Lambda_{n-1}^{i-1} \times K_{2} \tag{6}
\end{equation*}
$$

where $\Lambda_{n}^{0}=\Lambda_{n}$ for $n \geq 2$ and $\hat{V}_{1}^{0}=\{0,1\}$. The construction of Λ_{n+1}^{1} from Λ_{n}^{0}, for $n=1,2,3$, is illustrated in Figure 1 below.

Figure 1.
By recursion from equation (6), we have

$$
\begin{equation*}
\Lambda_{n}^{i}=\Lambda_{n-j}^{i-j} \times Q_{j} \tag{7}
\end{equation*}
$$

for $2 \leq j \leq i<n$. Moreover, it is easy to see that $\Lambda_{n}^{n-1} \simeq Q_{n}$, for $n \geq 1$.
In this study, we prove that for $n \geq 3$, obs $\left(\Lambda_{n}^{i}\right)=n+1$ when $i=1$ and $i=2$, and obtain bounds on obs $\left(\Lambda_{n}^{i}\right)$ for $i \geq 3$. An interesting property of the parameter obs is that if H is a proper subgraph of a graph G, then obs (H) may be less than, equal to, or more than obs (G). The value of obs $\left(Q_{n}\right)$ for low values of n and its assymptotic behaviour are established in [4], but for large values of n it is not known whether $\operatorname{obs}\left(Q_{n}\right)$ is a strictly increasing function of n. It is therefore interesting to note (see [3]) that $\operatorname{obs}\left(\Gamma_{n}\right)=\operatorname{obs}\left(\Lambda_{n}\right)$ when $n \geq 4$, although Λ_{n} is a proper subgraph of Γ_{n} in this range. Moreover, the value of the observability of the extended Fibonacci cube Γ_{n}^{i} obtained in [8] implies that $\operatorname{obs}\left(\Lambda_{n}^{i}\right)=\operatorname{obs}\left(\Gamma_{n}^{i}\right)$, for $i=1,2$ and $n \geq 4$, although Λ_{n}^{i} is a proper subgraph of Γ_{n}^{i} for these values of i and n. The value of obs (G) for some other special classes of graphs has been determined in [2] and [5]. Bounds on the value of obs (G) in general are obtained in [1]. Structural properties of the Lucas cubes are discussed in [7] and of the extended Lucas cubes in [9].

2 Results

Noting that for all $n \geq 2$, the Lucas cube Λ_{n} contains a single vertex of maximum degree $\Delta\left(\Lambda_{n}\right)=n$, our first lemma is a direct deduction from equation (7).

Lemma 2.1 Λ_{n}^{i} contains exactly 2^{i} vertices of degree $\Delta\left(\Lambda_{n}^{i}\right)=n$ when $1 \leq i \leq n-2$; and when $i=n-1$, all 2^{n} vertices have degree n. \square

We require the following results of Dedò et al. [3].
Lemma 2.2 (i) $\operatorname{obs}\left(\Gamma_{n}\right)=n$, for $n \geq 4$;
(ii) $\operatorname{obs}\left(\Lambda_{n}\right)=n$, for $n \geq 2$.

Theorem 2.3 For $n \geq 2$, $\operatorname{obs}\left(\Lambda_{n+1}^{1}\right)=n+2$.
Proof. It follows from Lemma 2.1 that when $n \geq 2$, at least $n+2$ colours are required for a strong edge colouring of Λ_{n+1}^{1}. We shall prove that $n+2$ colours suffice. An example of a strong ($n+2$)-edge colouring of Λ_{n+1}^{1} for $n=2,3,4,5,6$ is shown in Figure A1, Figure A2 and Figure A3 in the Appendix.

Assume first that $n \geq 8$. By iterating a suitable number of times the decomposition (1) where $n \geq 2$, equation (2) gives

$$
\begin{aligned}
\hat{V}_{n}= & 10010 V_{n-6} 0+00010 V_{n-5}+01010 V_{n-5}+1000 V_{n-5} 0 \\
& +0000 V_{n-4}+0100 V_{n-4}+1010 V_{n-5} 0+0010 V_{n-4}
\end{aligned}
$$

In the decomposition of Λ_{n} illustrated in Figure 2, each box represents the subgraph induced by the given sets of vertices. Thus, for example, the subgraphs generated by the vertex sets $00010\left(V_{n-6} 0+V_{n-7} 01\right)$ and $1000\left(0 V_{n-6}+10 V_{n-7}\right) 0$ are each isomorphic to Γ_{n-5}. Each bond between a pair of boxes represents a set of edges joining the vertices in the first box to their adjacent vertices in the second box.

Figure 2.
Now consider the decomposition of Λ_{n+1}^{1} shown in Figure 3, given by taking two distinct copies of Λ_{n}, say G_{1} and G_{2}, each decomposed as in Figure 2. In Figure 3, each of the subgraphs defined in Figure 2 (except for H) is represented by one of the vertices v_{i} in $G_{1}\left(w_{i}\right.$ in $\left.G_{2}\right), i=2,3,5,6,7,8$, and H is represented by the two vertices v_{1}, v_{4} in $G_{\mathrm{i}}\left(w_{1}, w_{4}\right.$ in $\left.G_{2}\right)$ joined by a double line. The vertices $v_{2}, v_{3}\left(w_{2}, w_{3}\right)$ represent subgraphs isormorphic to Γ_{n-5}, while $v_{5}, v_{6}, v_{7}, v_{8}\left(w_{5}, w_{6}, w_{7}, w_{8}\right)$ represent subgraphs isormorphic to Γ_{n-4}. The subgraph H induced by the vertices $v_{1}, v_{4}\left(w_{1}, w_{4}\right)$ is isomorphic to Γ_{n-4}.

We decompose in G_{1} the set of vertices of the subgraph v_{5} as $V\left(v_{5}\right)=$ $S_{51} \cup S_{52} \cup S_{53} \cup S_{54}$, where $S_{51}=00000 V_{n-6} 0, S_{52}=00000 V_{n-7} 01, S_{53}=$ $000010 V_{n-7} 0, S_{54}=000010 V_{n-8} 01$. Similarly, let $V\left(v_{4}\right)=S_{41} \cup S_{42}$, where
$S_{41}=10000 V_{n-6} 0, S_{42}=100010 V_{n-7} 0$. Let $S_{21}=00010 V_{n-6} 0, S_{22}=$ $00010 V_{n-7} 01, S_{61}=0100 V_{n-5} 0, S_{62}=0100 V_{n-6} 01$. Then all the vertices of the subgraph v_{5} are adjacent to vertices of v_{6}, v_{8}, w_{5}. In addition, the vertices of S_{51} are adjacent to vertices of S_{21}, S_{41}; vertices of S_{52} are adjacent to $S_{22} ; S_{53}$ to S_{42}. However, no vertex of S_{54} is adjacent to any vertex of v_{2} or v_{4}. Moreover, the vertices $10010 V_{n-6} 0$ of the subgraph H are adjacent to vertices in S_{21}, but not to any vertex in S_{22}; vertices of v_{7} are adjacent to vertices of $0010 V_{n-5} 0$ in v_{8}, but not to any vertex in $0010 V_{n-6} 01$; vertices of v_{3} are adjacent to vertices in S_{61}, but not to any vertex in S_{62}. An analagous situation holds for the vertices of G_{2}.

Figure 3.
In Figure 3, we have made the following assignment of colours: to the vertices of v_{1}, the set $\{3,6\}$; to the vertices of $v_{2}:\{1,3,4,5\},\{1,4,5\}$; to the vertices of $v_{3}:\{3,4,5\}$; to the vertices of $v_{4}:\{1,3,4\}$; to the vertices of v_{5} : $\{1,2,3,4,6\},\{1,2,4,6\},\{2,3,4,6\},\{2,4,6\}$; to the vertices of $v_{6}:\{1,2,3\}$, $\{1,2\}$; to the vertices of $v_{7}:\{2,4,5\}$; to the vertices of $v_{8}:\{2,3,4\},\{3,4\}$. Similarly, to the vertices of w_{1}, we assign the set $\{4,6\}$; to $w_{2}:\{1,2,4,5\}$,
$\{1,2,5\}$; to $w_{3}:\{2,5,6\}$; to $w_{4}:\{1,4,6\}$; to $w_{5}:\{1,3,4,5,6\},\{3,4,5,6\}$, $\{1,3,5,6\},\{3,5,6\}$; to $w_{6}:\{1,3,6\},\{1,3\}$; to $w_{7}:\{1,5,6\}$; to $w_{8}:\{1,3,5\}$, $\{3,5\}$. Note that all these colour sets are distinct and use just 6 colours.
Next consider the following edge colouring of Λ_{8}^{1} obtained from the colouring shown in Figure 3 by assigning particular colours to the edges of the subgraphs denoted by $v_{i}, w_{i}, i=2,3,5,6,7,8$, and both copies of H. In $G_{1}\left(G_{2}\right)$, the subgraphs $v_{5}, v_{6}, v_{8}\left(w_{5}, w_{6}, w_{8}\right)$ are each isomorphic to Γ_{3} and have the colouring shown in Figure 4, where t is respectively $5,4, y$ in $v_{5}, v_{6}, v_{8}\left(1,4,6\right.$ in $\left.w_{5}, w_{6}, w_{8}\right) . H$ is also isomorphic to Γ_{3} and both copies have the colouring shown in Figure 5. The subgraphs $v_{i}, w_{i}, i=2,3,7$ are each isormorphic to $\Gamma_{2} \cong \Lambda_{2}$ (see Figure 1) and in each of these subgraphs we give one edge the colour x and the other the colour y.

Figure 4.

Figure 5.

For $i=1,2, \ldots 8$, this gives the following colour sets at the vertices of v_{i} : $\{2,3,6, y\},\{2,3,6, z\} ;\{1,3,4,5, x\},\{1,3,4,5, x, y\},\{1,4,5, y\} ;\{3,4,5, x\}$, $\{3,4,5, x, y\},\{3,4,5, y\} ;\{1,3,4, x, y\},\{1,3,4, x, y, z\},\{1,3,4, y\}$; $\{1,2,3,4,6, x\},\{1,2,3,4,6, x, y, z\},\{1,2,3,4,6, x, y\},\{2,4,5,6, z\}$, $\{2,4,5,6, x\} ;\{1,2,3, x\},\{1,2,3, x, y, z\},\{1,2,3, x, y\},\{1,2,4, z\},\{1,2,4, x\}$; $\{2,4,5, x\},\{2,4,5, x, y\},\{2,4,5, y\} ;\{2,3,4, x\},\{2,3,4, x, y, z\},\{2,3,4, x, y\}$, $\{3,4, y, z\},\{3,4, x, y\}$;
and at the vertices of w_{i} :
$\{2,4,6, y\},\{2,4,6, z\} ;\{1,2,4,5, x\},\{1,2,4,5, x, y\},\{1,2,5, y\} ;\{2,5,6, x\}$,
$\{2,5,6, x, y\},\{2,5,6, y\} ;\{1,4,6, x, y\},\{1,4,6, x, y, z\},\{1,4,6, y\}$;
$\{1,3,4,5,6, x\},\{1,3,4,5,6, x, y, z\},\{1,3,4,5,6, x, y\},\{1,3,5,6, z\}$,
$\{1,3,5,6, x\} ;\{1,3,6, x\},\{1,3,6, x, y, z\},\{1,3,6, x, y\},\{1,3,4, z\},\{1,3,4, x\}$;
$\{1,5,6, x\},\{1,5,6, x, y\},\{1,5,6, y\} ;\{1,3,5, x\},\{1,3,5, x, y, z\},\{1,3,5, x, y\}$, $\{3,5,6, z\},\{3,5,6, x\}$.
These sets are distinct and hence we have a strong edge colouring of Λ_{8}^{1} using 9 colours. Thus the theorem is also true when $n=7$.
Now consider a strong edge colouring of Λ_{n+1}^{1} when $n \geq 8$, obtained by assigning a strong edge colouring to each of the subgraphs isomorphic to $\Gamma_{j}, n-6 \leq j \leq n-4$, represented by the vertices $v_{i}, w_{i}, 1 \leq i \leq 8$. Since obs $\left(\Gamma_{n}\right) \leq 4$ when $n \leq 4$, this can be done using at most $n-4$ distinct colours by Lemma 2.2 in the case when $n \geq 8$. We now assign to the
edges in the decomposition of Λ_{n+1}^{1} represented by Figure 3 the colours shown in that figure. This gives a strong edge colouring of Λ_{n+1}^{1} using $n-4+6=n+2$ colours.

We require the following result proved in [8].

Lemma 2.4 Let G be a graph containing at most one isolated vertex and no isolated edge. Then $\operatorname{obs}\left(G \times Q_{2}\right) \leq \operatorname{obs}(G)+3$.

Theorem $2.5 \operatorname{obs}\left(\Lambda_{n}^{2}\right)=n+1$, for all $n \geq 4$.
Proof. Since Λ_{n}^{2} contains at least two vertices of degree n for all $n \geq 4$, at least $n+1$ colours are necessary for a strong edge colouring. However, by equation (7), $\Lambda_{n}^{2}=\Lambda_{n-2} \times Q_{2}$ and hence it follows from Lemma 2.4 and Lemma 2.2, that $n+1$ colours also suffice.

Theorem 2.6 Let k be the least positive integer such that $\binom{k}{n} \geq 2^{i}$. Then for $i \geq 1$ and $n \geq i+2$,

$$
k \leq \operatorname{obs}\left(\Lambda_{n}^{i}\right) \leq n+\lceil i / 2\rceil
$$

Proof. The lower bound follows from Lemma 2.1 and cases $i=1,2$ are covered by Theorem 2.3 and Theorem 2.5. It therefore remains to establish the upper bound in the cases when $i \geq 3$. Consider first when $i=2 r$, $r \geq 2$. Then equation (7) gives $\Lambda_{n}^{i}=\left(\Lambda_{n-i+2}^{2} \times Q_{i-4}\right) \times Q_{2}$ and hence $\operatorname{obs}\left(\Lambda_{n}^{i}\right) \leq \operatorname{obs}\left(\Lambda_{n-i+2}^{2} \times Q_{i-4}\right)+3$, by Lemma 2.4. Iterating, we obtain

$$
\operatorname{obs}\left(\Lambda_{n}^{i}\right) \leq \operatorname{obs}\left(\Lambda_{n-i+2}^{2}\right)+3(r-1)=n+r
$$

by Theorem 2.5.
A similar analysis in the case when $i=2 r+1, r \geq 1$, using Theorem 2.3 gives

$$
\operatorname{obs}\left(\Lambda_{n}^{i}\right) \leq \operatorname{obs}\left(\Lambda_{n-i+1}^{1}\right)+3 r=n+r+1
$$

Corollary 2.7 obs $\left(\Lambda_{n}^{3}\right)=n+2$ when $n=5,6$, and $\operatorname{obs}\left(\Lambda_{n}^{3}\right) \leq n+2$ when $n \geq 7$.

Corollary 2.8 obs $\left(\Lambda_{n}^{4}\right)=n+2$ when $6 \leq n \leq 14$, and $\operatorname{obs}\left(\Lambda_{n}^{4}\right) \leq n+2$ when $n \geq 15$.

References

[1] Burris, A.C. and Schelp, R.H., Vertex-distinguishing proper edgecolorings, J. Graph Theory 26 (1997), 73-82.
[2] Černý, J., Horňák, M. and Soták, R., Observability of a graph, Math. Slovaca 46 (1996), 21-31.
[3] Dedò, E., Torri, D. and Zagaglia Salvi, N., The observability of the Fibonacci and the Lucas cubes, Discrete Math. 255, 1-3 (2002), 55-63.
[4] Horn̆ák, M. and Soták, R., Asymptotic behaviour of the observability of Q_{n}, Discrete Math. 176 (1997), 139-148.
[5] Horn̆ák, M. and Soták, R., Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995), 289-301.
[6] Hsu, W.J., Fibonacci cubes - A new interconnection topology, IEEE Trans. Parallel and Distributed Systems, 4, no. 1 (1993), 3-12.
[7] Munarini, E., Perelli Cippo, C., Zagaglia Salvi, N., On the Lucas cubes, The Fibonacci Quarterly 39.1 (2001), 12-21.
[8] Whitehead, C.A. and Zagaglia Salvi, N., Observability of the extended Fibonacci cubes, to appear in Discrete Math..
[9] Whitehead, C.A. and Zagaglia Salvi, N., Extended Lucas cubes, submitted.
[10] Wu, J., Extended Fibonacci cubes, IEEE Trans. Parallel and Distributed Systems, 8, no. 12 (1997), 3-9.

A Appendix

A strong 4-edge colouring of Λ_{3}^{1}

A strong 5 -edge colouring of Λ_{4}^{1}

Figure A1.

A strong 7-edge colouring of Λ_{6}^{1}

Figure A2.

A strong 8-edge colouring of Λ_{7}^{1}
Figure A3.

[^0]: *This work was partially supported by MIUR (Ministero dell'Istruzione, dell'Università e della Kicerca).

